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ABSTRACT

Local probability density functions (PDF) of absorption coefficients within turbulent flames
have been retrieved from their multi-angular absorption data of path-integrated probability density
functions via a series of numerical techniques. First the Filter Back-Projection (FBP) technique has
been used to reconstruct local moments within the flame then the moments are transformed to the local
PDFs by using the singular value decomposition (SVD) technique. The FBP technique transforms the
absorption data into the frequency domain where noisy components can be truncated while turbulent
components are still preserved in the form of reconstructed moments. The reconstruction algorithm is
tested by using both synthetic and experimental absorption data. Reconstruction from synthetic data
allows the reconstruction algorithm to be evaluated independently of path measurement noise, On the
other hand, reconstruction from experimental data demomstrates the capability of determining the local
PDF analytically within the turbulent flame. Good reconstruction results are obtained from both cases
and the reconstruction algorithm is justified.

INTRODUCTION

Electromagnetic and acoustic waves are widely used as nonintrusive diagnostics"®. The
interaction between waves and the material inside the volume of interest is in turn related to the
thermodynamic properties of the medium (density, temperature, species concentration). There are two
broad approaches to wave measurements: path and point measurements. Path measurements integrate
the interactions taking place along a line between the source and the sensor. This measure is adequate
for uniform samples, but it is not applicable in those cases where concentrations vary along the line of
sight. This is not the case for point measurements: the interaction is limited to the small volume where
the optical path from the source overlaps the optical path or scattered or fluorescent energy which is
captured by the sensor. Therefore, point measurements have an unambiguous spatial simplicity,
genecally insensitive to non-homogeneity along the paths.

There are, however, a number of situations where the convergence of two paths is not possible (as in all
emission measurements): the beam path is not unaffected outside the test volume; the physics of beam-
matter interaction may be unfavorable in the application of interest (weak cross-section, quenching,
etc.); or it is desirable to measure a property at many points in a region simultancously. In such cases,
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it may be necessary to revert to path techniques, with the concurrent need to eliminate the ambiguity of
path averaged signals by analytical methods.

An optical absorption tomography method - a path measurement technique - has been used successfully
in combustion diagnostics as an analytical method for reconstructing temperature and concentration
profiles within laminar flames from their multi-angular absorption measurement data’, Recently,
Sivathanu and Gore’ proposed onion peeling tomography in conjunction with a discrete probability
density function (DPF) method to infer the PDF of local extinction coefficients within turbulent flames
from absorption measurements of PDFs of path-integrated transmittances. The reconstruction results
appear reasonable, however they suffer from accumulation errors due to the peeling process.

In this paper, we propose to further develop Sivathanu and Gore’s method by (1) introducing
mathematical transform techniques to improve reconstruction results and by (2) directly calculating the
PDF from the moments of the property field. There are two main advantages to mathematical
transform techniques. First, they allow absorption data to be transformed into frequency domain where
noisy components can be truncated. Second, they are easy to implement since they are explicit. The
second part of the proposed method offers a way to preserve turbulent structure of the flow through the
number of moments used in the method. The idea is to reconstruct the higher moments in addition to
the first moment (the average value) of the property field. Once the moments are known, the problem
then becomes the classical moment problem: given moments, find the density function. This work
extends the capability of the tomographic method so that it can handle turbulent flame diagnostics in
addition to the well-known application to laminar flame diagnostics.

A DENSITY FUNCTION OF TRANSMITTANCE AND TS MOMENTS

In absorption measurements of turbulent flames’, transmittance is defined discretely as a
stochastic variable T5; which represents all probable values of s in an interval Ats and the probability
of occurrence of s is measured as P;. The discrete probability is related to the continuous PDF via P;,
Ts; and Atg by

15, HATs2

T,—Atg/2

where pdf(ts) is PDF of 1. It then follows that the n® moment of 7scan be calculated from the discrete
probability by

N
Msa = J*rs”pdf(ts)dts =31,"P, {2}

i=l

where Mg, is the n" moment of 5. Considering transmittance in a gas volume for a path length S
consisting of two segments S1 and S2 with individual transmittances 75, and Tg , the total
transmittance is

Ts = (T)(Ts2) (3}
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Assume that the distributions of sy and Ts; are statistically independent, the variables 15, 15, and T,
can then be written respectively in terms of their moments as

Ms, = (Mg Ms)- (4]

Within each region S1 and §2, the local transmittance’s measurements are made with an optical probe
of a fixed path length Sm, giving the measured moments My and M. respectively. Rewriting
equation [4] in terms of the measured moments, we have

Msa =  (Muan)¥ 5" Mu2n)™" (s

Equation [5] shows that we can calculate explicitly the path-integrated moments from their local
measurements of PDF along the path. Once Mg, are known, the P; for all Ts; can be solved, using the
linear equation [2], resulting in the path-integrated PDF.

The problem is reversed in absorption tomography. The path-integrated data are known and the local
moments are required. The FBP algorithm® will be used for reconstructing the local moments from their
multi-angular absorption measurement data. Other mathematical transformation techniques such as
Hilbert transforms® or Wavelet transforms' can also be used to reconstruct the local moments. The
formulae obtained by those mathematical transformation techniques are still explicit.

THE FBP ALGORITHM

The projection

A projection of a property field f(x,y) is a mapping of a two-dimensional function into a one-
dimensional function obtained by integrating the function in a particular direction. It is generally
convenient to refer the function to the (r,s) coordinate system, rotated from the (x,y) coordinate axis by
an angle of 8. The projection of f(r,s) is

po() = [f(r,5)ds, (6]
where r = xcos(0)+ysin(0) and s = -xsin(@)+ycos(6).

The Projection-slice theorem
Basically, the theorem states that the one-dimensional Fourier transform of a projection is a
“slice” through the two-dimensional Fourier transform of the original function. Let Po(R) and F(R,S)
be the Fourier transforms of pe(r) and f(r,s) then
Pg(R) = F(R,S)lsw, %)

where R = Xcos(0)+Ysin(0) and S = -Xsin(6)+Ycos(0).
The reconstruction formula
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It follows from the Projection-slice theorem that if an infinite number of Fourier slices are taken
from the corresponding infinite number of projections, F(X,Y) would be known at all points in the
(X.Y) plane. Knowing F(X,Y), the property field f(x,y) can be recovered by using the inverse Fourier
transform:

B 1§ 7 iR{x cos(8)+ysin(6))
f(x,y)_-a?! J’ P, (R)IRle ysin®l 4R 40 . (8}

Since IR! does not converge, R should be limited to some value IR! < Q, and Pg(R) should be small for
IRI> Q. Let us introduce

H(R) = b(R)IRL, (91

where b(R) = | if [RI<Q, and b(R) = 0 for IRI> Q. Replacing IRl by H(R) and using the convolution
theorem, equation (8] becomes

1 5%
f(x,y) = > l l Po (T)h(r — 7)dd®, (10]

where h(r) is the inverse Fourier transform of H(R). The above formula is called the Filter Back-
Projection since the projection function pe(r) has been filtered by the ramp filter h(r), and the filtered
projection functions for all angles are then back-projected onto the (x,y) coordinate system. Equation
[10] is approximated by a discrete form as

a

M
N - Zpej(rk)h(xcos(ei)+ysin(8j)—rk), [11]

k=1

f(x,y) =

N
=t

where N is the number of discrete angles, M is the number of discrete points along r, a is the length of
the interval along r, 6, = jiYN and ri=ka. The filtered projection functions at the point r =
xcos(6;)+ysin(6;) may not correspond to the discrete points ry: in those cases we interpolate the values
between the known discrete points.

APPLICATION OF FBP TO RECONSTRUCTING PDFS OF LOCAL TRANSMITTANCE

The assumption of spatially independent PDFs of local transmittace discussed earlier allows us to
define local moment of transmittance based on unit path-length as an intensive property. The path-
integrated moment can be written in the two-dimensional (r,s) coordinate as

-In[Mg()] = - Iln{m(r, s)ids, {12]

where the local moment is referred to by a point in two-dimensional space instead of a segment in one-
dimensional space, integration has been used instead of summation (this can be done since the local
moment is an intensive property), and the integration path length has been changed to infinity since
outside the region of interest all local moments are unity and the log of unity is zero. The resulting
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path-integrated moment M is along the line perpendicular to the theta-line with a distance r from the
origin. Since the moment equation {12] can be applied for all orders of moments, we drop the subscript
n. The minus signs are introduced in order to get positive quantities for both sides of the equation.
Although the notations are different, the physical representation of the path-integrated moments in
equations [5} and [12] are similar. It follows from equations [6) and [12] that

f(r,s) = -In[m(r,s)], [13]
and

Pe(r) = ~1n[M,(r)]. {14}

In the reconstruction problem, the path-integrated moments (the projections) are given and the local
moments are unknowns. Equation [11] is used to reconstruct the local moments, which are then used
in equation [2]. The resulting linear system is solved using the SVD'" technique. The solution to the
linear equation gives the discrete probabilities that can be used to interpret the PDF of the local
transmittances which is in turn related to the PDF of absorption coefficient’.

SVD METHOD FOR SOLVING AN OVERDETERMINED SYSTEM

Since the resolution of At in equation [1] is limited, equation [2] becomes an overdetermined
system of linear equations with M calculated moments and N unknown discrete probabilities. Equation
[2] will be solved by the SVD method". Rewrite equation [2) into the form

Ax = b, [15]

where A is the M x N transformation matrix, x is a vector representing all P; and b is a vector
representing all reconstructed moments at a particular point in (x,y) coordinate, m(x,,yo). Any M by N
matrix A of rank r can be factored' into

A=UIV', [16]

where U is an M x M orthogonal matrix, Z is a M x N diagonal matrix of the form

T= Sn 0 17
0 0 MxN

where S); is a r x r diagonal matrix. The diagonal entries of Sy, are strictly positive and can be
arranged to be nonincreasing, 6;>6,> . . . >6>0. They are the singular values of A. VisanNx N
orthogonal matrix. .

The columns of U and V give orthonormal bases for all four fundamental subspaces* of A: the first r
columns of U represent the column space; the last M-r columns of U the left nullspace; the first r
columns of V the row space and the last N-r columns of V the nullspace of A", The SVD method
gives the unique solution that minimizes llAx-bll by setting the left nullspace to zero. Golub's algorithm
for calculating the SVD in double precision is used in this work. Basic aspects of the SVD and the
details of Golub’s algorithm are discussed by Wilkinson'.
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RECONSTRUCTION FROM SYNTHETIC PROJECTIONS

The proposed reconstruction method is used to reconstruct the PDF of local transmittance of a
Propylene/Air diffusion flame. Local absorption measurements of the local PDFs within the flame are
carried out by Sivathanu and Gore in their earlier work. The diameter of the bumer used is S0 mm
and the burner operates at the Reynolds number 750 based on fuel properties at the burner exit. A
purge optical probe with a 10 mm path length was used to obtain the local PDFs from the absorption
measurements. All local measurements are conducted in a plane (assumed circular) at a particular
height above the burner (at x/d = 6. 7 where x is the distance from the bumer surface and d is the
burner diameter). The plane is divided into 11 rings and a central core where the local PDFs for the
individual region are measured.

The measured local PDFs are used as test PDFs. in this paper. The projections are generated
synthetically using the test PDFs and the moment method. Figure 1 shows the first moment of the test
PDFs as a function of radial position and Figure 2 shows the corresponding projection function. To
verify the path-integrated PDFs, the projection results are compared with the results calculated by
using the DPF method introduced by Sivathanu and Gore. Figure 3 and Figure 4 show a comparision
of PDFs of the path-integrated transmittances that passed through 9 and 11 outer-rings respectively
calculated by the two methods. The results are in good agreement. The advantage of synthesizing the
path integrated data is that the algorithm for reconstructing the PDF can be evaluated independent of
path measurement noise.

All the reconstructed moments (the output from the FBP algorithm) at the center of the flame are
gathered as components of the vector b plotting logio (U™1) and logi(c.) values vs. the element
number, we see in Figure 5 that the reconstructed moments give a consistent system of linear equations
since the values of {Ubl vanished before the singular values. When the reconstruction is from
synthetic projection data we can judge the quality of the reconstruction by comparing it to the test PDF.
Figure 6 shows the reconstruction result compared with the test PDF at the center of the flame.

6 T T T T 04 T T T
L 03 =
4 .
g G .
2 .
i_ "l / \_
0 1 1 1 ° ] ] !
01 -006 —0.02 002 006 0. -01 -00s 0 00s ol
«(m) (m)
Figure 1 First moment of test-PDF Figure 2 Synthetic Projection function
(Propylene/ Air diffusion flame, of the first moment in Figurel
Re=750, at x/d=6.7) as a function
of radius

Reconstructing moments by using FBP algorithm with synthetic projections (180 projection angles and
128 line of sights for each angle) gives negligible error. The PDF solution from SVD method does not
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match exactly to the test PDF since the number of the reconstructed moments is finite. However the
discrepancy becomes negligible when more moments are included. The number of singular values used
also affects the accuracy of the solution. The PDF solution shown in Figure 6, used 250 moments
(0"-299" moment) and 18 singular values (Gmin~10", and Gume/Oma ~10%). Deviation of total

probability is less that 10 % from unity.
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Figure S Singular value decomposition
values: logo (IUbl.) and logo(G.) from
synthetic projection of Propylene/Air
flame at center of flame

Figure 6 Reconstructed {from synthetic
projection) and test PDFs at the center
of Propylene/Air flame

RECONSTRUCTION FROM EXPERIMENTAL PROJECTIONS

A local PDF has been reconstructed from its measured projection and the reconstruction result
has been compared with a measured PDF performed locally with a combustion flame. The flame is
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Ethylene/Air turbulent jet flame with a 6 mm outlet-diameter and 9200 exit Reynolds number. The
local measurement is at the center of a cross section (x/d = 30 above the burner) of the flame. It is
shown in Figure 7 that the reconstructed moments do not give a consistent system of equations for all
singular values since some of the singular values vanish before the components of {Ubl. This implies
that the vector of calculated moments is a linear combination of both the column space and the left
nullspace of the transformation matrix A. To get the least squares solution, all singular values that are
greater than the [Ubl have been used. In addition, the number of singular values used has to ensure a
total probability closest to unity. The PDF solution shown in Figure 8, used 8 singular values
(Cmin~10"", and Gyrer/Gemin ~10%). Deviation of total probability is less than 7% from unity.

B |

1 oa a4 6 81 101 i 09 038 0.7 0.6
Element number transmittance

=+ singular value -8~ Reconstructed PDF

- |UTH <+ Test PDF
Figure 7 Singular value decomposition Figure 8 Reconstructed (from measured
values: logyo (IUb,) and loge(G,) from projection) and test PDFs at the center
measured projection of Ethylene/Air of Ethylene/Air flame
flame at center of flame

CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH

The synthetic data reconstruction result shows good agreement thereby validating the proposed
method. Limited experimental data cause errors in both the FBP and the SVD calculation steps
resulting in deviation of the reconstructed PDF from the measured PDF within the Ethylene/Air flame.
However results are fairly good. Limited samples in projection cause aliasing effects in the FBP while
limited floating point precision of both the measured data and the higher order moment calculations
result in oscillations of the SVD-solution about the measured PDF. These are unfortunate errors that
always appear in practice, but, these not withstanding, the assumption of spatially independent PDFs
and the overall reconstruction algorithm are justified by our results. To reduce calculation cost, local
tomography via wavelets transform and the maximum entropy method for predicting PDF from its
limited moments are being investigated.
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