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In experiments in a range of felds including fast neutron spectroscopy and astroparticle physics, one can discriminate events of interest 
from background events based on the shapes of electronic pulses produced by energy deposits in a detector. Here, I focus on a 
well-known pulse shape discrimination method based on the ratio of the temporal integral of the pulse over an early interval Xp and the 
temporal integral over the entire pulse Xt . For both event classes, for both a Gaussian noise model and a Poisson noise model, I present 
analytic expressions for the conditional distribution of Xp given knowledge of the observed value of Xt and a scaled energy deposit 
corresponding to the product of the full energy deposit and a relative yield factor. I assume that the energy-dependent theoretical 
prompt fraction for both classes are known exactly. With a Bayesian approach that accounts for imperfect knowledge of the scaled 
energy deposit, I determine the posterior mean background acceptance probability given the target signal acceptance probability as a 
function of the observed value of Xt . My method enables one to determine receiver-operating-characteristic curves by numerical 
integration rather than by Monte Carlo simulation for these two noise models. 
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1. Introduction 

In a variety of experiments in felds such as astroparticle physics (for example, see Refs. [1–6]), fast 
neutron spectroscopy [7–10], and neutrino physics (for example, see Refs. [11–13]), events of interest and 
background events deposit energy in detectors. Typically, the shapes of measured electronic pulses 
generated by events of interest and background events are different. There are many different methods [14] 
for pulse shape discrimination (PSD), including those based on: ratios of pulse integrals corresponding to 
different time intervals [8, 15], comparison to reference templates [16–18], machine learning [19–25], pulse 
gradient methods [26], zero-crossing analysis [27, 28], frequency gradient analysis [29], and Fourier 
transform analysis [30]. Here, I focus on a “prompt fraction” discrimination statistic Fp defned as 

XpFp = , (1)
Xt 

where Xp is the integrated pulse in a prompt time interval [Tbegin,Tprompt ], and Xt is the integrated pulse in a 
total time interval [Tbegin,Tend ]. I consider two cases. In one case, Xp and Xt are correlated Gaussian random 
variables. In the other case, Xp and Xt are correlated Poisson random variables. 
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There are exact and nearly exact approximations for the distribution of the ratio of Gaussian (normal) 
random variables with known means, variances, and correlation [31–33]. Based on Refs. [31, 32], the work 
in Ref. [34] includes a model to predict the distribution of prompt fraction statistics produced by a given 
energy deposit where the observed values of Xp and Xt are unconstrained. In applications of interest, data 
generated by a continuum of energy deposits are binned according to observed values of Xt . Thus, the 
conditional distribution of Xp given the measured value of Xt is of primary interest for PSD studies and the 
focus of this work. 

In many experimental studies, only a fraction of the energy deposited in a detector produces a 
measurement of interest. In general, this fraction varies for the two event classes. In this work, for each 
class, I assume that this fraction does not vary from event-to-event. Based on these fractions, I assign a 
relative yield factor β to each class. For the class with the higher fraction, β = 1. For the other class, 
0 < β ≤ 1. If both classes have the same fraction, β = 1 for both classes. Given the full energy deposit edep 

and β , I defne a scaled energy deposit e as: 

e = β edep. (2) 

For any scaled energy deposit e, I assume that the expected value of Xt is the same for both event classes. 
For Gaussian and Poisson noise models, I derive exact expressions for the conditional distributions of Xp 

given the measured value of Xt and the unobserved value of e. The major technical step to get the analytical 
result for the Poisson case is well known, but the major technical step to get the analytical result for the 
Gaussian case is, to the best of my knowledge, a new contribution to the PSD literature. In general, the 
source that generates events for each class has a potentially broad energy deposit spectrum. For the Poisson 
case, for each event class, I assume knowledge of the Poisson parameters for a prompt time interval and a 
late time interval as a function of e. For the Gaussian case, for each event class, I assume knowledge of the 
mean and variance of the integrated pulse for both a prompt time interval and a late time interval as a 
function of e. For the cases studied, I assign an event to the signal class if the observed value of Xp exceeds a 
selected discrimination threshold that in general depends on the observed value of Xt . With a Bayesian 
method, I determine the posterior mean background acceptance probability as well as the posterior mean 
signal acceptance probability. My methods should facilitate evaluation of receiver-operating-characteristic 
curves (signal acceptance probability versus background acceptance probability) [35] for the Gaussian and 
Poisson cases. 

2. Gaussian Noise Model 

2.1 Conditional Distribution of Xp 

Throughout this work, I denote a random variable with a capital letter (e.g. X) and a particular 
realization of the random variable with a lower case letter (e.g. x). The prompt fraction statistic is a random 

Xpvariable Fp = . I decompose Xt into the sum of a prompt and late contribution, i.e., Xt 

Xt = Xp + Xl , (3) 

where Xp is the integrated pulse measured during [Tbegin,Tprompt ], and Xl is the integrated pulse measured 
during (Tprompt ,Tend ]. Here, I assume that Xp and Xl are independent Gaussian random variables with known 
energy-dependent means µp(e) and µl (e), and known energy-dependent variances σ2(e) and σl 

2(e). Given p 

these assumptions, the expected value and variance of Xt are 

µt (e) = µp(e)+ µl (e), (4) 
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and 

σt 
2(e) = σp 

2(e)+ σl 
2(e). (5) 

Further, the correlation ρ between Xp and Xt is 

E( (Xp − µp(e)) (Xt − µt (e)) ) σp(e)
ρ(e) = = . (6)

σp(e)σt (e) σt (e) 

As discussed in many references including Ref. [36], if two Gaussian random variables X and Y have 
correlation ρ , the distribution of the conditional value of Y given the observed value of X , (Y |X = x), is a 
Gaussian random variable with expected value 

E(Y |X = x) = E(Y )+ ρ
σY 

(x − E(X)), (7)
σX 

and variance 

Var(Y |X = x) = (1− ρ2)Var(Y ). (8) 

Hence, for the mono-energetic case, given that the observed value of Xt is xt and the scaled energy deposit is 
e, Xp is a Gaussian random variable with expected value 

σp 
2(e)

E(Xp|Xt = xt ,E = e) = µp(xt ,e) = µp(e)+ (xt − µt (e)), (9)
σ2 

t (e) 

and variance 

σp 
2(e)

Var(Xp|Xt = t,E = e) = σp 
2(xt ,e) = σp 

2(e)( 1 − 
σ2 ). (10) 

t (e) 

2.2 Acceptance Probabilities 

Without loss of generality, I assume that events produced by the signal of interest yield, on average, 
larger observations of Xp (compared to background events) for any particular scaled energy deposit e. Given 
this assumption, a natural classifcation rule is to assign an event to the signal class if the observed value of 
Xp exceeds a discrimination threshold c(xt ) that depends on the observed value of Xt . In general, many 
scientifc considerations infuence the choice of the discrimination threshold c(xt ). Given that F( x, µ,σ ) is 
the cumulative distribution function (at x) for a Gaussian random variable with mean µ and standard 
deviation σ , the background acceptance probability, pBG(xt ,e), is 

pBG(xt , e) = 1− F( c(xt ), µp(xt ,e, B), σp(xt ,e,B) ), (11) 

where µp(xt ,e,B) is the Eq. (9) prediction of µp(x,e) for the background class, and σp(xt ,e,B) is the Eq. 
(10) prediction of σp(xt ,e) for the background class. The signal acceptance probability is 

pS(xt ,e) = 1− F( c(xt ), µp(xt , e,S), σp(xt ,e,S) ), (12) 

where µp(xt ,e,S) and σp(xt ,e,S) correspond to the Eq. (9) and Eq. (10) predictions for the signal class. 
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2.2.1 Posterior Means of Acceptance Probabilities 

I account for uncertainty in the scaled energy deposit that produces any particular event with a Bayesian 
method. For a comprehensive review of Bayesian methods, see Ref. [37]. For the ideal case where one has 
an exact model for the scaled energy deposit spectrum due to background events, the prior distribution for 
the scaled energy deposit would be equated to this spectrum. However, in general, such an exact model may 
not be available. For the general case, the prior distribution would be selected by scientifc judgement. 

I denote the prior distribution for the scaled energy deposit due to a background event as πBG(e). For the 
Gaussian noise model, the conditional probability density function of Xt given that E = e is 

1 (xt − µT (e))2 
fd (Xt = xt |e) = √ exp(− ). (13)

2πσT (e) 2σT 
2(e) 

Without loss of generality, I assume that µT (e) and σT (e) are the same for both the signal class and the 
background class. By Bayes’ theorem, the posterior distribution for E given Xt = xt for a background event 
is 

fd (xt |e)πBG(e)fe(e|xt ) = R . (14) 
e fd (xt |e)πBG(e)de 

Hence, given xt , the posterior mean of the acceptance probability for the background class is Z 
p̄BG(xt ) = pBG(xt ,e) fe(e|xt )de. (15) 

e 

By similar methods, one can derive the posterior mean of the acceptance probability for the signal class as Z 
p̄S(xt ) = pS(xt ,e) fe(e|xt )de. (16) 

e 

As a caveat, if the prior distribution for the scaled energy deposit for the signal class differs from πBG(e), 
fe(e|xt ) in Eq. (16) would differ from the corresponding expression in Eq. (15). 

2.3 Simulation Study 

I assume that energies and integrated voltage pulses are dimensionless. As an illustrative example, I 
assume that β = 1 [see Eq. (2)] for both classes, and that 

e 
µp(e) = e ( α + β ( 1− exp(− ) ) ), (17)

200 

µt (e) = e, (18) 

and 

µl (e) = e − µp(e). (19) 

For the signal class, (α,β ) = (0.6,0.1). For the background class, (α, β ) = (0.5,-0.1) (see Fig. 1). For both 
classes, 

σl 
2(e) = 2µl (e) + 1, (20) 

and 

σp 
2(e) = 2µp(e) + 1. (21) 
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Fig. 1. The theoretical prompt fraction, µp/µt , varies with the energy deposit for both classes in the simulation 
experiment. Because the relative yield term β equals 1 for both classes, the scaled energy deposit [see Eq. (2)] and 
energy deposit agree in this study. 

Given the observed value xt , I estimate e to be ê = xt . In the primary studies presented here, I set the 
discrimination threshold c(xt ) to be the expected value of (Xp|Xt = xt ,E = ê) for signal events [see Eq. (9)]. 
This choice corresponds to a target signal acceptance of 0.5. Since µt (e = xt ) = xt , c(xt ) = µp(e = xt ). 

In Fig. 2, I illustrate my method for the case where xt = 200 and the prior distribution for e, πBG(e), is 
uniform for the range 10 ≤ e ≤ 1000. At other values of e, the prior distribution is 0. I also determine results 
for a truncated exponential prior distribution for the range 10 ≤ e ≤ 1000 where 

e
πBG(e) ∝ exp(− ). (22)

500 

At other values of e, the prior distribution is 0 (see Table 1). 
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Fig. 2. Gaussian noise model where xt = 200 and the discrimination threshold yields a target signal acceptance 
probability of 0.5. The posterior probability density function distribution of the energy deposit The posterior mean p̄BG 

derived from Eq. (15), is determined with a uniform prior distribution. 

Table 1. Gaussian noise model. Posterior mean of background acceptance probability and posterior mean of signal 
acceptance probability given that the target signal acceptance probability is 0.5. The exponential prior distribution is 
defned in Eq. (22). 

xt p̄BG(xt ) p̄BG(xt ) p̄S(xt ) p̄S(xt ) 
exponential prior distribution uniform prior distribution exponential prior distribution uniform prior distribution 

100 6.11 ×10−3 6.17 ×10−3 0.508 0.512 
200 3.31 ×10−6 3.40 ×10−6 0.504 0.511 
300 2.47 ×10−10 2.62 ×10−10 0.500 0.509 

6 https://doi.org/10.6028/jres.126.032 

https://doi.org/10.6028/jres.126.032
https://doi.org/10.6028/jres.126.032


Volume 126, Article No. 126032 (2021) https://doi.org/10.6028/jres.126.032 

Journal of Research of National Institute of Standards and Technology 

2.4 Predicted Background Spectrum 

In an actual experiment, one might wish to predict the background rate in each of many bins in 
xt −space. For an experiment where the expected number of background events is E(NBG), the predicted 
number of background events that are assigned to the signal class for values of xt in the interval 
(xk − ∆/2,xk + ∆/2) is E(Nk), where Z Z xk+∆/2 

E(Nk) = E(NBG) πBG(e)pBG(x,e) fd (x|e)dxde. (23) 
e x=xk−∆/2 

For very narrow bins in xt -space, Z 
E(Nk) ≈ E(NBG)p̄BG(xk)∆ πBG(e) fd (xk|e)de. (24) 

e 

3. Poisson Noise Model 

I assume that Xp and Xl are independent Poisson random variables. For the signal class, their Poisson 
parameters are λp(e, S) and λl (e,S). For the background class, their Poisson parameters are λp(e,B) and 
λl (e,B). Hence, the theoretical prompt ratios for the signal class and background class are 

λp(e,S)rS(e) = , (25)
λp(e,S)+ λl (e,S) 

and 

λp(e,B)rBG(e) = . (26)
λp(e,B)+ λl (e,B) 

Given that N1 and N2 are independent Poisson random variables with Poisson parameters λ1 and λ2 and 
N = N1 + N2, the conditional distribution of N1, given that the observed value of N is n, is a binomial 

λ1random variable with parameters n and p where p = . This well-known result follows from the 
λ1+λ2 

following conditional probability equality: 

Pr(N1 = k,N2 = n − k) Pr(N1 = k)Pr(N2 = n − k)
Pr(N1 = k|N = n) = = . (27)

Pr(N = n) Pr(N = n) 

Thus, for the mono-energetic case, given that Xt = xt , (Xp|Xt = xt ,E = e) is a binomial random variable with 
parameters xt and rS(e) for the signal class. For the background class, (Xp|Xt = xt ,E = e) is a binomial 
random variable with parameters xt and rBG(e). 

Given that G(k,N, p) is the cumulative distribution function (at k) of a binomial random variable with 
parameters N and p, the acceptance probabilities for the background and signal classes are 

pBG(xt ,e) = 1− G(c(xt ), xt , rBG(xt )), (28) 

and 

pS(xt ,e) = 1− G(c(xt ), xt , rS(xt )). (29) 

By Bayes’ theorem, the posterior distribution for E given Xt = xt is 

pd (xt |e)πBG(e)fe(e|xt ) = R , (30)
pd (xt |e)πBG(e)de e 
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where the conditional probability mass function of Xt given that E = e is 

exp( − λt (e) ) λt 
xt (e)

pd (Xt = xt |e) = , (31)
xt ! 

where λt (e) is the expected value of (Xt |E = e). Based on Eqs. (28) to (31), the posterior means of the 
acceptance probabilities for the background class and signal class are then determined with Eq. (15) and Eq. 
(16). 

In a simulation study, I determine posterior mean acceptance probabilities for the Poisson case (see 
Fig. 3; Table 2). In this study, I set λp(e,S) and λl (e,S) to the values of µp(e) and µl (e) assumed for the 
signal class in Sec. 2.3. I also set λp(e,B) and λl (e,B) to the values of µp(e) and µl (e) assumed for the 
background class in Sec. 2.3. I also set λt (e) to the value of µt (e) assumed in Sec. 2.3. I select a threshold 
corresponding to a target signal acceptance of 0.5. Given xt , this threshold is c(xt ) = xtrS(e = xt ). 
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Fig. 3. Poisson noise model where xt = 200 and the discrimination threshold yields a target signal acceptance 
probability of 0.5. The posterior mean p̄BG derived from Eq. (15), is determined with a uniform prior distribution. 
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Table 2. Poisson noise model. Posterior mean of background acceptance probability and posterior mean of signal 
acceptance probability given that the target signal acceptance probability is 0.5. The exponential prior distribution is 
defned in Eq. (22). 

xt p̄BG(xt ) p̄BG(xt ) p̄S(xt ) p̄S(xt ) 
exponential prior distribution uniform prior distribution exponential prior distribution uniform prior distribution 

100 2.34 ×10−4 2.33 ×10−4 0.541 0.542 
200 7.45 ×10−11 7.35 ×10−11 0.512 0.513 
300 1.27 ×10−34 9.78 ×10−35 0.493 0.494 

3.1 Receiver-Operating-Characteristic Curve 

In Fig. 4, I show how to construct a receiver-operating-characteristic (ROC) curve for any particular 
value of xt for the Poisson noise model. In this study, xt = 100 and the theoretical model for the Poisson 
parameters for the prompt and late time intervals for the signal and background are the same as discussed 
earlier. In Eq. (28) and Eq. (29), the discrimination threshold, c(xt ), is varied over a broad range of integer 
values (20 to 83). For each candidate discrimination threshold, I determine the posterior mean value of 
pBG(xt ,e) and the posterior mean value of pS(xt ,e) (see Figs. 4a and 4b). Each candidate discrimination 
threshold yields a distinct value of (p̄BG(xt ), p̄S(xt )). The ROC curve is the union of all distinct values of 
(p̄BG(xt ), p̄S(xt )) (see Figs. 4c and 4d). One can construct an ROC curve for the Gaussian noise model with 
a similar approach. 

4. Discussion 

For both the Poisson and Gaussian models, for any particular energy deposit, I assume that Xp and Xl are 
independent random variables (see Sec. 2.1 and Sec. 3). As discussed earlier (see Sec. 1), in many 
experiments, only a fraction of the full energy deposit produces measurements of interest. As remarked 
earlier, I assume in this work that this fraction does not vary from event-to-event for each class. If this 
fraction randomly varies from event-to-event, I expect Xp and Xl to be positively correlated for any 
particular energy deposit. The models in this work do not account for this correlation structure. 

In the simulations reported here, the posterior mean of the background acceptance probability increases 
as the energy deposit increases for the Gaussian model (see Fig. 2). In contrast, for the Poisson model, the 
posterior mean of the background acceptance probability decreases as the energy deposit increases (see 
Fig. 3). I attribute this result to the fact that the fractional standard deviation (standard deviation divided by 
expected value) of the conditional value of Xp is larger for the Gaussian case relative to the Poisson case. 

The choice of prior distribution affected results slightly (see Tables 1 and 2). As a caveat, there may be 
other prior distributions of interest. 
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Fig. 4. Poisson noise model where xt = 100. (a) Posterior (post.) mean of background acceptance probability (acc. 
prob.) ( p̄BG) versus discrimination threshold. (b) Posterior mean of signal acceptance probability ( p̄S) versus 
discrimination threshold. (c) ROC curve (p̄S versus p̄bg) on log-log scale. (d) ROC curve on log-linear scale. Posterior 
means are determined with a uniform prior distribution. The horizontal line corresponds to 1. 

5. Summary 

In this theoretical study, I derived analytical expressions that quantify the performance of a ratio-based 
pulse shape discrimination method for Gaussian and Poisson noise models. With a Bayesian method, for a 
particular target acceptance probability for the signal class events, I determined the posterior mean 
background acceptance probability as a function of the observed value of Xt in a way that accounted for 
imperfect knowledge of the energy deposit. In a simulation study, I determined results for two choices of the 
prior distribution in the Bayesian method (see Tables 1 and 2). 

My analytic methods may enable one to determine receiver-operating-characteristic curves by numerical 
integration rather than by Monte Carlo simulation. My methods may provide experimentalists with useful 
theoretical predictions of ratio-based PSD performance in planning studies provided that integrated pulses 
are well approximated as realizations of either Gaussian random variables or Poisson random variables, and 
accurate models for the energy-dependent distributions of Xp and Xt are available for background events and 
signal events. 
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