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Abstract—This paper proposes efficient schemes to increase
sensing coverage in a network composed of both mobile and
static sensors. The proposed deployment techniques properly
assign a virtual weight to every point in the sensing field, based
on the information received from the other sensors regarding
their sensing radii, and the location of the static ones. The
multiplicatively weighted Voronoi (MW-Voronoi) diagram is used
to discover the coverage holes corresponding to different mobile
sensors with different sensing ranges. According to the proposed
strategies, the mobile sensors move out of the area covered by
static sensors, to a point from where it can cover the coverage
holes of the static sensors. As a result, under the proposed
strategies coverage holes in the network are reduced. Simulation
results are provided to demonstrate the effectiveness of the
strategies developed in this paper.

I. INTRODUCTION

Recent advances in microelectromechanical systems

(MEMS) technology have made it possible to fabricate

small energy-efficient mobile sensors for both military and

civilian applications. Some of the emerging applications

of cooperative mobile sensor networks include biomedical

engineering, tracking vehicles and environmental monitoring,

to name only a few [1], [2], [3]. In a practical sensor

deployment strategy, a number of important constraints need

to be taken into account. Such constraints include limited

sensing and communication ranges, limited energy, and

limited information exchange between the sensors [4], [5].

Furthermore, the initial location of the sensors in the field

may not be known a priori in many practical applications [6].

The problem of sensor network coverage for a group of

mobile sensors following a prescribed trajectory is investigated

in [7]. In [8], gradient descent algorithms are proposed for

a class of utility functions to increase network coverage.

A multi-objective sensor deployment and power assignment

algorithm is proposed in [9], where the underlying optimiza-

tion problem is decomposed into a number of scalar single-

objective subproblems, which are to be solved simultaneously.

In [10], an algorithm is proposed to monitor an environmental

boundary with mobile agents, where the boundary is optimally

approximated by a polygon. Distributed control laws are

provided in [11] for the disk-covering and sphere-packing
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problems, using non-smooth gradient flows. In [12] the prob-

lem of locating a finite number of sensor for detecting an

event in a given region is investigated such that the maximum

probability of non-detection is minimized. A decentralized,

adaptive control law is described in [13] to place a network

of mobile robots optimally for sensing in their environment.

In [14], distributed control laws are presented to achieve

convex equi-partition configuration in mobile sensor networks.

Different deployment strategies are subsequently introduced

to increase sensing coverage. The problem of covering an

environment with a network of robots with different sensor

footprints is investigated in [15]. An efficient procedure is

introduced in [16] to move the sensors in such a way that

the maximum error variance and extended prediction variance

are minimized.

In the present work, new distributed sensor deployment

strategies are introduced for a network consisting of both static

and mobile sensors. The multiplicatively weighted Voronoi

(MW-Voronoi) diagram is utilized to find the coverage holes,

where the weight assigned to each mobile sensor is propor-

tional to its sensing radius [17]. In the proposed strategies,

namely, farthest weighted vertex (FWV) and Max-area, every

static sensor broadcasts its sensing radius and location to all

mobile sensors. Each mobile sensor subsequently assigns a

proper virtual weight to every point in the field based on

the received information. The algorithms are then performed

iteratively to compute the target location for each mobile

sensor.

The plan of the rest of the paper is as follows. In Sec-

tion II, some preliminary material concerning the Voronoi

diagram and MW-Voronoi diagrams as well as their important

properties are briefly discussed. The problem is defined in

Section III, where some important notations and assumptions

are also presented. The proposed deployment algorithms are

introduced in Section IV, as the main contribution of the

paper. Simulations are given in Section V, which demonstrate

the efficacy of the proposed deployment strategies. The paper

concludes with a summary in Section VI.

II. BACKGROUND

Let S be a set of n distinct weighted nodes in the plane

denoted by (S1, w1), (S2, w2), . . . , (Sn, wn), where wi > 0
is the weighting factor associated with Si, for any i ∈ n :=
{1, 2, . . . , n}. It is desired now to partition the plane into n

regions such that:

• Each region contains only one node, and
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• the nearest node, in the sense of weighted distance, to any

point inside a region is the node assigned to that region.

The diagram obtained by the partitioning described above is

called the multiplicatively weighted Voronoi (MW-Voronoi)

diagram [18]. Analogous to conventional Voronoi diagram, the

mathematical characterization of each region obtained by this

type of partitioning is as follows:

Πi =
{

Q ∈ R
2 | wjd(Q,Si) ≤ wid(Q,Sj), ∀j ∈ n− {i}

}

(1)

for any i ∈ n, where d(Q,Si) is the Euclidean distance

between Q and Si. According to (1), any point Q in the i-th

MW-Voronoi region Πi has the following property:

d(Q,Si)

d(Q,Sj)
≤
wi

wj

, ∀i ∈ n, ∀j ∈ n− {i} (2)

Definition 1. A pair of nodes whose MW-Voronoi regions

share one boundary curve are referred to as neighbors.

Definition 2. The Apollonian circle of the segment AB is the

locus of all points E such that AE
BE

= k [19]. This circle is

denoted by ΩAB,k.

To construct the i-th MW-Voronoi region, the Apollonian

circles of the i-th node and other nodes need to be drown first.

In other words, the Apollonian circle ΩSiSj ,
wi
wj

is obtained

for every Sj ∈ n− {i}. The smallest region created by these

circles which contains the i-th node is, in fact, the i-th MW-

Voronoi region.

The MW-Voronoi diagram is used to develop sensor de-

ployment strategies in this paper. Each sensor has a sensing

area which is a circle whose size can be different for distinct

sensors. Represent each sensor in the field as a node with a

weight equal to its sensing radius, and sketch the MW-Voronoi

diagram. From the characterization of the MW-Voronoi re-

gions provided in (1), it is straightforward to show that if

a sensor cannot detect a phenomenon in its corresponding

region, other sensors cannot detect it either. This means that

in order to find the coverage holes in the network, it would

suffice to compare the MW-Voronoi region of each node with

its local coverage area.

III. PROBLEM FORMULATION

Consider a group of n mobile and m static sensors randomly

distributed in a field, and assume that the sensors have different

sensing ranges, which are circles centered at the position of

the sensors. It is desired that the mobile sensors change their

location in a proper distributed manner such that the total

covered area (by both mobile and static sensors) increases.

Represent each mobile sensor in the field as a node and

sketch the corresponding MW-Voronoi regions for all mobile

sensors as described in the previous section, to cover the entire

sensing field. Recall from the characterization of the MW-

Voronoi diagram that the nearest sensor to any point inside a

MW-Voronoi region (in the sense of weighted distance) is the

one inside it. Hence, if a mobile sensor cannot detect a certain

point inside its corresponding region, that point cannot be

detected by any other mobile sensor in the field either. Hence,

in order to identify the coverage holes (i.e. the uncovered

points in the field), it suffices that each mobile sensor checks

its own MW-Voronoi region to find the points it cannot cover.

In the remainder of this paper, V denotes the MW-Voronoi

diagram constructed based on the position and sensing radii

of the mobile sensors only.

Assumption 1. Since the number of sensors in a mobile

sensor network is typically large [20], it is assumed that

the graph representing sensors’ communication topology is

connected [21]. As a result, each mobile sensor can obtain

the information of other sensors, and then calculate its MW-

Voronoi region accurately.

Definition 3. Consider the mobile sensor Si with the sensing

radius ri and the corresponding MW-Voronoi region Πi in

V , i ∈ n. Let Q be an arbitrary point inside Πi. The

intersection of the region Πi and a circle of radius ri centered

at Q is referred to as the i-th coverage area w.r.t. Q. Note that

this area can be covered by any mobile or static sensor. Part

of the i-th coverage area w.r.t. Q which is not covered by any

static sensor is referred to as the i-th dynamic coverage area

w.r.t. Q, and is denoted by λ
Q
Πi

. The i-th dynamic coverage

area w.r.t. the location Pi of the sensor Si is called the dynamic

local coverage area of that sensor. Also, the total covered area

is denoted by ψ, and the part of ψ which is not covered by any

static sensor will be referred to as the total dynamic coverage

area. Let this area be denoted by λ.

Definition 4. Consider an arbitrary point Q inside the MW-

Voronoi region Πi, i ∈ n. The region inside Πi which is

not covered by any static sensor and lies outside the i-th
coverage area w.r.t. Q referred to as the i-th coverage hole

w.r.t. Q, and is denoted by θ
Q
Πi

. The i-th coverage hole w.r.t.

the location Pi of the sensor Si is called the local coverage

hole of that sensor. Also, the union of all local coverage holes

in the sensing field is referred to as the total coverage hole,

and is denoted by θ. From the properties of the MW-Voronoi

diagram it is straightforward to verify that θ =
∑n

i=1 θ
Pi

Πi
.

IV. DEPLOYMENT PROTOCOLS

In this section, two efficient deployment strategies are

presented for a distributed sensor network. First, every static

sensor broadcasts its sensing radius and location to mobile

sensors, and then each mobile sensor assigns a proper weight

ϕ(q) to every point in the field based on the received informa-

tion. For a point q, the weight ϕ(q) is a positive constant if and

only if this point cannot be covered by any static sensor in the

field. Otherwise, it is a negative amount whose absolute value

depends on: (i) the number of static sensors that can cover q,

and (ii) the distance between q and such static sensors. More

precisely:

ϕ(q) =















−
∑

i∈kq

f(q, ŕi, Śi) if q is covered by

some static sensors,

C otherwise
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where C is a positive constant, Śi and ŕi are the position

and radius of the i-th static sensor, respectively, and kq is the

set of all static sensors that cover the point q. Furthermore,

f(q, ŕi, Śi) is an appropriate decreasing function of d(q, Śi)
over [0, ŕi] (e.g., a candidate example, f = ŕi−d(q, Śi)). The

following definition will prove useful in the presentation of

the proposed algorithms.

Definition 5. Consider the mobile sensor Si with the sensing

radius ri and the corresponding MW-Voronoi region Πi, i ∈
n, and let X be an arbitrary point inside Πi. The integral of

the weight function ϕ(.) over the intersection of the region Πi

and a circle of radius ri centered at X , denoted by C(X, ri),
is referred to as the i-th weighted coverage w.r.t. X. The

mathematical characterization of the i-th weighted coverage

w.r.t. X is as follows:

βX
Πi

=

∫

Πi∩C(X,ri)

ϕ(q)dq (4)

The weighted coverage w.r.t. the location Pi of the mobile

sensor Si is called the local weighted coverage of that sensor.

Once the weights are assigned to all points in the field,

the proposed algorithms are performed iteratively. At each

iteration, every mobile sensor first broadcasts its location and

sensing radius to other mobile sensors, and then constructs

its MW-Voronoi region based on the similar information it

receives from other mobile sensors. Then, every mobile sensor

finds its destination point in its MW-Voronoi region according

to the deployment strategy of each algorithm (introduced

later). Once the new target location Ṕi is calculated, both

the weighted coverage and dynamic coverage area w.r.t. this

location, i.e. βṔi

Πi
and λṔi

Πi
, are obtained. If this weighted

coverage is greater than the previous local weighted coverage

and also dynamic coverage area is increased, i.e. βṔi

Πi
> βPi

Πi

and λṔi

Πi
> λPi

Πi
, then the mobile sensor moves to the new des-

tination; otherwise, it remains in its current position. Finally,

when none of the sensors’ weighted coverage or dynamic

coverage area in its corresponding MW-Voronoi region would

be increased by a certain level, there is no need to continue the

iterations. In order to terminate the algorithm in finite time,

a proper coverage improvement threshold ǫ is defined such

that if the increase in the dynamic local coverage area by

none of the mobile sensors exceeds ǫ in an iteration, then the

algorithm terminates. Note that the algorithms introduced in

this paper are different only in the techniques used to find

the destination point for each sensor. It can be shown that the

total coverage increases under the proposed algorithms, and

also the algorithms converge in finite time.

The details of the proposed strategies will be presented in

the next two subsections.

A. Farthest Weighted Vertex (FWV) Strategy

In this strategy, if all vertices of the i-th region have negative

weight (i.e., all vertices can be covered by at least one static

sensor), then Si moves toward the vertex with minimum

absolute value, up to the point from which that vertex is

covered. If, on the other hand, there are one or more vertices

with positive weights, then Si moves toward the farthest one,

denoted by Vi,fwv. Again, it continues moving up to the point

from which it can cover that vertex. If the i-th region does not

have any vertices, then Si does not move and remains in its

current position.

Fig. 1 shows an operational example of the FWV Algorithm.

In this example, 45 mobile sensors are randomly placed in a

50m × 50m flat space: 25 with a sensing radius of 3m, 10

with a sensing radius of 2.5m, 5 with a sensing radius of

3.5m, and 5 with a sensing radius of 4.5m. There are also

3 static sensors with the sensing range of 8m, 9m and 10m.

The communication range of the mobile and static sensors are

assumed to be 20m and 40m, respectively. In this figure, three

snapshots are provided, and in each one the local coverage of

both mobile sensors (yellow filled circles) and static sensors

(green filled circles) are depicted. The MW-Voronoi diagram

V is also depicted in the figure. The initial coverage in this

setup is 58.29% (first snapshot), but after the first round it

increases to 68.57% (second snapshot), and finally it reaches

80.22% (third snapshot). It can be observed from Fig. 1(c)

that in the final round the mobile sensors are located out of

the area covered by static sensors, and that the points they

cover are not fully covered by static sensors.

B. Max-area Strategy

The Max-area is a MW-Voronoi-based coverage optimiza-

tion approach which aims to locally maximize the weighted

coverage of each sensor inside its own region [22]. Given an

MW-Voronoi region and a disk-shaped sensing pattern of a

sensor, Max-area strategy finds a point inside the region which

if the sensor moves there, then the intersection of the weighted

area of the region and the sensing disk is maximized. In the

special case, if the radius of the sensing disk is sufficiently

large, then the solution to this problem is the center of the

smallest enclosing circle of the region. In addition to the small

sensing radius, if the field is uniformly weighted, then the

optimum point is the center of largest inscribed ball inside the

region, which is known as the Chebychev center of the region.

In general, finding the optimum point inside the MW-

Voronoi region is not straightforward, and an iterative non-

linear optimization approach may be used to find it. Such

an algorithm considers the intersection area noted above as

an objective function, and uses the gradient of this objective

function to determine the moving direction for the sensor (the

objective function is guaranteed to increase if the sensor moves

in that direction). In this optimization problem, the set of

constraints is characterized by the boundaries of the region,

and the gradient is computed iteratively to assess the proximity

of the optimum point.

V. SIMULATION RESULTS

The two algorithms proposed in the previous section are

applied to a flat space of size 50m× 50m. It is assumed that

there are 3 static sensors with the sensing radii of 8m, 9m and
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Fig. 1: Snapshots of the execution of the FWV strategy for a network of 45 nonidentical sensors with random initial distribution. (a) Initial coverage; (b)
coverage after the first round, and (c) final coverage.

10m in the field. Assume also that a number of mobile sensors

are randomly placed in the field. The communication range

of the mobile and static sensors are assumed to be 20m and

40m, respectively. In each simulation, the algorithm terminates

when none of the mobile sensors’ dynamic coverage area in

its corresponding MW-Voronoi region increases by more than

0.1m2 or none of the sensors’ weighted coverage increases if

it makes another move. The results presented in this example

for field coverage are all the average values obtained by using

20 random initial locations for the sensors.

Assume first there are 27 sensors: 15 with a sensing radius

of 3m, 6 with a sensing radius of 2.5m, 3 with a sensing radius

of 3.5m, and 3 with a sensing radius of 4.5m. The coverage

factor (defined as the ratio of the covered area to the overall

area) of the sensor network in each round is depicted in Fig. 2

for the two algorithms proposed in this paper. As it can be seen

from this figure, although the FWV strategy outperforms the

Max-area strategy in the first few rounds, their final coverage

is approximately the same.

It is desired now to compare the performance of the two

algorithms in terms of the number of mobile sensors n. To

this end, consider three more setups: n=18, 36 and 45, in

addition to the previous setup. Let changes in the number of

identical mobile sensors in the new setups be proportional to

the changes in the total number of mobile sensors (e.g., for the

case of n=18 there will be 10 mobile sensors with a sensing

radius of 3m, 4 with a sensing radius of 2.5m, 2 with a sensing

radius of 3.5m, and 2 with a sensing radius of 4.5m). In Fig. 3,

the final coverage of the algorithms is depicted for different

number of sensors. It can be observed from this figure that the

final coverage of both algorithms are approximately the same

for various setups.

Another important means of assessing the performance of

sensor deployment algorithms is the time it takes to reach

the desired coverage level. This time depends on the number

of rounds it takes for the sensors to provide a prescribed

coverage level, as well as the sensor deployment time in each
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Fig. 2: Network coverage per round for 27 mobile sensors.
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Fig. 3: Network coverage for different number of sensors using the
proposed algorithms.

round. Thus, to compare the proposed methods in terms of

deployment speed in reaching the desired coverage level, the

stopping round and also the time duration of each round should

be taken into consideration. As it can be seen from Fig 4,

the number of rounds (required to meet a certain termination

condition) is larger in the Max-area strategy than that in the

FWV strategy. In addition, the sensor deployment time in each

round for the Max-area strategy is larger than that for the FWV

strategy. Therefore, the FWV algorithm is a good candidate
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for field coverage as far as the deployment time is concerned.
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Fig. 4: The number of rounds required to reach the termination conditions
for different number of sensors using the proposed algorithms.

Another important factor in the performance evaluation of

different algorithms is the energy consumption of the sensors,

which is directly related to the moving distance of the sensors.

It can be observed from Fig. 5 that the average moving

distance of the Max-area strategy is smaller than that in the

FWV strategy considerably. Hence, the Max-area algorithm

is a better candidate for field coverage as far as the sensors’

energy consumption is concerned.
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Fig. 5: The average distance each mobile sensor travels for different number
of sensors, using the proposed algorithms.

VI. CONCLUSIONS

Two sensor deployment strategies are introduced in this

work to increase the sensing coverage in a network of mobile

and static sensors. The problem is addressed in the most

general case, where the sensing radii of different sensors

are not the same. A multiplicatively weighted Voronoi

(MW-Voronoi) diagram is then employed to develop two

distributed deployment algorithms. According to the proposed

algorithms, each mobile sensor assigns a proper weight to

every point in the field, based on the information it receives

from static sensors. The mobile sensors then move iteratively

to proper locations out of the covered area of static sensors,

in such a way that coverage holes of the network are reduced.

Simulations are presented to compare the performance of the

proposed approaches for different number of sensors in the

network. It is shown that the Max-area strategy outperforms

the other method, as far as the energy consumption is

concerned. On the other hand, the FWV strategy is more

efficient in terms of fast time response.

REFERENCES

[1] M. Moh, B. J. Culpepper, L. Dung, T.-S. Moh, T. H., and C.-F. Su,
“On data gathering protocols for in-body biomedical sensor networks,”
in Proceedings of IEEE Global Communications Conference, 2005, pp.
2991–2996.

[2] S. Martinez and F. Bullo, “Optimal sensor placement and motion
coordination for target tracking,” Automatica, vol. 42, no. 4, pp. 661–
668, 2006.

[3] H. Mahboubi, A. Momeni, A. G. Aghdam, K. Sayrafian-Pour, and
V. Marbukh, “An efficient target monitoring scheme with controlled node
mobility for sensor networks,” IEEE Transactions on Control Systems
Technology, vol. 20, no. 6, pp. 1522–1532, 2012.

[4] G. Wang, G. Cao, and T. F. L. Porta, “Movement-assisted sensor
deployment,” IEEE Transactions on Mobile Computing, vol. 5, no. 6,
pp. 640–652, 2006.

[5] H. Mahboubi, K. Moezzi, A. G. Aghdam, and K. Sayrafian-Pour, “Self-
deployment algorithms for field coverage in a network of nonidentical
mobile sensors: Vertex-based approach,” in Proceedings of American
Control Conference, 2011, pp. 3227–3232.

[6] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja,
“Sensor deployment strategy for detection of targets traversing a region,”
ACM Mobile Networks and Applications, vol. 8, pp. 453–461.

[7] J. Luo and Q. Zhang, “Probabilistic coverage map for mobile sensor
networks,” in Proceedings of IEEE Global Communications Conference,
2008, pp. 357–361.

[8] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 2, pp. 243–255, 2004.

[9] A. Konstantinidis, K. Yang, and Q. Zhang, “An evolutionary algorithm to
a multi-objective deployment and power assignment problem in wireless
sensor networks,” in Proceedings of IEEE Global Communications
Conference, 2008, pp. 475–480.

[10] S. Susca, F. Bullo, and S. Martinez, “Monitoring environmental bound-
aries with a robotic sensor network,” IEEE Transactions on Control
Systems Technology, vol. 16, no. 2, pp. 288–296, 2008.

[11] J. Cortes and F. Bullo, “Coordination and geometric optimization via
distributed dynamical systems,” SIAM Journal on Control and Opti-
mization, vol. 44, no. 5, pp. 1543–1574, 2006.

[12] T. M. Cavalier, W. A. Conner, E. del Castillo, and S. I. Brown, “A
heuristic algorithm for minimax sensor location in the plane,” European
Journal of Operational Research, vol. 183, no. 1, pp. 42–55, 2007.

[13] M. Schwager, D. Rus, and J.-J. Slotine, “Decentralized, adaptive cov-
erage control for networked robots,” International Journal of Robotics
Research, vol. 28, no. 3, pp. 357–375, 2009.

[14] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed policies for equitable
partitioning: Theory and applications,” in Proceedings of 47th IEEE
Conference on Decision and Control, 2008, pp. 4191–4197.

[15] L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. Pereira,
“Sensing and coverage for a network of heterogeneous robots,” in
Proceedings of 47th IEEE Conference on Decision and Control, 2008,
pp. 3947–3952.

[16] R. Graham and J. Cortes, “Asymptotic optimality of multicenter voronoi
configurations for random field estimation,” IEEE Transactions on
Automatic Control, vol. 54, no. 1, pp. 153–158, 2009.

[17] E. Deza and M. M. Deza, Encyclopedia of Distances. Springer, 2009.
[18] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations:

Concepts and Applications of Voronoi Diagrams. Wiley, 2000.
[19] A. V. Akopyan and A. A. Zaslavsky, Geometry of Conics. American

Mathematical Society, 2007.
[20] S. Yoon, O. Soysal, M. Demirbas, and C. Qiao, “Coordinated loco-

motion and monitoring using autonomous mobile sensor nodes,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 10, pp.
1742–1756, 2011.

[21] A. Kwok and S. Martinez, “A distributed deterministic annealing algo-
rithm for limited-range sensor coverage,” IEEE Transactions on Control
Systems Technology, vol. 19, no. 4, pp. 792–804, 2011.

[22] J. Habibi, H. Mahboubi, and A. G. Aghdam, “A nonlinear optimization
approach to coverage problem in mobile sensor networks,” in Proceed-
ings of 50th IEEE Conference on Decision and Control, 2011, pp. 7255–
7261.

6881


