Comput Stat (2014) 29:1793-1798
DOI 10.1007/s00180-014-0506-1

SHORT NOTE

Permanents, ¢-permanents and Sinkhorn balancing

Francis Sullivan - Isabel Beichl

Received: 17 April 2013 / Accepted: 15 May 2014 / Published online: 28 June 2014
© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Abstract The method of Sinkhorn balancing that starts with a non-negative square
matrix and iterates to produce a related doubly stochastic matrix has been used with
some success to estimate the values of the permanent in some cases of physical interest.
However, it is often claimed that Sinkhorn balancing is slow to converge and hence not
useful for efficient computation. In this paper, we explain how some simple, low cost
pre-processing allows one to guarantee that Sinkhorn balancing always converges lin-
early. We illustrate this approach by efficiently and accurately computing permanents
and o-permanents of some previously studied matrices.

Keywords Matrix scaling - Doubly stochastic matrix - Sequential importance
sampling

1 Introduction

The notion of Sinkhorn balancing for non-negative square matrices was introduced in
Sinkhorn (1964) and some of the theory was developed in Knopp and Sinkhorn (1967).
Our purpose here is to explain why, contrary to an apparently wide-spread opinion,
Sinkhorn balancing is a tool useful when applying sequential importance sampling
(SIS) to estimate the permanent and the alpha-permanent efficiently. As has been
pointed out several times in the literature (Kou and McCullagh 2009; Liu 2001), when
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used directly “out of the box™ Sinkhorn balancing can be very slow to converge and
hence is seemingly impractical for such computations. In fact, one can easily construct
examples for which the rate of convergence is worse than logarithmic. However, by
using some simple pre-processing that requires little more than depth-first search, a
linear rate of convergence can always be guaranteed (Soules 1991; Tassa 2012). We
will explain in Sect. 2. We explain the pre-processing in Sect. 3 and illustrate its use
by reproducing some of the computational results reported in Kou and McCullagh
(2009) along with information about the relative variance of our sampling via SIS for
these examples in Sect. 4. As we shall see, basing importance sampling on Sinkhorn
balancing provides a robust and efficient approach to this class of approximation
problems.

2 Convergence of Sinkhorn balancing

The Sinkhorn balancing algorithm itself is simple to describe. One is given a non-
negative matrix A and the aim is to derive a unique doubly-stochastic matrix B from
A. To do this, we iterate: first divide each row of A by its sum giving a row-stochastic
matrix. We call this row-balancing. Then divide the columns of the resulting matrix by
their sums giving a column stochastic matrix. We call this column-balancing. Continue
until convergence. The matrix B is unique in that it has non-zeros only at some (but
perhaps not all) locations (i, j) where a; ; > 0 and the non-zeros of B maximize a
generalized form of entropy (Soules 1991). Here convergence for an n x n matrix,
A, means that the row sums converge in L° norm to the n-vector of all ones. This is
assuming, of course, that columns are normalized after row sums. In other words, if
we end by column balancing then the row sums should all be close to 1. That is,

[|Ax - e —ello <€

where Ay is the matrix that results from k iterations of row-balancing and column-
balancing of A, e is the vector of all ones and € is a small number. As a practical matter,
doing n? iterations of row and column balancing, as described above, is usually more
than enough to get convergence to a reasonable € for the purposes of computing the
permanent or o-permanent.

In Knopp and Sinkhorn (1967), it is shown that this iteration converges quickly
if and only if every non-zero element of A has support, meaning that there exists a
permutation of the rows and columns of A that element on the diagonal and places
non-zeros on the other elements of the diagonal. In the case of unsupported elements,
Sinkhorn balancing still converges but is not guaranteed to be quick.

Note that this fact in itself already points toward a connection between Sinkhorn
balancing and computing the permanent because the number of such permutations is
equal to the permanent in case A is a matrix of zeros and ones. If A is not a zero-one
matrix we have that

n
|A] = ZHai,a(z‘)

o i=1
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Here |A| denotes the permanent and we sum over supported permutations o, i.e. those
that have all a; ;) non-zero. For the case of the «-permanent where « is not equal to
one, the formula is:

n
1Al =" [aion
o2

i=1

where cyc(o) is the number of cycles in o.

A second result found in Knopp and Sinkhorn (1967) is that there exist diagonal
matrices D and E such that B = D - A - E if and only if A has fotal support. Total
support means that for every non-zero ¢;, ; in A, there exists a permutation o such that
for some i, o (i) = j and

n
H djo(i) > 0

i=1

More generally, each such non-zero element in A is said to be supported and all others
are non-supported. Only supported elements contribute to the permanent and B has
non-zeros only at locations 7, j where a; ; is supported. If all non-zeros are supported,
A is said to have total support.

If A has total support then, by a result of Soules (1991), convergence is linear.
But without total support, convergence can be extremely slow. If, for example, A is a
matrix with ones on and above the main diagonal then only elements on the diagonal
are supported and convergence is slower than logarithmic. (see Fig. 1).

3 Approximating the permanent and the a-permanent

Our strategy is to find all the supported elements and remove the non-supported ones
before balancing and then use the entries of B to generate an importance function. To
find the supported elements we use an algorithm introduced in Tassa (2012).

To explain Tassa’s method for determining support, it is helpful to think of our
matrix, A, in two ways: (1) as the adjacency matrix of an undirected bipartite graph,
where the rows are one color and the columns another, and, (2) as the adjacency matrix
of a directed graph where the arcs go from rows to columns.

If A is regarded as the adjacency matrix of a bipartite graph, the permanent is the
number of perfect matchings of the graph. But, when regarded as a directed graph, the
permanent of an n X n zero-one matrix A is equal to the number of distinct cycle covers
of an associated directed graph G (Ben-Dor and Halevi 1993). The vertex set of G is
theset {1, 2, ...n}and there is a directed edge from vertex i to j if and only if ¢;; = 1.
(Note that a non-zero on the diagonal of A indicates a loop.) A cycle cover is a set of
vertex-disjoint cycles that includes all of the vertices of G. Clearly a non-zero a;; is
supported if and only if itis in at least one cycle that is part of a cycle cover. (To see this,
list the vertices in the order in which they occur in the cycles of the cycle cover. Because
every vertex is included, this gives a permutation o such that [[/_; a; s > 0.)
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Fig.1 Convergence of Sinkhorn balancing for a 7 x 7 matrix with 6 unsupported elements. Line indicates
that support has been pre-determined. No line indicates without support pre-determined. Here “error” is
||Ag - e — el]|oo as in Sect. 2

If A is thought of as a bipartite graph, we first find a perfect matching using the
Hopcroft-Karp algorithm. For an n x n matrix having m non-zeros, this requires
O (m+/n) operations. If there is no perfect matching, the permanent is zero and there
is nothing to do. If there is a perfect matching, we can permute rows and columns so
that the diagonal consists of all ones. Then, switching back to directed graphs, this
means that one cycle cover consists entirely of loops. Other cycle covers must use at
least one directed cycle that is not a loop, meaning they must use edges that are in
strongly connected components of the graph obtained if we ignore the loops. Edges
in strongly connected components can be determined using a single application of
Tarjan’s algorithm for finding strongly connected components (Tarjan 1972) which
requires O (m) operations. Thus, after running the Tarjan algorithm, if an edge is in a
strongly connected component it is supported. Otherwise it is not.

In Beichl and Sullivan (1999) Sinkhorn balancing is used as the basis of a sequential
importance sampling approach to estimation of permanents in order to estimate the
so-called dimer covering constant. Use of Sinkhorn balancing is suggested by the
following basic identity about the Sinkhorn balanced matrix, B, corresponding to a
totally supported matrix A.

bi j|Bijl  aijlAil
|B] |A

Here |A; ;| and | B; ;| denote the permanents of the 7, j minors of A and B respec-
tively. In very special cases, the ratios |B; ;|/|B| are all equal to one (Ando 1989) but
in general they can be expected to be close to one.
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Table 1 Relative errors and relative variance

Matrix Size Density (%) Estimate Relative error Relative variance
A2 20 x 20 92.8 3.5285e+32 0.040 0.205
A3 15 x 15 100.0 1.4448e+22 0.010 0.252
A4 15 x 15 78.8 7.08694e+21 0.008 0.317
AS 20 x 20 100.0 3.2956e+49 0.002 0.187
A6 20 x 20 32 5.9738e+40 0.005 0.976

We generate a supported permutation sequentially as follows: first choose a column
J from row one selected with probability by ; (and thus importance 1/b; ;). Next
delete row one and column j from A and repeat the process on the resulting matrix
(n — 1) x (n — 1) matrix, etc. At each step, before balancing we zero out the non-
supported entries of the current matrix. It is easy to see that we have

Al =& (HL] ai,a(z‘))
T2 bioa

where £ denotes expected value. Note that if the ratios | B; ;|/|B| were actually equal
to one, a single sample would suffice to give an exact answer. In fact, because we will
use the b; ; as the probability distribution from which we draw, the mean values of
the ratios for the i, j selected will always equal one.

In the cases in which « is different from one we proceed similarly to the method
used in Kou and McCullagh (2009). As the permutation is built, the current number of
cycles is part of the developing importance function. We begin by choosing a row from
column j = 1. But we change the importance function so that instead of selecting row
i with probability b; ; we select with probability proportional to a*b; ; where x = 1
if selecting row i completes a cycle and x = 0 if not. The next column is chosen to
have index i unless i has appeared before. In that case, a cycle has been completed
and we select the next column at random from amount those still available.

4 Numerical results

In Table 1, we present a few numerical results to compare with those reported in
Kou and McCullagh (2009). All computations were done using Matlab.! The matrices
referredtoas A2, .. ., A6 are taken from http://www.stat.uchicago.edu/~pmcc/reports/
matrices

The errors are computed using the exact permanents given on the above web page.
For a fixed matrix, a sample consists of a supported permutation o and the importance

! Certain commercial equipment, instruments, or materials are identified in this paper to foster under-
standing. Such identification does not imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the
best available for the purpose.
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value used at each step of building o . The number of iterations to do Sinkhorn balancing
was 20 and the number of samples drawn was 10,000 in all cases.

5 Conclusions

Sinkhorn balancing is an effective method for estimating the permanent and the «-
permanent. In order to be efficient, it is necessary to pre-determine support which can
be done in polynomial time.
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