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ABSTRACT: There exists a generalization of Boltzmann’s H-function that allows for nonuniformly
populated stationary states, which may exist far from thermodynamic equilibrium. Here we describe a
method for obtaining a generalized or collective diffusion coefficient D directly from this H-function, the
only constraints being that the relaxation process is Markov (short memory), continuous in the reaction
coordinate, and local in the sense of a flux/force relationship. As an application of this H-function
method, we simulate the self-consistent extraction of D via Langevin/Fokker−Planck (L/FP) dynamics
on various potential energy landscapes. We observe that the initial epoch of relaxation, which is far
removed from the stationary state, provides the most reliable estimates of D. The construction of an H-
function that guarantees conformity with the second law of thermodynamics has been generalized to allow for diffusion
coefficients that may depend on both the reaction coordinate and time, and the extension to an arbitrary number of reaction
coordinates is straightforward. For this multidimensional case, the diffusion tensor must be positive definite in the sense that its
eigenvalues must be real and positive. To illustrate the behavior of the proposed collective diffusion coefficient, we simulate the
H-function for a variety of Langevin systems. In particular, the impacts on H and D of landscape shape, sample size, selection of
an initial distribution, finite dynamic observation range, stochastic correlations, and short/long-term memory effects are
examined.

■ INTRODUCTION

Diffusion processes play a key role in understanding and
controlling the transport of matter, energy, momentum, and
even information in physics, chemistry, material science,
biology, and communications technology.1 Descriptions of
diffusion range from abstract mathematical formulations2 to
predicting the behavior of neutrons in nuclear reactors to
understanding the spread of infectious diseases throughout a
population. Given the generality and importance of this
process, enormous resources have been committed to measure-
ment, modeling, and theoretical formulations. At present, there
are three commonly used methods for extracting diffusion
coefficients from experimental data.
For instance, one might hypothesize the existence of some

diffusion mechanism such as Fickian dispersion or stochastic
hopping, solve the appropriate equations or simulate the
diffusion process, and extract a diffusion coefficient or its tensor
analogue. One would then compare the predictions of this
model to carefully selected experimental data, and evaluate the
significance of discrepancies in order to decide whether
modifications or improvements to the original model are
warranted. This iterative process is repeated until there is a
satisfactory match between theory and measurement.
On the other hand, at the microscopic level, one might

possess detailed information concerning the trajectories of
individual molecules or entities and then attempt to identify the
self or tracer diffusion process that most faithfully characterizes
these observations.3−5 In both the collective and self-diffusion
scenarios, the diffusion coefficient or tensor extracted from this
measurement/theory comparison depends on the details of the
iterated model.

In the spirit of fluctuation theory, suppose that one is
supplied with a continuous, time-dependent stochastic variable
x(t) along with the random Fourier component of the Dirac
delta function δ(x(t)), which is exp(iqx(t)), where q is a
Fourier wave vector. Further assume that one can measure or
construct the time correlation function of the Fourier
component in some stationary state ensemble that is ergodic,
so that time and ensemble averages may be interchanged. If
these two nontrivial conditions are satisfied, then a generalized
diffusion coefficient D can be extracted from the q2 dependence
of the exponential decay in t of this correlation function,
referred to as a dynamic structure factor (DSF).6,7 However,
there may exist situations in which instrumental and physical
limitations preclude an accurate determination of the DSF, and
so the question arises: “Is there a method that determines D
which does not require the construction of a time correlation
function from fluctuations?” Moreover, is there a relatively
model-free method applicable to situations in which the system
may be far from thermodynamic equilibrium or even far from a
stationary state?
Here we present a formulation of diffusion that relies only on

the second law of thermodynamics along with relatively few
additional assumptions regarding the nature of the underlying
physical processes. In the first part of this paper, the
development of the generalized H-function formulation is
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presented for single and multiple dimensions. In the second
part of this paper, we demonstrate that the estimated diffusion
coefficient obtained with this formulation is both accurate and
robust, and we illustrate its use via Langevin simulations. We
expect that these investigations will facilitate the application of
the generalized H-function formulation to estimate D from
experimental systems.
Generalized H-Function. To identify a method for

determining D that does not require the construction of a
time correlation function from fluctuations and is relatively
model free, consider the following generalization of Boltz-
mann’s H-function for the continuous random variable x.
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which allows for a nonuniform stationary state density Pss(x),
which may exist far from thermodynamic equilibrium. This
functional form has been associated with a variety of names,
including the Gibbs entropy postulate,8 the relative entropy,9,10

the entropy production,11−13 the stochastic free energy,14 and
the Kullback−Leibler divergence.15 It has been used to
characterize the dissipation of free energy16 and the direction
and length of the “arrow of time”.17−19 It plays a fundamental
role in the development of information theory15 and in
algorithms for pattern recognition.20

The time derivative of H(t) is given by
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the form of which motivates the introduction of a local
probability flux, J(x, t), through
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We now have
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which we integrate by parts and require that the system be
closed so that J(x, t) ≡ 0 at both upper and lower boundaries.
Then,
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At this point, assume that the dynamics conform to a Markov
process, so that the time interval “dt” is significantly longer than
the correlation time associated with the intrinsic noise within
the system. This implies the existence of either a stationary
state or a monotonic decrease in H(t) with increasing t:

≤H t
t

d ( )
d

0
(6)

Insofar as we are concerned with the continuum limit for
dynamics on a class of Markov chains, Pss(x) is unique and can
be regarded as the “equilibrium probability density”. Equation 6
is sometimes regarded as a statement of the second law of
thermodynamics.15 Now deduce the simplest form for the
probability flux that guarantees the inequality in eq 6 on the
condition that the system resides in the state x at time t,
namely, that
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Here L is a positive, constant coefficient associated with the
dissipative (heat producing) process (diffusion). This form for
J(x, t) is consistent with L/FP dynamics. Finally, identify L with
the diffusion coefficient D, so that
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In irreversible thermodynamics,8 a local, dynamic chemical
potential, μ(x, t), is defined as

μ =
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so that
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In this context, D can be expressed as the ratio of the rate of
decay of H to the second moment of a dynamic chemical
potential gradient. Insofar as this ratio can be obtained directly
from relaxation/simulation data, D is independent of any
further assumptions concerning the nature of the underlying
physical processes.
This result is a special case of a very general derivation that

was first implied by the work of Lebowitz and Bergmann21 and
also extended by Santamato and Lavenda Santamato.22 These
authors allowed for an N × N component diffusion tensor, D̃,
which could depend on time as well as on the reaction
coordinate set {X}N:
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where Dij is the element in row i and column j of D̃ and the
chemical potential is given by
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Equation 11 follows directly from assuming Langevin/Fokker−
Planck (L/FP) dynamics23,24 on some N-dimensional potential
energy landscape whose shape is given by −ln Pss({X}N). Here
it should be noted that Lebowitz and Bergmann21 considered a
system with deterministic internal dynamics but with boundary
interactions that were stochastic and impulsive. In the limit of
high collision frequency with the boundaries, the collision
operator can be expanded to second order in the derivative with
respect to {XN}, which results in a Fokker−Planck description
of the dynamical evolution.23 After several intermediate steps,
this leads to eq 11, which is the multidimensional generalization
of eq 10.19 In order for H(t) to decrease monotonically with
increasing t, the local, dynamic diffusion tensor D̃ must be
positive definite in the sense that its eigenvalues must,
everywhere and always, be positive.25

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp4020542 | J. Phys. Chem. B 2013, 117, 12836−1284312837



D̃ must be Hermitian in order for the second law of
thermodynamics to hold,25 which implies Onsager symmetry;8

i.e., Dij = Dji. Note that this symmetry is valid without any
appeal to fluctuation theory restricted to small deviations from
the stationary state. D̃ must be a symmetric tensor even if the
system evolves far from the stationary state. Under L/FP
dynamics, the tensor D̃ is a covariance matrix with diagonal
elements describing fluctuation magnitude in each dimension
and off-diagonal elements describing covariance/correlation
across dimensions. As such, D̃ must be symmetric and positive
definite.
If any of the eigenvalues of the diffusion tensor happen to

vanish, then the stationary distribution is no longer unique.
Multiple stationary states will appear, and the one eventually
attained will depend strongly on the initial distribution. This
glass-like behavior will manifest itself even if one or more
eigenvalues of D̃ vanish only over some fraction of the
landscape, provided that the region contains the basin of an
attractor.
Associated with eq 11 is a probability flux given by
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Therefore, the flux along the coordinate xi depends on the
probability that the system is at the set of coordinates {X}N at
time t as well as on the N-dimensional chemical potential
gradient. The point is that the system is not closed with respect
to motion along the xi coordinate and so L/FP dynamics
projected into this subspace need not conform with a
monotonic decrease of H(t) as t increases. That is, ignoring
degrees of freedom that affect the behavior of the population
along the xi coordinate can lead to an apparent violation of the
second law of thermodynamics. This implies that H(t) can
serve as a general, although crude, indicator of the landscape’s
dimensionality and shape.
At this point, it is tempting to associate the labels (i, j) with

distinct chemical species, in which case we are dealing with
mass diffusion in an N component system.8 A relation between
the Boltzmann and mass diffusion tensors is a topic with both
theoretical and practical implications, and a careful study is
beyond the scope of this investigation. However, we offer the
conjecture that, given the validity of L/FP dynamics, the
symmetric component of the appropriate mass diffusion tensor
D̂M can be identified with the Boltzmann H-tensor D̃; i.e.,

̃ = ̂ + ̂ ′D DD
1
2

( )M M (14)

where X′ denotes the transpose of X. This relation should hold
even if the mass diffusion process occurs far from
thermodynamic equilibrium. If the above conjecture is valid,
the fact that the symmetric part of D̂M must be positive definite
allows for rigorous tests of internal consistency in diffusion
coefficient databases for multicomponent systems.

■ ESTIMATING A DIFFUSION COEFFICIENT, D, FROM
RELAXING DISTRIBUTIONS

Equation 8 can be rewritten as
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providing an estimator for D that only requires knowledge of
the stationary-state probability density, Pss(x), the nonsta-
tionary state density, P(x, t), and the time derivative of their
relative entropy, (d/dt)H(t). For the purpose of discussion, let
us refer to the denominator of eq 15 as
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We begin by examining a simple hypothetical system that can
be solved analytically. Specifically, we consider a population
that is normally distributed with mean 0 at all times and whose
variance is a function of time, σ2(t), with 0 < σ2(t) < ∞. Note
that the relaxation over time of this population is an Ornstein−
Uhlenbeck process and is completely described by σ2(t).
The following equalities are easily derived for this example:
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We choose to set D = 1 on the arbitrary time scale of days.
We also set σ2(0) = 0.01 and σ2(∞) = 1, so that the population
begins as a narrow normal distribution and relaxes to a standard
normal in its stationary state. Equation 17 then yields

σ σ= −
t

t t
d
d

( ) 2(1 ( ))2 2

which can be used to solve for σ2(t) analytically or numerically,
given that σ2(0) = 0.01. A plot of σ2(t) is shown in Figure 1.

■ INFLUENCE OF NOISE IN ESTIMATED DENSITIES
Throughout the remainder of the paper, estimated quantities
are denoted with a circumflex symbol; that is, X̂ is an estimate
of X. D̂ is the ratio of −(dĤ(t)/dt) to I(̂t); thus, D̂ tends to be
most stable when −(dĤ(t)/dt) and I(̂t) tend to be large.
Because Ĥ(t) is bounded below by 0 and H(t) is monotonically
decreasing, Ĥ(t) tends to be convex, at least over course-

Figure 1. Plot of σ2(t) versus day used in analytic example.
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grained time intervals. That is, Ĥ(t) and −(dH(t)/dt) tend to
be decreasing functions in t. For constant D, eq 8 shows
−(dH(t)/dt) ∝ I(t). Thus, when Ĥ(t) is convex, I(̂t) tends to
also decrease in time. For this reason, estimates of D are most
stable soon after the population is initialized/perturbed.
We illustrate this point in our analytic example by treating

σ2(t) as if it were estimated via maximum likelihood with DF
degrees of freedom each time the population is observed. That
is, we use σ̂2(tj) = (σ2(tj)χDF

2(tj))/DF, where χDF
2(tj) represents

an independent random variable from a χ2-distribution with DF
degrees of freedom corresponding to the noise at time tj. We
then compute Ĥ(tj) and I(̂tj) at each time point using σ̂2(tj) in
place of σ2(tj) and σ̂2(∞) in place of σ2(∞). The resulting
noise in Ĥ(t) can be greatly reduced, but not fully eliminated,
via a smoothing operation. Figure 2 summarizes the

distribution of point estimates of D, after smoothing via
multiexponential regression, for 50 simulated relaxations for
each of several values for DF. As can be seen, the approach
suggested by eq 15 yields correct D estimates for this
hypothetical Ornstein−Uhlenbeck relaxation process. The
variability in estimates of D at the first time point (0.025
days) is large due to the difficulty in estimating the slope at a
boundary when the slope is not constant near the boundary.
For these simulations, aside from the first time point, the
variability in D̂ clearly increases as DF decreases or as Ĥ(t)
decreases (and t increases).
Estimating D without Knowledge of the Stationary

State. A diffusive system evolves to its stationary state
asymptotically, meaning the population is not truly in its
stationary state until after an infinite period of relaxation. In
systems with barriers, the population may take a very long time
to even remotely resemble the stationary state. For this reason,
we now consider the impact of approximating the stationary
state with the state observed at time T.
In our analytic Ornstein−Uhlenbeck relaxation example, this

corresponds to replacing the variance of the stationary state,
σ2(∞), with the variance at the last observed time, σ2(T), when
computing Ĥ(t) and I(̂t). Let D̂(t, T) denote the estimate of D
obtained at time t when using σ2(T) in place of σ2(∞). When t
→ T, D̂(t, T) provides very poor estimates of D as can be seen
analytically. Indeed
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which has a quadratic singularity as t → T. This illustrates that
when the stationary state is not known but is approximated by a
distribution observed at a “late” time, T, in the relaxation
process, there can be a severe bias in the estimate of D when t is
close to T, as displayed in Figure 3. All values of T provided

reasonable estimates of D for t close to 0, indicating that it
would be beneficial to observe this relaxing system as frequently
as possible at early time points. Additionally, the range of time
in which D̂(t, T) well approximates D increases rapidly with T,
which suggests that when the true stationary state cannot be
observed one should estimate the stationary state for this
system by observing the population as late as possible.
We present some analytic insights as to what general

characteristics the approximating state should have in order to
provide a good estimate of D. Suppose the population
distribution at time t is given by P(x, t) and let P(x, ∞) =
Pss(x). We now examine the error in dH/dt and I caused by
using some other fixed distribution g(x) in place of Pss(x). Let
us denote which distribution is being used as a reference with a
subscript as in the following example: Hg(t) = ∫ dxP(x, t)
ln(P(x, t)/g(x)). To simplify the presentation, we omit the x
dependence and write P(t), Pss, and g for P(x, t), Pss(x), and
g(x), respectively.
We have
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This form shows that differences between Pss and g in regions
of x where P(t) is not changing in time, or is changing very
slowly, do not strongly affect an estimate of dH(t)/dt.
Similarly,

Figure 2. Ĥ (top) and D̂ (bottom) versus time. At each time point,
lines span ±2 standard deviations around a mean estimate from 50
relaxation simulations performed using degrees of freedom, DF,
corresponding to lines’ color. Estimates of D were logged when
computing means and standard deviations. Multiexponential regres-
sion was used to estimate dH/dt when calculating D̂.

Figure 3. Impact of using σ2(T) in place of σ2(∞) for T = 0.5, 1, 2,
and ∞.
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which yields
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This form shows that regions of x where P(t) = 0, Pss ∝ g, or
P(t) ∝ (Pssg)

1/2 do not cause a difference between IPss(t) and
Ig(t).

Diffusion with Barriers. Barriers may prevent a relaxing
system from reaching the stationary state within the limited
time a system may be monitored. For this reason, we examine
the implications of the preceding conclusions for a system with
barriers. In particular, we examine whether g(x) must closely
resemble Pss(x), which may take an indefinite amount of time
to observe, in order to obtain an accurate estimate of D.
One may characterize a system with barriers by partitioning

the reaction coordinate into wells such that the subpopulation
within each well tends to rapidly explore its own well, but when
barriers are large, subpopulations from different wells mix very
slowly. Suppose that WX = {w1, w2, ..., wN} forms such a
partition of the reaction coordinate X. The distribution at time t
of any population may be written as

∑ π=
=

P x t t P x t( , ) ( ) ( , )
n

N

n n
1 (26)

such that

Figure 4. Results from Langevin simulations of 5000 “particles” diffusing in two parabolic wells with different barriers or depths, which are shown in
the first row. The first and second columns correspond to a large and small barrier, respectively, between two symmetric wells. The third and fourth
columns correspond to deep right and left wells, respectively. Estimated densities are plotted in the second row. Initial distributions P(x, 0) (shown
in green) are given by a mixture of two narrow (variance=0.01) Gaussians centered at the bottom of the left and right wells with mixing proportions
of 80 and 20%, respectively. The estimated densities at day 1, P̂(x, 1), are shown in red. An estimated stationary state density, P̂ss(x), was obtained
using 5000 observations randomly sampled from the true stationary state and is shown in black for each column. The third, fourth, and fifth rows
show estimates of H, I, and D, respectively. The red lines show estimates obtained when using P̂(x, 1) in place of P̂ss(x), and the black lines show
estimates obtained when using P̂ss(x).
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where Pn(x, t) is the distribution at time t of the subpopulation
within well n and πn(t) is the proportion of the total population
in well n at time t. Similarly, the stationary state may be written
as

∑ π= ∞ = *
=

P x P x x( ) ( , ) ss ( )
n

N

n nss
1 (27)

where ssn(x) is the stationary state distribution of the
subpopulation within well n and πn* is the proportion of the
total population in well n in the stationary state.
The characteristic of a relaxation path whose progression to

Pss(x) is impeded by the presence of barriers is that the
distribution within each well becomes very similar to that of the
stationary state long before the distribution of the population
across wells appears like the stationary state. That is, after a
short time T,

∑ π= ≈
=

g x P x T T x( ) ( , ) ( )ss ( )
n

N

n n
1 (28)

where πn(T) ≠ πn*.
If (d/dt)πn(t) = 0 for all n and t, then πn(t) = πn* for all n and

so trivially g(x) ≈ Pss(x), meaning the stationary state can be
well approximated at time T. We consider a more interesting
scenario of when the relaxation of the system becomes glass-
like due to barriers, so that (d/dt)πn(t) ≈ 0 for all n (with (d/
dt)πn(t) > 0 for at least two n). In this case,
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Thus, by eq 23, (d/dt)HPss(t) ≈ (d/dt)Hg(t).
Similarly,
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Thus, by eq 25, IPss(t) ≈ Ig(t).
The exercise above shows that when mixing between wells is

slow, to obtain an accurate estimate of D, knowledge of the
stationary state is not required. Any state after the distribution
within each well has stabilized may be used in place of the
stationary state to estimate D. We illustrate this point in Figure
4, which displays estimates of H, I, and D obtained when using
P̂(x, 1) (red) and P̂ss(x) (black) for Langevin simulations in
four different landscape scenarios. In the plots of Ĥ, the black
and red lines are roughly parallel, so their derivatives are
roughly equal. For I,̂ the red and black curves are nearly
indistinguishable from one another. As shown in the bottom
row, estimates of D obtained using either P̂(x, 1) or P̂ss(x) are
accurate and very similar to one another, even when P̂(x, 1)
and P̂ss(x) are very different.

D as a Function of Time or Reaction Coordinate.
Equation 8 can be generalized in one dimension to allow
diffusion to be a function of time, t, or the reaction coordinate,
x, as
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If diffusion is a function of t but remains constant in x for a
given t, then we have dH(t)/dt = −D(t)I(t), which suggests
one can estimate diffusion as a function of time, D(t), in the
same manner as one can estimate a constant diffusion. We
illustrate this result in Figure 5, which shows accurate diffusion
function estimates until H(t) becomes small.

When diffusion is a function of x, the diffusion function must
remain inside the integral in eq 31 and generally cannot be
well-estimated with the proposed approach. Using the
proposed approach in this case extracts an estimate of D*,
defined as
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In some cases, one can find a transformation of the reaction
coordinate w(x) such that D(w(x)) is a constant. For example,
in systems for which D(x) ∝ x2, using w(x) = ln(x) will yield
D(w(x)) as a constant.

Figure 5. Results for three simulations of 5000 particles diffusing in a
parabolic landscape (i.e., P(x, 0) = normal(0, 0.1) and Pss(x) =
normal(0, 1)). D(t) = 2 − (t/(0.05 + t)) (left) and 1 + (t/(0.05 + t))
(right).
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Diffusion with Memory and Stochastic Correlations.
Additional explorations into the effectiveness of estimating D
from relaxation profiles are presented in the Supporting
Information. In particular, we demonstrate the expected
behavior that estimated diffusion increases when a temporal
memory is added to the diffusive (velocity) fluctuations and
decreases in the presence of strong stochastic correlations
across population members.
Choosing an Initial Distribution. There is an obvious

asymmetry in the roles of P(x, t) and Pss(x) in eq 15.
Consideration of this asymmetry provides valuable insight
regarding experimental design. In particular, to obtain a
reasonable estimate of D at time t, P̂(x, t) and P̂ss(x) must
provide reasonable estimates of P(x, t) and Pss(x), respectively,
across the entire set {x: P(x, t) > 0}, where {x: condition}
denotes the values of x for which condition is true. That is, one
can only obtain estimates of D at time points for which {x: P(x,
t) > 0} is within the dynamic observation range of the
measurement system (note that {x: Pss(x) > 0} need not be
contained within the dynamic observation range). Additionally,
the existence of an x for which P̂(x, t) > 0 and P̂ss(x) = 0 will
cause Ĥ(t) = I(̂t) = ∞, resulting in an undefined estimate of D.
However, the existence of an x for which P̂(x, t) = 0 and P̂ss(x)
> 0 presents no problem because 0 log(0) = ln(00) = ln(1) = 0 .
These observations suggest that it is best to use an initial
distribution that is well within both the dynamic observation
range of the measurement system and the range of the
stationary state distribution.
Additionally, we have already observed that estimates of D

are most stable at times when Ĥ(t) is large. This means that it is
preferable to use initial distributions that are as far from the
stationary state as possible, provided that the range of the initial
distribution is within the range of the stationary state and the
observation range of the measurement system. As the most
extreme example, imagine the existence of an initial probability
distribution of the form

δ= −P x x x( , 0) ( , 0)c (33)

where δ(x − xc, 0) is a Dirac delta function located at x = xc.
One can now employ analytical approximations to the delta
function,26 such as
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to deduce that the initial decay of H is given by
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The right-hand side of eq 36 is dominated by a quadratic
divergence that is independent of the form of Pss(x). The
implication here is that, in order to get an accurate estimate for
D, one should extract a rather narrow distribution for the initial
state and rely on short/medium temporal ranges to deduce the
rate of decay of H(t).
Selecting an initial distribution that is close to the estimated

stationary state can produce very poor estimates of D. Consider
the behavior of D̂ as H(t) → 0 when each time point has a

unique set of observations and corresponding estimated
density. Note that both Ĥ(t), I(̂t) ≥ 0, with equality if and
only if P̂(x, t) = P̂ss(x). When Pss(x) is estimated by the
observations collected at time T (i.e., P̂ss(x = P̂(x, t))), then
Ĥ(t), I(̂t) > 0, for all t ≠ T. Even when a system is in its
stationary state, E(Ĥ) > 0 and E(I)̂ > 0, where E(Y) denotes
the expected or average value of Y. As t → ∞, H(t) and I(t)
become dominated by E(Ĥ) and E(I)̂, respectively. Then, as t
→ ∞, Ĥ(t) and I(̂t) will randomly fluctuate around E(Ĥ) and
E(I)̂, respectively. A smoothing operation that constrains Ĥ(t)
to be monotonically decreasing will show (d/dt)Ĥ(t) → 0.
That is, the numerator of D̂ will go to zero as t → ∞ and the
denominator will be strictly positive and randomly fluctuate
around E(I)̂. Thus, D̂ will go to zero as t → ∞. A smoothing
operation that does not constrain Ĥ(t) to be monotonic will
show (d/dt)Ĥ(t) fluctuating around 0, producing some
negative estimates of D. The point here is that, if the initial
distribution is not sufficiently far from the estimated stationary
state distributions, the resulting estimates of D will be poor.

Estimating the Uncertainty in D̂. The uncertainty for D̂
can be estimated using non-parametric bootstrapping by
repeating the following general protocol in each of many
iterations. Within iteration m, complete the following steps. For
each observation time point t, at which Nt observations were
originally recorded, create a bootstrap sample by sampling with
replacement Nt times from the set of original observations.
Using the bootstrap samples, estimate a new density for each
time point and recalculate D̂m(t) using the density estimates of
the bootstrap samples. After repeating this process M times,
one gets a collection of estimates {D̂m(t)}m=1

M for each time
point. The standard error for the original estimate of D at time
point t can be approximated by the standard deviation of
{D̂m(t)}m=1

M .

■ CONCLUSIONS
Our principal conclusion here is that it is feasible to extract,
with good accuracy, diffusion coefficients directly from
relaxation data, with a minimum number of physical
assumptions. While our derivation was based on L/FP
dynamics, our simulations strongly indicate that the H-function
method of estimating D is valid for systems with a temporal
memory and for interactions between particles. We have shown
that this technique is computationally robust; moreover, in the
case of a landscape with one or more barriers, it is not even
necessary to have knowledge of the stationary state probability
density. In contrast to the dynamic structure factor, which
requires the construction of a time correlation function of
fluctuations relative to the stationary state, the H-function
method requires knowledge of relaxation dynamics far from the
stationary state, and does not depend on the ergodicity of the
system. Since, by design, it maximizes the relaxation signal
relative to the noise, it is most useful in situations where
spurious noise sources or sampling limitations make it difficult
to estimate D via fluctuation methods. For a multidimensional
diffusion process, the diffusion tensor D̃ possesses the Onsager
symmetry (i.e., Dij = Dji) as a consequence of the second law of
thermodynamics, independent of the proximity to equilibrium
or to the stationary state. D̃ therefore has a key property of a
covariance matrix.
We anticipate that our formulation, simulations, and

statistical approaches will provide a framework for estimating
a diffusion coefficient to many experimental systems, not just
simulations, where diffusion occurs in a limited number of
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dimensions. Unlike solving a specific diffusion equation, the
method we describe does not require that we make
assumptions about the underlying geometry in which particles
are diffusing. From a practical point of view, it would be
interesting to explore the conditions under which it is possible
to obtain information about the coordinate and time depend-
ence of D. From a theoretical viewpoint, it would be interesting
to see if it is possible to associate a diffusion coefficient with
dynamics on an arbitrary Markov chain (network). As for the
thermodynamic significance of Boltzmann’s H-function, con-
sider the isothermal case in which the system is in contact with
a thermal reservoir. Given the uniqueness of the stationary
state, one could ask whether it is possible to associate an H-
function, H(t), with the difference in the thermodynamic
potentials of two states, one of which is time-dependent and the
other being stationary.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information describes simulation and analysis
protocols, including numerical considerations regarding the
implementation of the proposed approach. We examine the
behavior of the proposed diffusion estimator when a temporal
memory is added to the diffusive (velocity) fluctuations and
when stochastic correlations exist across population members.
We further demonstrate the proposed procedure on the
relaxation of a system for a corrugated landscape. This material
is available free of charge via the Internet at http://pubs.acs.org.
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