
An Input Space Modeling Methodology for Combinatorial Testing

Mehra N.Borazjany, Laleh Sh. Ghandehari, Yu Lei

Department of Computer Science and Engineering
The University of Texas at Arlington

Arlington, Texas 76019, USA
{mehra.nourozborazjany}@uta.edu

{laleh.shikhgholamhosseing,ylei }@uta.edu

Raghu N. Kacker, D. Richard Kuhn

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, Maryland 20899, USA
{raghu.kacker,kuhn}@nist.gov

Abstract— The input space of a system must be modeled before

combinatorial testing can be applied to this system. The

effectiveness of combinatorial testing to a large extent depends

on the quality of the input space model. In this paper we

introduce an input space modeling methodology for

combinatorial testing. The main idea is to consider the process

of input space modeling as two steps, namely, input structure

modeling and input parameter modeling. The first step tries to

capture the structural relationship among different

components in the input space. The second step tries to identify

parameters, values, relations and constraints for individual

components. We also suggest strategies about how to perform

unit and integration testing based on the input space structure.

We applied the proposed methodology to two real-life

programs. We report our experience and results that

demonstrate the effectiveness of the proposed methodology.

Keywords—Combinatorial Testing; Input Parameter

Modeling; Software Testing.

I. INTRODUCTION

Software failures are often the result of a faulty

interaction between input parameters. Empirical studies
show that most faults are caused by interactions among six
or fewer parameters [8]. Combinatorial testing is a testing
strategy that applies the theory of combinatorial design to
test software systems. Given a system under test with k
parameters, t-way combinatorial testing requires all the
value combinations of t (out of k) parameters be covered at
least once, where t is usually a small integer. If test
parameters are modeled properly, almost all faults caused by
interactions involving no more than t parameters will be
exposed. Combinatorial testing can significantly reduce the
cost of software testing while increasing its effectiveness
[30,31].

The input space of a system must be modeled before
combinatorial testing can be applied to this system. The
effectiveness of combinatorial testing to a large extent
depends on the quality of the input space model. In
particular, if a failure can only be triggered when a
parameter takes a specific value, and if this parameter or
value is not modeled, this failure will not be detected by a
combinatorial test set.

A number of studies have been reported on input space
modeling for general software testing, i.e., not specific to

combinatorial testing. Grochtmann and Grimm [3]
mentioned that finding parameters and values is a creative
process that can never be fully automated. The Category
Partition method partitions the input domain into categories
and choices [4]. The Classification Tree method partitions
the input domain into classifications and classes, and
represents the input domain in a tree structure [3]. Note that
classifications are like categories and classes are like the
choices.

Only a few studies have been reported on modeling for
combinatorial testing. A workflow of eight steps is proposed
for the combinatorial modeling process [1]. Segall et al.
suggest several patterns i.e., optional values, multiplicity
that commonly appear in input models for combinatorial
testing [27, 28].

In this paper we propose an input space modeling strategy
for combinatorial testing. We consider the process of input
space modeling as two steps: input structure modeling
(ISM) and input parameter modeling (IPM). The first step,
i.e., ISM, tries to capture the structural relationship among
the different components in the input space. The second
step, i.e., IPM, tries to identify parameters, values, relations
and constraints for individual components. We also suggest
strategies about how to perform unit and integration testing
based on the input space structure.

In this paper, we focus on the first step. Existing methods
such as category partitioning can be used for the second
step. We consider two types of structures, i.e., flat and
graph. The flat structure has no compositional hierarchy,
where components are equal peers in terms of composition
relation. For example, a flat input structure can be used to
model the command-line options of a program. The graph
structure represents the composition relation between
different components in a graph, where one component may
be composed of several other components. For example, a
graph structure can be used to model elements in an XML
file.

We also report two experiments of applying the proposed
methodology to two real-life programs, including Apache

Ant [17], and Space from SIR website [19]. The two
experiments are designed to serve two purposes. First, they
are designed to validate the proposed methodology in a
practical setting. Second, they are intended to evaluate the
effectiveness of combinatorial testing. There has been a lack

mailto:%7d@uta.edu

of empirical studies and experience reports on applying
combinatorial testing to the real-life programs [9].

In our experiments, we compare combinatorial testing
based on the proposed methodology to two other random
approaches. The first random approach, referred to as pure
random, spends minimum effort on modeling and generates
random tests mainly based on the syntactic structure of the
input space. The second random approach, referred to as
modeled-random, generates random tests from the same
model created by the proposed methodology. We measure
the effectiveness of these approaches in terms of code
coverage and number of faults they can detect. The results
show that our approach is more effective than the modeled-
random approach, which is significantly more effective than
the pure-random approach. For example, the statement
coverage in Apache Ant with 2121 test cases was 79% using
our approach as compared to modeled-random and pure-
random approaches with 65% and 44% respectively.

The remainder of this paper is organized as follows. In
Section II we discuss existing work on input space
modeling. In section III, we describe our methodology for
input space modeling. Section IV reports experiments that
demonstrate the effectiveness of the methodology. Section
VI provides concluding and future works.

II. RELATED WORK
Several input space modeling approaches, e.g., Category

Partitioning [4], Classification Tree [3], and Domain Testing
[5] have been reported for general software testing. The
general idea is to divide the possible values of a parameter
into groups that result in a similar behavior from the test
subject.

Chen et al. [2] presented a list of common mistakes in
identification of the category (parameter) and choices
(values) from specification. The missing categories,
problematic categories, and problematic choices are the
main mistakes. They introduced a check list of 6 steps for
detecting these mistakes.

Grindal and Offutt suggested an input parameter
modeling method that is specifically designed for
combinatorial testing [1]. The focuses of this study was
mainly on work flow of the modeling process.

Segall et al. [27, 28] and Lott et al. [26] studied some
patterns that commonly occur in combinatorial test models.
Common patterns include optional values, multiplicity, and
auxiliary aggregates or commonality. The concept of
reusing commonality or auxiliary aggregates [26] is
different from our approach as discussed later in section III-
C.

The notion of sub-attribute introduced in [10] allows one
factor to be composed of several other factors. This is
similar to our graph structure. However, the approach in [10]
splits the composed factor into simple factors during test
generation. This effectively converts the graph structure into
a flat structure, which is fundamentally different from our
approach.

To complement mixed-strength test generation, a user is
allowed to create a hierarchy of test parameters [43]. This is
similar to our graph structure without loop. However, the
hierarchy in [43] can have two levels only while our
approach does not have this restriction. Moreover our
approach deals with loops in a graph structure.

The above works are complementary to our work. None
of the above addresses the problem of input structure
modeling.

A number of empirical studies have been reported on
combinatorial testing. In [8], Kuhn et al. reported a study of
several fault databases and found that all the faults in these
databases are caused by no more than 6 factors. Schroeder et
al. [23] compared t-way testing to random testing in a
controlled study. They used two software applications used
in their laboratory as subject programs and seeded faults by
themselves. Qu et al. [35] applied combinatorial testing to
two programs in the SIR repository, i.e., flex and make.
Kuhn et al. [21] applied t-way testing to a grid network
simulator for deadlock detection and compared the results to
random testing. These studies are complementary to our
work in that they all provide evidence and insights on the
effectiveness of combinatorial testing in practice. However,
none of these studies reported the details of the modeling
process.

III. AN INPUT SAPCE MODELING METHODOLOGY
For a large system that has too many features, we first use

the divide-and-conquer strategy to divide the system into
smaller systems. There are two general strategies. One is to
divide the system vertically, e.g., based on features. That is,
we could apply combinatorial testing to one feature or a
group of related features at a time. The other strategy is to
divide the entire system into several subsystems, where each
subsystem may be involved in multiple features.

Next, we model the input space of each system. This
modeling process consists of two major steps, Input
Structure Modeling (ISM) and Input Parameter Modeling
(IPM). ISM tries to capture the structural relationship among
the different components in the input space. We consider two
types of structures, i.e., flat and graph. The flat structure has
no hierarchy, where components are equal peers. For
example, a flat input structure can be used to model the
command-line options of a program. The graph structure
represents the composition relation between different
components in a graph, where one component may be
composed of several other components. For example, a
graph structure can be used to model elements in an XML
file. In this study, we focus on the graph structure.

In [10], the graph structure is referred to as sub-attributes
and it was suggested to either consider the parent node as a
compound parameter or split the parent node into simple
parameters. In their experiments they used the split approach
because it was believed that this approach would generate a
less number of test cases. The split approach effectively
converts the graph structure into a flat structure, which
creates more parameters and may also introduce many

invalid combinations. The split approach may also introduce
redundant factors if one child has more than one parent.

IPM tries to identify parameters, values, relations and
constraints for individual components. Existing methods on
IPM can be applied. In particular, it is often necessary to
identify abstract parameter and values. One common
approach is to identify factors that could affect the behavior
of the object being modeled. Each of these factors can
become an abstract parameter. Then, existing methods such
as category partitioning and classification tree can be used to
identify the abstract values of each abstract parameter.

After we have the input parameter model for each module,
we generate test cases from the model using combinatorial
testing tools such as ACTS. These test cases are abstract test
cases because the parameters and values in the model are
abstract. Thus, it is necessary to derive concrete test cases
from these abstract test cases before the actual testing can be
performed. Note that an abstract test case typically represents
a set of concrete test cases, from which one representative is
typically selected to perform the actual testing.

A. Input Structure Modeling

In this section, we focus on the graph structure. We

consider two types of graph structure, depending on whether
there is a loop in the graph structure.

Fig.1: (a) part of a build XML file used by Apache Ant. (without loop)

<project name=”helloworld” basedir=”.”>
 <target name=”compile”>
 <mkdir dir=”classes”/>
 <fileset file=”main.java”/>
 <javac srcdir=”src” destdir=”classes”/>
 </target>
 <target name=”jar”>
 <mkdir dir=”jar”/>
 <jar destfile=”jar/HelloWorld.jar”>
 <fileset dir=”classes”/>
 </jar>
 </target>
</project>

i. Graph structure without loop

As an example, consider the build XML file used by
Apache Ant, which is shown below. A build XML file
includes one project element and at least one target element.

A target element includes one or more task elements. Each
element has some attributes.

Fig.1 (a) shows part of a build XML file used by Apache
Ant. The file contains the ‘helloworld’ project which has two
targets. The first target ‘compile’ has two task elements,
‘mkdir’ and ‘javac’, and one ‘fileset’ element. The second
target ‘jar’ has two task elements, ‘mkdir’ and ‘jar’. The task
element ‘jar’ has a nested ‘fileset’ element.

Fig.1 (b) shows the model of the example build file in
Fig.1 (a). We borrow some UML notations to depict the
graph structure. These UML notations include class, attribute,
multiplicity, constraint and composition relation notations.

The multiplicity notation shows that a project element has
at least one target element. The composition relationship
shows that the target and the task both use the fileset element.
This suggests that we can model the fileset element once and
then reuse it for both task and target elements. Note that the
input structure is modeled as a graph even though the
structure of the xml input file is a tree structure.

In the following, we give some guidelines on how to
perform unit testing and integration testing based on a graph
structure.

Fig.2 (a) shows an example of a graph structure. Nodes A,
B, and C are the parameters of the system and a1, a2, and a3
are the attributes of the node A and so on.
 Unit testing: Unit testing can be performed to test

different combinations of attributes for individual nodes.
In this case, attributes for the other required nodes will
be given a default value. If an attribute has no default
value, we will either exclude this attribute or will pick a
value that we consider may be used most often. Fig.2 (b)
shows an example of how to perform unit testing for the
structure shown in Fig.2 (a).

 Integration testing: Integration testing can be performed
after unit testing of each node. The child node will be
used as a composed parameter of the parent node.

 Fig.2 (c) and Fig.2 (d) show two coverage options for the
integration strategy. In both examples, the node C is the first
node to test. It has two binary attributes c1 and c2 as its
parameters. The 2-way test set for node C has four tests. The
second node to test is node B. Node B has three attributes
with two values (binary attributes) and one nested element C.
When we test node B, node C is also considered to be a new
parameter of B, whose domain is the two-way test set
derived earlier for unit testing of node C.

We have two coverage options for parameter C depending
on our domain knowledge. If there is no relationship
between the attributes of the two nodes (B and C), then we
do one-way coverage between the parameter C and the
attributes of node B as shown in Fig.2 (c). The ACTS tool
has a mixed relation feature that we can use to generate the
mixed coverage between parameters. Otherwise, we perform
t-way testing for all the parameters of node B, i.e., including
its attributes and the new parameter added for node C as
shown in Fig.2 (d).

Project

Target

1
1..*

1 *

TaskFileset

1

*

1*

(b) The model of the example build file

Fig.2: (a) Example of model based testing

B A C
b1 b2 b3 a1 a2 a3 c1 c2
1 1 0 1 0 1 0 0
1 0 1 1 1 0 0 1
0 1 1 0 0 0 1 0
0 0 0 0 1 1 1 1

(b) Unit testing

C B A
c1 c2 b1 b2 b3 C a1 a2 a3 B
0 0 1 1 0 1 1 0 1 1
0 1 1 0 1 2 1 1 0 2
1 0 0 1 1 3 0 0 0 3
1 1 0 0 0 4 0 1 1 4

(c) Integration testing (mixed-coverage)

C B A
c1 c2 b1 b2 b3 C a1 a2 a3 B
0 0 0 1 1 1 0 1 1 1
0 1 1 0 0 1 1 0 0 1
1 0 0 0 1 2 0 0 1 2
1 1 1 1 0 2 1 1 0 2
 0 0 0 3 0 0 0 3
 1 1 1 3 1 1 1 3
 0 0 0 4 0 0 0 4
 1 1 1 4 1 1 1 4
 0 0 0 5
 ... … … ..

(d) Integration testing (t-way coverage)

ii. Graph structure with loop
Some graph structures may contain a loop. Fig.3 shows an

example where there exists a loop involving nodes
‘classpath’, ‘fileset’, ‘depend’, and ‘mapper’. (The edges are
directed in terms of the compositional relation.)

In the modeling process:
 (1) Break the loop by removing the back edge. This is

necessary to determine the order in which the nodes are
going to be modeled. The back edge points from a node to
another node that has already been visited during a DFS
traverse.

(2) Model the graph without the loop (as we discussed in
previous section).

(3) Place the back edge into the graph and add the
destination node of the back edge into the model of the
source node of the back edge.

Fig.3: (a) Part of build.xml file used by Apache Ant (with a loop)

 <fileset dir="src" includes="*.java">
 <depend targetdir="/lib">
 <mapper classname="mapper.classname">
 <classpath>
 <fileset dir="lib">
 <include name="*.class"/>
 </fileset>
 </classpath>
 <mapper>
 </depend>
</fileset>

(b) The model of the example build file
Task

FileSet

1
1..*

Depend

Mapper

1 *

Classpath

1 *

1

*

1*

Include

1*

In the above example, we break the loop by removing the

back edge going from node ‘classpath’ to ‘filset’. After we
modeled the graph without loop then we add the back edge
and remodel the ‘classpath’ node. The ‘classpath’ node using
the ‘fileset’ node as its nested element and we have already
modeled the ‘fileset’ node which we can add to the model of
‘classpath’.

Another important task is to generate the concrete test
cases using the model. In order to do so we have to unfold
the loop based on our coverage criteria e.g., edge pair
coverage, prime path coverage, simple round trip coverage.
For example if we want to satisfy the simple round trip
coverage, we unfold the loop just once.

B. Input Parameter Modeling

After we model the input structure of the system and in

order to perform testing, we need to model the input
parameter of each node. The IPM method identifies the
abstract model for the parameters, values, constraints, and
relations from the specification. One common approach is to
identify factors that could affect the behavior of the object
being modeled. Each of these factors can become an abstract
parameter. The existing methods such as category
partitioning and classification tree can be used to identify the

Fig.4: <jar> task 2-way abstract test cases

abstract values of each parameter. The constraints are
introduced to avoid invalid combinations. The relations are
introduced to group parameters that are related to each other
so that the different groups can be covered at different
strengths.

C. Derive concrete test cases

We use ACTS to generate t-way abstract test cases for

each model. These test cases are abstract test cases because
the parameters and values in the model are abstract. It is
necessary to derive concrete test cases from these abstract
test cases before testing is actually performed. Note that an
abstract test case typically represents a set of concrete test
cases, from which one representative is typically selected to
perform the actual testing.

Fig.5: Duplicate the nodes

Since the graph structure represents the composition

relation between different components, where one
component may be composed of several other components,
we often need to duplicate nodes that have more than one
parent. Fig.5 shows an example of such duplication. The
node ‘fileset’ has two parents meaning that ‘target’ and ‘task’
both will use the ‘fileset’. In order to generate the test, we
need to duplicate the node ‘fileset’ to two nodes ‘fileset1’
and ‘fileset2’ such that each only has one parent. This does

not mean that we model the ‘fileset’ node two times. Instead
we reuse the same abstract model for the ‘fileset’ node to
create two concrete values, which may be the same or
different, to be used for the ‘task’ and ‘target’ nodes. The
concept of auxiliary aggregate is to factor out the common
parameters with identical concrete values in the model [26].
In contrast, we reuse the abstract model and the concrete
values can be different.

We implemented a test case generator specific to each
subject to automatically derive concrete values from the
abstract test cases. Fig.4 and Fig.6 show the 2-way abstract
test set for the ‘fileset’ and ‘jar’ tasks respectively. Each
column represents a test factor (or abstract parameter) of the
task and each row represents an abstract test case. The test
case generator will select one representative for each test
case and create a concrete test case.

A sample concrete test for the test case number 14 in the
Fig.4 is:

<jar destfile="test14.jar" compress="true"
fileonly="false" update="false" duplicate="preseve"
keepcompression="true" >

 <fileset dir="/test" excludes=”*.jar"
include=”*.class”/>

 <fileset dir="/test" defaultexcludes=”yes”
include=”*.java” />
</jar>

In test case 14, the abstract value of the parameter

nestedfileset is ‘two or more’. Therefore, in the concrete test
case we include two nested <fileset> elements. The <fileset>
elements are further selected from the <fileset> abstract test
cases shown in Fig.6.

Fig.6: <fileset> 2-way abstract test cases

In addition, the test environment should contain a
directory name ‘test’ and files with different extensions such
as ‘.java’, ‘.class’ and ‘.jar’, in order for us to test the
functionality of the above elements. Therefore, our test
generator creates files with predefined extensions inside the
‘test’ directory.

IV. EXPERIMENTS
We conducted two experiments in which the proposed

methodology was applied to two real-life programs: Apache
Ant and Space. The two experiments are designed to serve
two purposes. First, they are designed to validate the
proposed methodology in a practical setting. Second, they
are intended to evaluate the effectiveness of combinatorial
testing.

In our experiments, we compared combinatorial testing
based on the proposed methodology to two other random
approaches. The first random approach, referred to as pure-
random, spends minimum effort on modeling and generates
random tests mainly based on the syntactic structure of the
input space. The second random approach, referred to as
modeled-random, generates random tests from the same
model created by the proposed methodology.

We also considered the possibility of comparing our
approach to an approach where we could create a model
purely on the syntactic structure of the input space and then
generate a t-way test set from this syntactical model. This
approach requires minimal modeling effort, since no
semantic information needs to be considered in the modeling
process. The two approaches differ only in the modeling
process. Thus this comparison would be good to show the
difference caused by different modeling approaches.
However, we found it was difficult to implement this
approach. For example, we tried to apply this approach to the
Apache Ant program and identified about 300 parameters. In
addition, we had to introduce a large number of constraints
to reflect the hierarchical structure. Thus we did not perform
this comparison in our experiments.

A. Subject programs

Table 1: Statistics about the two subject programs
Subject
programs

LOC # of classes/
procedures

of Faults in
each faulty
version

Type
of
faults

Ant 1.6 beta 80500 627 6 Seeded
Space 9127 136 35 Real

Table 1 shows some statistics about the two subject

programs. The two programs are selected because of several

desired attributes, including their complex input space, the
existence of a clean version and multiple faulty versions, a
relatively large number of lines of code, and the availability
of their specifications.

B. Input model

Table 2 shows some information about the input models built
for each program. The second column shows the number of
models created for each program. The 3rd column shows the
total number of parameters and their domain size in an
exponential format, i.e., (d1

p1
d2

p2
d3

p3
) , where di

pi
indicates

that there are pi number of parameters with domain size of
di. Note that the total number of parameters equals to
p1+p2+p3.... The 5th column represents the total number of
constraints and the number of parameters involved in each
constraint also in an exponential format, i.e., (p1

c1
p2

c2
p3

c3
) ,

where pi
ci

indicates that there are ci constraints with pi
parameters. Note that the total number of constraints is
equal to c1+c2+c3+…. The 7th column shows the total
number of relations and the number of parameters involved
in each relation also in an exponential format, i.e., (p1

r1
p2

r2

p3
r3

) , where pi
ri

indicates that there are ri number of relations
with pi number of parameters. The total number of relations
is equal to r1+r2+r3+… .

For example, Space has 7 models with a total number of
78 parameters. Five parameters have the domain size of 2,
21 parameters have the domain size of 3 and so on.

C. Test generation

We used ACTS (version 2.7) [12] to generate t-way

abstract test cases. We started from 2-way testing and then
we extended the generated test cases to perform 3-way
testing. As the number of test cases increases rapidly as the
test strength increases, therefore we did not go beyond 3-way
testing.

We generated the modeled-random abstract test cases by
using the RANDBETWEEN(m,n) function of Microsoft
Excel. The integer numbers (m and n) indicate the first and
the last index of the parameter values.

For example, consider a model of three parameters with
domain size 4, RANDBETWEEN(1,4) generates a random
integer between 1 and 4 for each parameter in a test case
(Table 3). We used an IF function to check whether a test
case satisfies all the constraints. In this study, we only used
valid test cases, i.e., invalid tests were discarded.

Table 2: Input Model

S
u

b
je

c
t

p
r
o
g

ra
m

s

N
u

m
b

er
 o

f

m
o

d
el

s

T
o

ta
l

#
 o

f

p
a

ra
m

e
te

r

a
n

d
 t

h
e
ir

d
o

m
a

in
 s

iz
e

T
o

ta
l

#
 o

f

p
a

ra
m

e
te

r
s

T
o

ta
l

#
 o

f

c
o

n
st

ra
in

t
a

n
d

th
e
 n

u
m

b
er

 o
f

p
a

ra
m

e
te

r

in
v
o

lv
e

T
o

ta
l

#
 o

f

c
o

n
st

ra
in

ts

T
o

ta
l

#
 o

f

r
e
la

ti
o

n
s

a
n

d

th
e
 n

u
m

b
er

 o
f

p
a

ra
m

e
te

r

in
v
o

lv
e

T
o

ta
l

#
 o

f

r
e
la

ti
o

n
s

ANT 53 296321445 56627192 172 2113184135575 52 293341 13
SPACE 7 25321446 51627182 78 221394854637182101147182 58 214344261 21

We used the sample xml generator Oxygen [25], to

generate random XML files for the pure-random approach.
Oxygen is an XML editor that creates XML documents
based on a schema or a DTD file. It accepts a DTD file as
input and converts it to a XML schema file (i.e., a XSD file).
It generates a user-defined number of random xml files from
the schema. We set the number of repetitions and recursive
levels to 2.

Table 3: Example of random abstract test case generation

Parameters P1 P2 P3 valid/invalid

Formula

R
A

N
D

BE

TW
EE

N
(

1,
4)

R

A
N

D

BE
TW

EE
N

(
1,

4)

R
A

N
D

BE

TW
EE

N
(

1,
4)

 =IF(
AND(A2=B2,B2=C2),

"invalid", "valid")

Test1 1 4 1 valid
Test 2 3 3 3 invalid

The space program takes as input a file in the ADL

format. We wrote a program to convert the file from the
ADL format to the XML format. Then, we generated random
XML files using Oxygen, which are converted back to the
ADL format.

The Apache Ant program takes as input a XML file. The
DTD for this XML file is available. However, we did not
model all the tasks1 of the Apache Ant. Thus tasks that are
not modeled in our approach were removed from the DTD
file. Table 4 shows the number of test cases generated for
each subject program.

Table 4: Number of test cases

Testing method
2-way 3-way

Subject program
Ant 836 2121

Space 120 315

D. Metrics

Two metrics are used to measure the effectiveness of each
approach. The first metric is statement coverage. We use
clover [7] to collect code coverage information for Apache
Ant, which is written in java, and gcov [18] for Space, which
is written in C.

Fig.7: Fault detection procedure

1 We only modeled common tasks of Apache Ant such as archive, compile, documentation,
exestuation, file tasks and logging tasks

The second metric is the number of faults detected by each
approach. Each of the two subject programs has multiple
versions available in the SIR repository: one clean version
and several faulty versions. Each faulty version contains a
single fault (Fig.7). We count the number of faulty version
that can be detected by each approach.

E. Results and discussion

For the pure-random approach, we first tried to generate
random XML files using Oxygen solely based on the DTD
file, i.e., without supplying any additional information. This
approach only achieved 22% statement coverage on average.
Since this approach is so ineffective, we do not consider it in
the rest of our experiments.

To make the pure-random approach more meaningful, we
provided additional information to the random XML files
generation process. There are two types of additional
information: (1) Information about the environment such as
directory name, file name, class path, etc.; and (2)
Constraints that may exist between different elements, e.g.
uniqueness constraints, cross-reference constraints, etc.

For example the following is part of the original Apache
Ant DTD file:

<!ELEMENT PROJECT (TARGET)+>
<!ATTLIST PROJECT
 Name CDATA #IMPLIED

 Basedir CDATA #REQUIRED >

The PROJECT element has two attributes Name and

Basedir listed in ATTLIST. The CDATA element indicates
that the value is a character data. The REQUIRED or
IMPLIED element indicates that the value is required or not.

The Name attribute represents the name of the project,
which is an optional value. The Basedir attribute represents
the base directory of the project. The Basedir attribute is
required and cannot be a random string. This is because the
Apache Ant program terminates if the base directory does not
exist. Therefore, we modified the DTD file and fixed the
value of Basedir to current directory.

The pure-random approach with such semantic
information added to the schema achieved 53% statement
coverage on average (Fig.8). While this is a significant
improvement over the pure-random approach without any
additional information, there is still a lot of room for
improvement.

The modeled-random approach used the same model as
our combinatorial testing approach, but instead of generating
t-way abstract test cases using ACTS, it used MS Excel to
generate the random abstract test cases.

The results in Fig.8 show that our approach achieved
higher code coverage than the modeled-random approach,
which further achieved higher code coverage than the pure-
random approach. The results in Fig.8 also show that 3-way
testing achieved higher code coverage than 2-way testing.

We also conducted an investigation to find out how many
t-way combinations are covered with the test set generated
by the modeled-random approach. The results show that with

Modeling
Process

Abstract
test case

generation

Automatic
test case

generation

Clean
Version

Faulty
Version

Results
Comparison

Fault
Detection

Expected Results

Actual Results

the same number of test cases as t-way testing, modeled-
random covers more than 90% of (t-1)-way combinations
and 81% to 87% of t-way combinations. This explains in part
why the modeled-random approach achieved code coverage
competitive to our combinatorial testing approach.

Fig.8: Code coverage results

The number of test cases for pure-random1 and modeled-random1 is
the same as 2-way testing, and the number of test cases for pure-

random2 and modeled-random2 is the same as 3-way testing.

After we executed the test cases, we inspected the faults to

see how many versions we killed by looking at the source
code. (We did not look at the source code during the
modeling process.) Some of the faults are only triggered by
invalid inputs and since we focused on interaction testing, we
exclude those faults that can only be triggered by single
invalid values. Therefore, we have 6 faulty versions for
Apache Ant and 32 faulty versions for the Space.

Table 5: Fault detection results

Subject Programs Ant Space
 killed not killed killed not killed
pure-random1 1 5 12 20
pure-random2 1 5 15 17
modeled-random1 4 2 23 9
modeled-random2 4 2 26 6
2-way 4 2 28 4
3-way 5 1 30 2

Table 5 shows the fault detection results of the different

approaches. These results are largely consistent with the
code coverage results. That is, our approach detected more
faults than modeled-random testing which further detected
more faults than pure-random testing.

The modeled-random testing for Space detected a new
fault with higher interaction strength. The notion of fault

strength or degree of fault is introduced to show the number
of parameters that are involved in causing the fault. The
detail of this fault is explained below.

Table 6 shows a part of the fault detection table for Space.
This table only shows faults that were not detected by at least
one of our testing approaches. In other words, faults that
were detected by all the three approaches are not shown. 3-
way testing was able to detect 93.7% of the faults. The faulty
versions 12 and 18 (v12 and v18) were only killed by 3-way
testing. None of our tests was able to detect v27. Version v33
was only detected by modeled-random testing (with the same
number of tests as 2-way testing).

To find out why some faults were not detected, we
conducted an investigation to determine the strength of the
faults mentioned above. Our investigation suggests that the
strengths of fault for v12, v18, v27, and v33, are likely to be
4, 5, 7, and 5, respectively. This explains why they were not
detected by some approaches. Note that a t-way test set also
contains higher strength combinations. This is why v12 and
v18 were detected by 3-way testing, even though they have a
strength higher than 3. Similarly, the v33 was detected by
modeled-random testing.

It is important to note that it can be difficult to determine
the strength of fault for a large and/or complex program. In
the following, we use v33 as an example to show how we
determined the strength of a fault. The test case that killed
the fault v33 includes 10 parameters. (Table 7)

In order to identify the suspicious parameters, we
generated 20 more test cases by changing one parameter at a
time and fixing the others. 8 out of 20 test cases were able to
kill the version. By comparing the parameter values of these
test cases, we were able to detect five suspicious parameters
that could cause the fault.

To determine the strength of the fault, we generated 486
exhaustive test cases by fixing the value of the suspicious
parameters. We randomly executed 10 out of 846, which
they all failed. Therefore, we believe the strength of this fault
is likely to be 5. [42]

We performed a similar investigation for v12 and v18
which both were killed only by 3-way testing.

In addition, we performed an investigation for v27. This
version was not killed by any of our tests. The code coverage
data showed that 14 out of 315 test cases executed the faulty
statement. We traced the source code while executing the
identified test cases. We applied the same method as
described above.

Although a 3-way test set guarantees to kill the faulty
version when the fault strength does not go over 3, but it is
possible that a 3-way test set kills a version with fault
strength greater than 3. Hence 3-way testing was able to kill
v12 and v18.

Table 6: Part of the fault detection table for Space (killed=1, not killed=0)
Version # v7 v8 v12 v13 v16 v18 v20 v21 v22 v27 v29 v31 v33 v35 v36 v37

pure-random1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
pure-random2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

modeled-random1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1
modeled-random2 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1

2-way 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1
3-way 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

41%

61%

44%

68%
60%

71%
65%

74%
68%

76%
79% 81%

ANT SPACE

Code Coverage

pure-random1 pure-random2 modeled-random1

modeled-random2 2-way 3-way

Table 7: Test case parameters of v33

Test Factors Test Values

grid

square
triang
rectang
hex

geometry rect
circle

geop >0
<0
=0

geoQ >0
<0
=0

polarization NA
linepol
circlpol

add node
block
poly
hex

THETA NA
>0
<0
=0

PHI NA
>0
<0
=0

PSI NA
>0
<0
=0

phase NA
uni
secor
rotate
point
pqpha

V. THREATS TO VALIDITY
The main threat to external validity is that the two subject

programs used in our experiments may not be representatives
of true practice. We plan to conduct more experiments on
real-life programs in the future.

Threats to internal validity are factors that may be
responsible for the experimental results without our
knowledge. We have tried to automate the experimental
procedure as much as possible, in an effort to remove human
errors. Furthermore, since our experiments use open source
programs, the validity of our results would be in jeopardy if
knowledge of the source code were used to identify these
parameters and values in our experiments. To alleviate this
potential threat, we only used the source code information to
inspect the faults after our testing process is completed.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented an input space modeling

methodology for combinatorial testing. Input space modeling
is problem zero of combinatorial testing, and it determines to
a large extent the effectiveness of combinatorial testing. The
key idea of our methodology is to consider the modeling
process as two steps, input structure modeling and input
parameter modeling. We mainly considered the graph
structure, which is further divided into graphs without loop
and graphs with loop. We also suggest some guidelines to

perform unit and integration testing based on the graph
structure. We believe that input structure modeling is
essential to manage complex input spaces such as those
represented by XML files.

We also reported two experiments of applying our
methodology to two real-life programs. The results showed
that combinatorial testing achieved higher code coverage and
detected more faults than modeled-random testing. Both of
these two approaches used the proposed methodology to
model the input space and generated the same number of
tests cases from the same model. In addition, the results
show that both combinatorial testing and modeled-random
testing are significantly more effective, in terms of code
coverage and fault detection, than pure-random testing. This
suggests that input space modeling is an essential step in the
testing process.

We plan to conduct more studies for other real-life
programs. The goal is to further validate the proposed
methodology and develop a set of guidelines that can be used
by practitioners to apply combinatorial testing in practice.

ACKNOWLEDGMENT

This work is supported by two grants (70NANB9H9178
and 70NANB10H168) from Information Technology Lab of
National Institute of Standards and Technology (NIST).

DISCLAIMER: NIST does not endorse or recommend any
commercial product referenced in this paper or imply that the
referenced product is necessarily the best.

VII. REFRENCES
[1]. Grindal, M. and Offutt, J., Input Parameter Modeling for

Combination Strategies in Software Testing, Proceedings of the
IASTED International Conference on Software Engineering
(SE2007), Innsbruck, Austria, 13-15, pages 255-260, Feb 2007.

[2]. T. Chen, P.-L. Poon, S.-F. Tang, and T. Tse. On the Identification
of Categories and Choices for Specification-based Test Case
Generation. Information and Software Technology, 46(13):887–
898, 2004.

[3]. M. Grochtmann and K. Grimm. Classification Trees for Partition
Testing. Journal of Software Testing, Verification, and Reliability,
3(2):63–82, 1993.

[4]. T. J. Ostrand and M. J. Balcer. The Category-Partition Method for
Specifying and Generating Functional Tests. Communications of
the ACM, 31(6):676–686, June 1988.

[5]. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold,
1990.

[6]. Wenhua Wang, Sreedevi Sampath, Yu Lei, Raghu Kacker. An
Interaction-Based Test Sequence Generation Approach for Testing
Web Applications, IEEE International Conference on High
Assurance Systems Engineerng, December 2008.

[7]. Clover: Code Coverage Tool for Java.
http://www.cenqua.com/clover/.

[8]. Kuhn R, Wallace D, Gallo A. Software fault interactions and
implications for software testing. IEEE Transactions on Software
Engineering; 30(6):418–421, 2004.

[9]. C. Nie and H. Leung. A survey of combinatorial testing. ACM
Computing Surveys (CSUR), 43:11:1–11:29, 2011

[10]. Krishnan, R.,Krishna, S. M., Nandhan, P. S.. Combinatorial
Testing: Learnings From Our Experience. Sigsoft Softw. Engin.
Notes 32, 3, 1–8., 2007.

[11]. Burr, K. and Young, W.. Combinatorial Test Techniques: Table -
based Automation, Test Generation, And Code Coverage. In
Proceedings Of The International Conference On Software Testing
Analysis And Review. 503–513, 1998.

[12]. http://csrc.nist.gov/groups/SNS/acts/documents/comparison-
report.html

[13]. Xu, L., Xu, B., Nie, C., Chen, H., and Yang, H. A Browser
Compatibility Testing Method Based On Combinatorial Testing. In
Proceedings of the International Conference on Web Engineering
Icwe. Springer, Berlin, 310–313, 2003.

[14]. Williams, A. W. And Probert, R. L.. A Practical Strategy for
Testing Pair-wise Coverage of Network Interfaces. In Proceedings
of the 7th International Symposium on Software Reliability
Engineering (Issre’96). Ieee Computer Society, Los Alamtos, Ca,
246, 1996.

[15]. Burroughs, K., Jain, A., and Erickson, R.. Improved Quality Of
Protocol Testing Through Techniques Of Experimental Design. In
Proceedings of the IEEE International Conference on Record,
’serving Humanity through Communications.’ Vol. 2. 745–752.,
1994.

[16]. A. M. Memon and Q. Xie, Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving software, IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 884–
896, 2005.

[17]. http://ant.apache.org/manual/
[18]. http://sourceforge.net/projects/gcov-eclipse/
[19]. Supporting Controlled Experimentation with Testing Techniques:

An Infrastructure and its Potential Impact. Hyunsook Do,
Sebastian Elbaum, and Gregg Rothermel, Empirical Software
Engineering: An International Journal, Volume 10, No. 4, pages
405-435, 2005.

[20]. Borazjany, Mehra N., Yu Lei.,et al. "Combinatorial Testing of
ACTS: A Case Study." In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, pp.
591-600. IEEE, 2012.

[21]. Richard Kuhn, Raghu Kacker, Yu Lei., Combinatorial and
Random Testing Effectiveness for a Grid Computer Simulator
presented at the Mod Sim World, Virginia, USA, 2009.

[22]. Mario Brčić and Damir Kalpić., Combinatorial testing in software
projects Jubilee 35th International Convention Proceedings /
Biljanović, Petar (ur.). - Rijeka : Croatian Society for Information
and Communication Technology, Electronics and Microelectronics
- MIPRO. 1832-1837, 2012.

[23]. P. J. Schroeder, P. Bolaki, and V. Gopu, Comparing the fault
detection effectiveness of n-way and random test suites,
International Symposium on Empirical Software Engineering,
2004. ISESE ’04. Proceedings, pp. 49– 59, 2004.

[24]. Jones, James A., Mary Jean Harrold, and John Stasko.
"Visualization of test information to assist fault localization." In
Proceedings of the 24th international conference on Software
engineering, pp. 467-477. ACM, 2002.

[25]. http://oxygenxml.com/xml_developer.html
[26]. C. Lott, A. Jain, S. Dalal, Modeling Requirements for

Combinatorial Software Testing, SIGSOFT Softw. Eng.
Notes,30:1-7, 2005

[27]. Itai Segall, Rachel Tzoref-Brill, Aviad Zlotnick, Common Patterns
in Combinatorial Models , 1st International Workshop on
Combinatorial Testing (in conjunction with ICST'12), 2012.

[28]. Itai Segall, Rachel Tzoref-Brill, Aviad Zlotnick, Simplified
Modeling of Combinatorial Test Spaces, 1st International
Workshop on Combinatorial Testing (in conjunction with
ICST'12), 2012.

[29]. Elke Salecker, Sabine Glesner, Combinatorial Interaction Testing
for Test Selection in Grammar-Based Testing, IEEE Fifth

International Conference on Software Testing, Verification and
Validation, 2012.

[30]. D. Richard Kuhn, Raghu N. Kacker, Yu Lei , Practical
Combinatorial Testing, National Institute of Standards and
Technology, 2010.

[31]. Bryce, R. C., Lei, Y., Kuhn, D. R. & Kacker, R. Combinatorial
Testing, Handbook of Research on Software Engineering and
Productivity Technologies: Implications of Globalization. IGI
Global, 196-208., 2010

[32]. W. Wang, Y. Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R.
Kacker and R. Kuhn, "A combinatorial approach to detecting
buffer overflow vulnerabilities", Proceedings of 41st Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2011.

[33]. W. E. Wong, Y. Lei, Reachability Graph-Based Test Sequence
Generation for Concurrent Programs, International Journal on
Software Engineering and Knowledge Engineering, 18(6):803-822,
Sept. 2008.

[34]. Y. Lei, R. Carver, R. Kacker, D. Kung, “A Combinatorial Strategy
for Testing Concurrent Programs”, Journal of Software
Testing,Verification, and Reliability, 17(4):207-225, 2007.

[35]. Qu, Xiao, Myra B. Cohen, and Katherine M. Woolf.
"Combinatorial interaction regression testing: A study of test case
generation and prioritization." Software Maintenance, 2007. ICSM
2007. IEEE International Conference on. IEEE, 2007.

[36]. S. Dalal and C. L. Mallows, "Factor-Covering Designs for Testing
Software," Technometrics, vol. 50, no. 3, pp. 234-243, 1998.

[37]. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, "Effect
of Test Set Size and Block Coverage on Fault Detection
Effectiveness," in Proceedings of the Fifth IEEE International
Symposium on Software Reliability Engineering. Monterey, CA,
pp. 230-238., 1994.

[38]. K. Burroughs, A. Jain, and R. L. Erickson, "Improved Quality of
Protocol Testing Through Techniques of Experimental Design," in
Proc. Supercomm./IEEE International Conference on
Communications, pp. 745-752, 1994.

[39]. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, "The
AETG System: An Approach to Testing Based on Combinatorial
Design," IEEE Transactions on Software Engineering, vol. 23, no.
7, pp. 437-444, 1997.

[40]. D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, "The
Combinatorial Design Approach to Automatic Test Generation,"
IEEE Software, vol. 13, no. 5, pp. 83-88, 1996.

[41]. Yin, Huifang, Zemen Lebne-Dengel, and Yashwant K. Malaiya.
"Automatic test generation using checkpoint encoding and
antirandom testing." In Proc. The Eighth International Symposium
On Software Reliability Engineering, pp. 84-95. IEEE, 1997.

[42]. Zhang, Zhiqiang, and Jian Zhang. "Characterizing failure-causing
parameter interactions by adaptive testing." In Proceedings of the
2011 International Symposium on Software Testing and Analysis,
pp. 331-341. ACM, 2011.

[43]. J. Czerwonka. Pairwise Testing in Real World. In Proc. 24th
Pacific Northwest Software Quality Conference (PNSQC’06),
pages 419–430, 2006.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://ant.apache.org/manual/
http://sourceforge.net/projects/gcov-eclipse/
http://oxygenxml.com/xml_developer.html

