
ACT-Touch Reference Manual
Working Draft

Franklin P. Tamborello
Cogscent, LLC

Kristen K. Greene
National Institute of Standards

and Technology

1

...Preface 3
...Acknowledgments 4

...Introduction 5
..Loading ACT-Touch 7

...Manual Request Extensions to ACT-R 8
...Virtual Multitouch Display Device 13

2

Preface
This document describes the manual request extensions to ACT-R 6 (hereafter, ACT-R) provided by

ACT-Touch as well as the included virtual multitouch display device. As ACT-Touch is intended to serve
as an extension to ACT-R, this document follows the formatting conventions of the ACT-R Reference
Manual by Dan Bothell. A description of that notation is quoted verbatim from that document for the
reader’s convenience. The scope of this manual is restricted to the ACT-Touch distribution. This
document is written with the assumption that the reader is familiar with ACT-R and programming in
Lisp. Please refer to the ACT-R 6.0 Reference Manual for all other ACT-R issues.

3

Acknowledgments
• Mike Byrne, Rice University

• Public release of library code upon which ACT-Touch depends
• Dan Bothell, Carnegie Mellon University

• ACT-R technical support
• Ross Micheals, National Institute of Standards and Technology

• Project guidance
• NIST

• This work is funded by Measurement Science & Engineering grant 60NANB12D134 from the
National Institute of Standards and Technology in support of their Biometric Web Services project
(bws.nist.gov).

4

http://bws.nist.gov/
http://bws.nist.gov/

Introduction
ACT-Touch is a set of manual motor request extensions for ACT-R. Facility with programming

models for ACT-R is assumed throughout this document. These manual request extensions constitute
theoretical claims predicting motor preparation and execution times for certain manual gestures
commonly used with multitouch computer displays. These manual request extensions follow ACT-R’s
theoretical claims about how cognition interfaces with action to output information from the human to
the environment, which in turn originated with the EPIC architecture. This document is meant as a
practical guide to using ACT-Touch; it does not focus on theoretical developments.

As ACT-Touch extends ACT-R’s framework with additional manual movement vocabulary, many
movement styles are analogous to extant ACT-R movement styles in the sense that a movement is
composed of a certain set of features which specify the movement such as a hand, a finger, a direction
and a distance. Consequently ACT-Touch’s movement styles are subject to the same constraints and
caveats as ACT-R’s, e.g., finger positions that would be physically impossible for any physical human
hand to attain are specifiable for a cognitive model, and so it is up to the modeler to consider such
things.

Unlike ACT-R, all distances in ACT-Touch and its virtual multitouch display are specified in pixels.
The virtual multitouch display measures 1,024 pixels wide by 768 pixels tall. The model’s default
positions for its hands are at either side of the display, approximately centered vertically.

ACT-Touch is implemented as Lisp code that is meant to load with ACT-R’s software. ACT-Touch
can be downloaded as a single archive from Cogscent, LLC’s website, http://www.cogscent.com. The
archive contains act-touch.lisp, which is the set of manual request extensions; support files
implementing a demonstration ACT-R device to handle ACT-Touch’s manual requests; a demonstration
model; and this reference manual. Direct technical support inquiries regarding ACT-Touch to Frank
Tamborello at frank.tamborello@cogscent.com.

5

http://www.cogscent.com
http://www.cogscent.com
mailto:frank.tamborello@cogscent.com
mailto:frank.tamborello@cogscent.com

Notations in the Documentation1

When describing the commands’ syntax the following conventions will be used:
- items appearing in bold are to be entered verbatim
- items appearing in italics take user-supplied values
- items enclosed in {curly braces} are optional
- * indicates that any number of items may be supplied
- + indicates that one or more items may be supplied
- | indicates a choice between options which are enclosed in [square brackets]
- (parentheses) denote that the enclosed items are to be in a list
- a pair of items enclosed in <angle brackets> denote a cons cell with the first the car and the

second the cdr
- -> indicates that calling the command on the left of the arrow will return the item to the right of

the arrow
- ::= indicates that the item on the left of that symbol is of the form given by the expression on the

right

When examples are provided for the commands they are shown as if they have been evaluated at a
Lisp prompt. The prompt that is shown prior to the command indicates additional information about the
examples. There are three types of prompts that are used in the examples:

- A prompt with just the character ‘>’ indicates that it is an individual example – independent of
those preceding or following it.

- A prompt with a number followed by ‘>’, for example 2> means that the example is part of a
sequence of calls which were evaluated and the result depends on the preceding examples. For
any given sequence of calls in an example the numbering will start at 1 and increase by 1 with
each new example in the sequence.

- A prompt with the letter E preceding the ‘>’, E>, indicates that this is an example which is either
incorrect or was evaluated in a context where the call results in an error or warning. This is done
to show examples of the warnings and errors that can occur.

In the description of some commands it will describe a parameter or return value as a generalized
boolean. What that means is that the value is used to represent a truth value – either true/successful or
false/failure. If the value is the symbol nil then it represents false and all other values represent true.
When a generalized boolean is returned by one of the commands, one should not make any assumptions
about the returned value for the true case. Sometimes the true value may look like it provides additional
information, but if that is not specified in the command’s description then it is not guaranteed to hold for
all cases or across updates to the command.

6

1 Quoted from the ACT-R 6.0 Reference Manual

Loading ACT-Touch
The most straight-forward way to load ACT-Touch is to simply place its files in ACT-R’s user-loads

folder before loading ACT-R. This will load ACT-Touch at the end of the ACT-R loading process. Load
act-touch.lisp alone if you don’t want to use the included virtual multitouch display device or demo
model. However, note that whatever device you use must supply an index-z class slot (pixels at 72 ppi).
Load misc-lib.lisp, virtual-experiment-window.lisp, and virtual-multitouch-device.lisp if you wish to use
the included virtual multitouch display device. Act-touch-demo-model.lisp has an example model.

7

Manual Request Extensions to ACT-R

Isa tap
hand [left | right]
finger [index | middle | ring | pinkie | thumb]

This request will execute a tap action for the specified finger on the specified hand. This will result
in the finger moving toward and momentarily contacting the surface of the multitouch display directly
under the finger’s current location. This is analogous to ACT-R’s punch command. These are the actions
which will be shown in the trace for a tap action indicating the request being received, the preparation of
the features completing, the initiation time having passed, the actual contacting of the display surface
which is currently under that finger (showing the global XY screen coordinates tapped by the finger on
the virtual multitouch display), and the time to finish the execution of the action (returning the finger to
its starting position where it is ready to act again):

 0.050 MOTOR TAP HAND RIGHT FINGER INDEX
…
 0.200 MOTOR PREPARATION-COMPLETE
…
 0.250 MOTOR INITIATION-COMPLETE
…
 0.713 MOTOR DEVICE-HANDLE-TAP #<MULTITOUCH-DISPLAY #x302001E3A23D>
#(500 300) RIGHT INDEX
…
 0.763 MOTOR FINISH-MOVEMENT

Isa peck-tap
hand [left | right]
finger [index | middle | ring | pinkie | thumb]
r distance
theta direction

Analogous to the peck style movement, but resulting in a tap gesture on the multitouch display
device.

 0.050 MOTOR PECK-TAP HAND RIGHT FINGER INDEX R 100 THETA 1
…
 0.300 MOTOR PREPARATION-COMPLETE
…
 0.350 MOTOR INITIATION-COMPLETE
…
 1.312 MOTOR DEVICE-HANDLE-PECK-TAP #<MULTITOUCH-DISPLAY
#x302001D7751D> #(554 384)
Model peck-tapped (#(554 384)).
…
 1.362 MOTOR FINISH-MOVEMENT

8

Isa peck-recoil-tap
hand [left | right]
finger [index | middle | ring | pinkie | thumb]
r distance
theta direction

Analogous to the peck-recoil style movement, but resulting in a tap gesture on the multitouch display
device.

 0.050 MOTOR PECK-RECOIL-TAP HAND RIGHT FINGER INDEX R 100 THETA 1
…
 0.300 MOTOR PREPARATION-COMPLETE
…
 0.350 MOTOR INITIATION-COMPLETE
…
 1.312 MOTOR DEVICE-HANDLE-PECK-RECOIL-TAP #<MULTITOUCH-DISPLAY
#x302001BB2F3D> #(1078 384)
Model peck-recoil-tapped (#(1078 384)).
…
 2.325 MOTOR FINISH-MOVEMENT

Isa tap-hold
hand [left | right]
finger [index | middle | ring | pinkie | thumb]

This movement style results in the model tapping and holding the specified finger on the surface of
the multitouch display device until the model requests the tap-release movement style.

 0.050 MOTOR TAP-HOLD HAND RIGHT FINGER INDEX
…
 0.200 MOTOR PREPARATION-COMPLETE
…
 0.250 MOTOR INITIATION-COMPLETE
…
 0.713 MOTOR DEVICE-HANDLE-TAP-HOLD #<MULTITOUCH-DISPLAY
#x302001C5984D> RIGHT INDEX
Model tap-held (RIGHT INDEX).
…
 0.763 MOTOR FINISH-MOVEMENT

9

Isa tap-release
hand [left | right]
finger [index | middle | ring | pinkie | thumb]

When the model is already holding a finger against the surface of the multitouch display device (e.g.,
with a tap-hold), this movement style will release the finger from the display and return it to its default
distance from the display at the current X, Y coordinates.

 0.050 MOTOR TAP-RELEASE HAND RIGHT FINGER INDEX
…
 0.200 MOTOR PREPARATION-COMPLETE
…
 0.250 MOTOR INITIATION-COMPLETE
…
 0.350 MOTOR DEVICE-HANDLE-TAP-RELEASE #<MULTITOUCH-DISPLAY
#x302001DD1A6D> RIGHT INDEX
Model tap-released (RIGHT INDEX).
…
 0.400 MOTOR FINISH-MOVEMENT

If the model does not already have a finger on the display surface (index-z = 0), this error will result:

#|Warning: Finger must already be held against the surface
 of the multitouch display. |#

Isa tap-drag-release
hand [left | right]
finger [index | middle | ring | pinkie | thumb]
r distance
theta direction

The model will tap-hold the display surface under its finger, move its finger the specified distance
and direction without breaking contact with the display surface, and then release the finger from the
display.

 0.050 MOTOR TAP-DRAG-RELEASE HAND RIGHT FINGER INDEX R 100 THETA 1
…
 0.300 MOTOR PREPARATION-COMPLETE
…
 0.350 MOTOR INITIATION-COMPLETE
…
 1.312 MOTOR DEVICE-HANDLE-TAP-DRAG-RELEASE #<MULTITOUCH-DISPLAY
#x302001E92F3D> RIGHT INDEX 100 1
Model tap-drag-released (RIGHT INDEX 100 1).
…
 1.826 MOTOR FINISH-MOVEMENT

10

Isa swipe
hand [left | right]
finger [index | middle | ring | pinkie | thumb]
r distance
theta direction
num-fngrs integer

The model moves the specified number of fingers, starting with the specified finger and
incrementing from index to pinkie and thumb, onto the display and then moves the specified distance
and direction, then releases the fingers from the display. Num-fngrs defaults to 1.

 0.050 MOTOR SWIPE HAND RIGHT FINGER INDEX R 100 THETA 1 NUM-FNGRS 3
…
 0.350 MOTOR PREPARATION-COMPLETE
…
 0.400 MOTOR INITIATION-COMPLETE
…
 1.362 MOTOR DEVICE-HANDLE-SWIPE #<MULTITOUCH-DISPLAY #x302001E585ED>
#(500 300) #(554 384)
…
 2.375 MOTOR FINISH-MOVEMENT

Isa pinch
hand [left | right]
finger [index | middle | ring | pinkie]
start-width integer
end-width integer

The model moves the specified finger and thumb onto the surface of the display, then moves them
together or apart by the difference between the specified start- and end-widths, then releases them from
the display. Start- and end-widths are in pixels.

 0.050 MOTOR PINCH HAND RIGHT FINGER INDEX START-WIDTH 200 END-WIDTH 0
…
 0.300 MOTOR PREPARATION-COMPLETE
…
 0.350 MOTOR INITIATION-COMPLETE
…
 0.942 MOTOR DEVICE-HANDLE-PINCH #<MULTITOUCH-DISPLAY #x302001E7E39D>
#(500 300) RIGHT INDEX 200 0
…
 1.455 MOTOR FINISH-MOVEMENT

11

Isa rotate
hand [left | right]
finger [index | middle | ring | pinkie]
rotation direction

This movement request results in a movement of the specified finger and the thumb to the display,
moves them rotationally by the specified direction (in radians), then releases them.

 0.050 MOTOR ROTATE HAND RIGHT FINGER INDEX ROTATION 1
…
 0.250 MOTOR PREPARATION-COMPLETE
…
 0.300 MOTOR INITIATION-COMPLETE
…
 1.153 MOTOR DEVICE-HANDLE-ROTATE #<MULTITOUCH-DISPLAY #x302001DBB72D>
#(500 300) 36
…
 1.666 MOTOR FINISH-MOVEMENT

Isa move-hand-touch
 [object object | loc location]

Analogous to move-cursor, this request will result in a ply-style movement of the model’s right hand.
That ply will move the index finger to either the object (which must be a chunk which is a subtype of
visual-object) or location (which must be a chunk which is a subtype of visual-location). The trace
indicates the distance and direction moved.

 0.100 MOTOR MOVE-HAND-TOUCH OBJECT NIL LOC VISUAL-LOCATION0-0-0
…
 0.300 MOTOR PREPARATION-COMPLETE
…
 0.350 MOTOR INITIATION-COMPLETE
…
 0.502 MOTOR MOVE-A-HAND RIGHT 544.76416 -2.6188035
…
 0.552 MOTOR FINISH-MOVEMENT

12

Virtual Multitouch Display Device
The virtual multitouch display device included with ACT-Touch is a basic ACT-R device built to

present a virtual visual environment to an ACT-R model and receive ACT-R’s touch gesture motor
movements. It includes some code that is specific to the demonstration model and one class slot that is
important for ACT-Touch functionality. The index-z slot of the multitouch-display class is used for the
ACT-Touch manual request extensions as a measure of distance from the model’s index finger to the
multitouch display surface, in pixels at 72 ppi. Whatever device is used with ACT-Touch, index-z must
be supplied as a slot of the device’s object class.

This section provides only superficial coverage regarding the mechanics of the device. See the ACT-
R documentation for details regarding how to build your own device for ACT-R. This section includes
some details about ACT-Touch’s device interface methods as well as some discussion about how to
modify ACT-Touch’s included multitouch device. We assume familiarity with Common Lisp’s object
system, so object-oriented programming in Lisp will not be discussed here.

The virtual multitouch display is a slightly more sophisticated version of the list device presented in
extending-actr.pdf distributed with ACT-R. Like the list device, it uses a paired list of visual-location
and visual-object chunks as ACT-R’s visual world. Unlike the list device, it uses objects of a virtual-
widget class to encapsulate those chunks with data used by the experiment code to control the state of
the simulated task environment and perform some action according to the appropriate device handler
methods. Virtual-multitouch-device.lisp also contains all the device handler methods for what the
experiment code should do when the model outputs each of ACT-Touch’s manual request extension
types. Familiarity with CLOS and ACT-R device programming are helpful for adapting or replacing the
virtual multitouch display device. Both topics are covered in-depth elsewhere, namely in ANSI Common
Lisp by Paul Graham and the ACT-R Reference Manual, respectively. However, this section provides
basic information about ACT-Touch’s virtual multitouch display device that will help you to modify it.

Device Classes

multitouch-display (procedure-window)
visual-world
index-z
widgets
:state-vec #(:TAP1 :TAP2 :TAP3 :SWIPE :PINCH :REVERSE-PINCH :ROTATE-
CW :ROTATE-CCW)

The multitouch-display class is a child of the procedure-window class. It adds slots visual-world,
index-z, and widgets. Upon initialization it assigns a default value to the state-vec slot that it inherits
from procedure-window. That default value is a vector of keywords, each representing a discrete state of
the task environment—first step is :TAP1, second step is :TAP2, etc. These keywords correspond to the
nick-names that you will give to each of the virtual-widgets in the ACT-R device. Change this state-vec
to change the steps of the task.

13

virtual-widget ()
nick-name
vwindow
vis-loc
vis-obj
action-type

The virtual-widget class is a parent class to act as a container for the visual-location and visual-
object chunks that comprise a model’s visual environment. It also is to receive motor actions from the
model so that the device can interact with the model. It is subclassed for each style of movement (e.g.,
tap, swipe). The nick-name slot takes a keyword with which the experiment software may refer to that
widget (e.g., :tap1). Vwindow refers to the virtual-window within which the virtual-widget appears (i.e.,
the virtual-multitouch-device). Vis-loc and vis-obj are the visual chunks that ACT-R will access when it
constructs its visicon and the visual-location’s associated visual-object. The action-type specifies the
movement style the virtual-widget is to receive (e.g., tap).

Device Methods & Functions

initialize-instance :after ((wind multitouch-display) &key)

This method sets up the multitouch-display device with its visual-location and visual-object chunks,
which it uses to construct the widgets which will constitute the model’s simulated world. The first
subexpression within the let expression defines the visual-location chunks. The slots, such as screen-x
and screen-y, determine where the widgets are placed within the ACT-R device. Change the value of the
visual-location slots here to change where widgets are located and what they look like. The second
subexpression defines some textual labels to appear within the device. The third subexpression defines
the visual-object chunks that ACT-R’s device methods will pair with each of the visual-location chunks
defined for the device. The device methods (described below) determine how when ACT-R moves
visual-attention to a visual-location, ACT-R gets the appropriate visual-object chunk. In this third
subexpression, multitouch-display’s initialize-instance after method defines these visual-object chunks.

The fourth subexpression defines the widgets that comprise the ACT-R device. There are different
types of widgets, each of which correspond to the various gestures of the multitouch command
vocabulary (e.g., tap, pinch). Change the first argument to change what type of widget, and thus which
command, to use. This should be a symbol naming a virtual-widget subclass, such as ‘tap-widget. Each
widget takes the visual-location and visual-object chunks defined in the first and third subexpressions
and assigns them to widgets, interface objects to receive model input and perform some task-relevant
function. These widgets take the visual-location and visual-object chunks according to the position
indicated by the second argument of the nth expressions—e.g., (nth 0 vis-locs) refers to the first visual-
location chunk. Nick-names assigned here are to correspond to states of the multitouch-display, steps of
the model’s task (e.g., :TAP1). This concludes the let expression.

Next, multitouch-display’s initialize-instance after method sets the multitouch-display’s visual-world
slot to be a paired list of the visual-location and visual-object chunks and its widgets slot to be the

14

widgets just defined. After that the method calls some model setup model functions that should be
familiar to any ACT-R modelers, such as install-device and proc-display.

15

