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Abstract— The input space of a system must be modeled before 

combinatorial testing can be applied to this system.  The 

effectiveness of combinatorial testing to a large extent depends 

on the quality of the input space model. In this paper we 

introduce an input space modeling methodology for 

combinatorial testing. The main idea is to consider the process 

of input space modeling as two steps, namely, input structure 

modeling and input parameter modeling. The first step tries to 

capture the structural relationship among different 

components in the input space. The second step tries to identify 

parameters, values, relations and constraints for individual 

components. We also suggest strategies about how to perform 

unit and integration testing based on the input space structure. 

We applied the proposed methodology to two real-life 

programs. We report our experience and results that 

demonstrate the effectiveness of the proposed methodology.  
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I. INTRODUCTION 

 
Software failures are often the result of a faulty 

interaction between input parameters. Empirical studies 
show that most faults are caused by interactions among six 
or fewer parameters [8]. Combinatorial testing is a testing 
strategy that applies the theory of combinatorial design to 
test software systems. Given a system under test with k 
parameters, t-way combinatorial testing requires all the 
value combinations of t (out of k) parameters be covered at 
least once, where t is usually a small integer. If test 
parameters are modeled properly, almost all faults caused by 
interactions involving no more than t parameters will be 
exposed. Combinatorial testing can significantly reduce the 
cost of software testing while increasing its effectiveness 
[30,31].  

The input space of a system must be modeled before 
combinatorial testing can be applied to this system.  The 
effectiveness of combinatorial testing to a large extent 
depends on the quality of the input space model. In 
particular, if a failure can only be triggered when a 
parameter takes a specific value, and if this parameter or 
value is not modeled, this failure will not be detected by a 
combinatorial test set.   

A number of studies have been reported on input space 
modeling for general software testing, i.e., not specific to 

combinatorial testing. Grochtmann and Grimm [3] 
mentioned that finding parameters and values is a creative 
process that can never be fully automated. The Category 
Partition method partitions the input domain into categories 
and choices [4]. The Classification Tree method partitions 
the input domain into classifications and classes, and 
represents the input domain in a tree structure [3]. Note that 
classifications are like categories and classes are like the 
choices.  

Only a few studies have been reported on modeling for 
combinatorial testing. A workflow of eight steps is proposed 
for the combinatorial modeling process [1]. Segall et al. 
suggest several patterns i.e., optional values, multiplicity 
that commonly appear in input models for combinatorial 
testing [27, 28]. 

In this paper we propose an input space modeling strategy 
for combinatorial testing. We consider the process of input 
space modeling as two steps: input structure modeling 
(ISM) and input parameter modeling (IPM).  The first step, 
i.e., ISM, tries to capture the structural relationship among 
the different components in the input space. The second 
step, i.e., IPM, tries to identify parameters, values, relations 
and constraints for individual components. We also suggest 
strategies about how to perform unit and integration testing 
based on the input space structure.  

In this paper, we focus on the first step. Existing methods 
such as category partitioning can be used for the second 
step. We consider two types of structures, i.e., flat and 
graph. The flat structure has no compositional hierarchy, 
where components are equal peers in terms of composition 
relation. For example, a flat input structure can be used to 
model the command-line options of a program. The graph 
structure represents the composition relation between 
different components in a graph, where one component may 
be composed of several other components. For example, a 
graph structure can be used to model elements in an XML 
file.  

We also report two experiments of applying the proposed 
methodology to two real-life programs, including Apache 

Ant [17], and Space from SIR website [19]. The two 
experiments are designed to serve two purposes. First, they 
are designed to validate the proposed methodology in a 
practical setting. Second, they are intended to evaluate the 
effectiveness of combinatorial testing. There has been a lack 
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of empirical studies and experience reports on applying 
combinatorial testing to the real-life programs [9].  

In our experiments, we compare combinatorial testing 
based on the proposed methodology to two other random 
approaches. The first random approach, referred to as pure 
random, spends minimum effort on modeling and generates 
random tests mainly based on the syntactic structure of the 
input space. The second random approach, referred to as 
modeled-random, generates random tests from the same 
model created by the proposed methodology. We measure 
the effectiveness of these approaches in terms of code 
coverage and number of faults they can detect. The results 
show that our approach is more effective than the modeled-
random approach, which is significantly more effective than 
the pure-random approach. For example, the statement 
coverage in Apache Ant with 2121 test cases was 79% using 
our approach as compared to modeled-random and pure-
random approaches with 65% and 44% respectively.  

The remainder of this paper is organized as follows. In 
Section II we discuss existing work on input space 
modeling. In section III, we describe our methodology for 
input space modeling. Section IV reports experiments that 
demonstrate the effectiveness of the methodology. Section 
VI provides concluding and future works. 

 

II. RELATED WORK 
Several input space modeling approaches, e.g., Category 

Partitioning [4], Classification Tree [3], and Domain Testing 
[5] have been reported for general software testing. The 
general idea is to divide the possible values of a parameter 
into groups that result in a similar behavior from the test 
subject.  

Chen et al. [2] presented a list of common mistakes in 
identification of the category (parameter) and choices 
(values) from specification. The missing categories, 
problematic categories, and problematic choices are the 
main mistakes. They introduced a check list of 6 steps for 
detecting these mistakes. 

Grindal and Offutt suggested an input parameter 
modeling method that is specifically designed for 
combinatorial testing [1]. The focuses of this study was 
mainly on work flow of the modeling process.   

Segall et al. [27, 28] and Lott et al. [26] studied some 
patterns that commonly occur in combinatorial test models. 
Common patterns include optional values, multiplicity, and 
auxiliary aggregates or commonality. The concept of 
reusing commonality or auxiliary aggregates [26] is 
different from our approach as discussed later in section III-
C. 

The notion of sub-attribute introduced in [10] allows one 
factor to be composed of several other factors. This is 
similar to our graph structure. However, the approach in [10] 
splits the composed factor into simple factors during test 
generation. This effectively converts the graph structure into 
a flat structure, which is fundamentally different from our 
approach.    

To complement mixed-strength test generation, a user is 
allowed to create a hierarchy of test parameters [43]. This is 
similar to our graph structure without loop. However, the 
hierarchy in [43] can have two levels only while our 
approach does not have this restriction. Moreover our 
approach deals with loops in a graph structure. 

The above works are complementary to our work. None 
of the above addresses the problem of input structure 
modeling. 

A number of empirical studies have been reported on 
combinatorial testing. In [8], Kuhn et al. reported a study of 
several fault databases and found that all the faults in these 
databases are caused by no more than 6 factors. Schroeder et 
al. [23] compared t-way testing to random testing in a 
controlled study. They used two software applications used 
in their laboratory as subject programs and seeded faults by 
themselves. Qu et al. [35] applied combinatorial testing to 
two programs in the SIR repository, i.e., flex and make. 
Kuhn et al. [21] applied t-way testing to a grid network 
simulator for deadlock detection and compared the results to 
random testing. These studies are complementary to our 
work in that they all provide evidence and insights on the 
effectiveness of combinatorial testing in practice. However, 
none of these studies reported the details of the modeling 
process.  

 

III. AN INPUT SAPCE MODELING METHODOLOGY 
For a large system that has too many features, we first use 

the divide-and-conquer strategy to divide the system into 
smaller systems. There are two general strategies. One is to 
divide the system vertically, e.g., based on features. That is, 
we could apply combinatorial testing to one feature or a 
group of related features at a time. The other strategy is to 
divide the entire system into several subsystems, where each 
subsystem may be involved in multiple features.  

Next, we model the input space of each system. This 
modeling process consists of two major steps, Input 
Structure Modeling (ISM) and Input Parameter Modeling 
(IPM). ISM tries to capture the structural relationship among 
the different components in the input space. We consider two 
types of structures, i.e., flat and graph. The flat structure has 
no hierarchy, where components are equal peers. For 
example, a flat input structure can be used to model the 
command-line options of a program. The graph structure 
represents the composition relation between different 
components in a graph, where one component may be 
composed of several other components. For example, a 
graph structure can be used to model elements in an XML 
file. In this study, we focus on the graph structure. 

In [10], the graph structure is referred to as sub-attributes 
and it was suggested to either consider the parent node as a 
compound parameter or split the parent node into simple 
parameters. In their experiments they used the split approach 
because it was believed that this approach would generate a 
less number of test cases. The split approach effectively 
converts the graph structure into a flat structure, which 
creates more parameters and may also introduce many 



invalid combinations. The split approach may also introduce 
redundant factors if one child has more than one parent. 

IPM tries to identify parameters, values, relations and 
constraints for individual components. Existing methods on 
IPM can be applied. In particular, it is often necessary to 
identify abstract parameter and values. One common 
approach is to identify factors that could affect the behavior 
of the object being modeled. Each of these factors can 
become an abstract parameter. Then, existing methods such 
as category partitioning and classification tree can be used to 
identify the abstract values of each abstract parameter.  

After we have the input parameter model for each module, 
we generate test cases from the model using combinatorial 
testing tools such as ACTS. These test cases are abstract test 
cases because the parameters and values in the model are 
abstract. Thus, it is necessary to derive concrete test cases 
from these abstract test cases before the actual testing can be 
performed. Note that an abstract test case typically represents 
a set of concrete test cases, from which one representative is 
typically selected to perform the actual testing.  

 
A. Input Structure Modeling 

 
In this section, we focus on the graph structure. We 

consider two types of graph structure, depending on whether 
there is a loop in the graph structure.  

 
Fig.1: (a) part of a build XML file used by Apache Ant. (without loop) 

 

<project name=”helloworld” basedir=”.”> 
     <target name=”compile”> 
            <mkdir dir=”classes”/> 
            <fileset file=”main.java”/> 
            <javac srcdir=”src” destdir=”classes”/> 
    </target> 
     <target name=”jar”> 
            <mkdir dir=”jar”/> 
            <jar destfile=”jar/HelloWorld.jar”> 
                      <fileset dir=”classes”/> 
            </jar> 
    </target> 
</project> 

  
 
i. Graph structure without loop 

As an example, consider the build XML file used by 
Apache Ant, which is shown below. A build XML file 
includes one project element and at least one target element. 

A target element includes one or more task elements. Each 
element has some attributes. 

Fig.1 (a) shows part of a build XML file used by Apache 
Ant. The file contains the ‘helloworld’ project which has two 
targets. The first target ‘compile’ has two task elements, 
‘mkdir’ and ‘javac’, and one ‘fileset’ element. The second 
target ‘jar’ has two task elements, ‘mkdir’ and ‘jar’. The task 
element ‘jar’ has a nested ‘fileset’ element.  

Fig.1 (b) shows the model of the example build file in 
Fig.1 (a). We borrow some UML notations to depict the 
graph structure. These UML notations include class, attribute, 
multiplicity, constraint and composition relation notations.  

The multiplicity notation shows that a project element has 
at least one target element. The composition relationship 
shows that the target and the task both use the fileset element. 
This suggests that we can model the fileset element once and 
then reuse it for both task and target elements. Note that the 
input structure is modeled as a graph even though the 
structure of the xml input file is a tree structure. 

In the following, we give some guidelines on how to 
perform unit testing and integration testing based on a graph 
structure. 

Fig.2 (a) shows an example of a graph structure. Nodes A, 
B, and C are the parameters of the system and a1, a2, and a3 
are the attributes of the node A and so on. 
 Unit testing: Unit testing can be performed to test 

different combinations of attributes for individual nodes. 
In this case, attributes for the other required nodes will 
be given a default value. If an attribute has no default 
value, we will either exclude this attribute or will pick a 
value that we consider may be used most often. Fig.2 (b) 
shows an example of how to perform unit testing for the 
structure shown in Fig.2 (a). 

 Integration testing: Integration testing can be performed 
after unit testing of each node. The child node will be 
used as a composed parameter of the parent node.  

 
 Fig.2 (c) and Fig.2 (d) show two coverage options for the 
integration strategy. In both examples, the node C is the first 
node to test. It has two binary attributes c1 and c2 as its 
parameters. The 2-way test set for node C has four tests. The 
second node to test is node B. Node B has three attributes 
with two values (binary attributes) and one nested element C. 
When we test node B, node C is also considered to be a new 
parameter of B, whose domain is the two-way test set 
derived earlier for unit testing of node C. 

We have two coverage options for parameter C depending 
on our domain knowledge. If there is no relationship 
between the attributes of the two nodes (B and C), then we 
do one-way coverage between the parameter C and the 
attributes of node B as shown in Fig.2 (c). The ACTS tool 
has a mixed relation feature that we can use to generate the 
mixed coverage between parameters. Otherwise, we perform 
t-way testing for all the parameters of node B, i.e., including 
its attributes and the new parameter added for node C as 
shown in Fig.2 (d).  

Project

Target

1
1..*

1 *

TaskFileset

1

*

1*

(b) The model of the example build file 



Fig.2: (a) Example of model based testing 

 
 

B  A  C 
b1 b2 b3  a1 a2 a3  c1 c2 
1 1 0  1 0 1  0 0 
1 0 1  1 1 0  0 1 
0 1 1  0 0 0  1 0 
0 0 0  0 1 1  1 1 

(b) Unit testing 
 

C  B  A 
c1 c2  b1 b2 b3 C  a1 a2 a3 B 
0 0  1 1 0 1  1 0 1 1 
0 1  1 0 1 2  1 1 0 2 
1 0  0 1 1 3  0 0 0 3 
1 1  0 0 0 4  0 1 1 4 

(c) Integration testing (mixed-coverage) 
 

C  B  A 
c1 c2  b1 b2 b3 C  a1 a2 a3 B 
0 0  0 1 1 1  0 1 1 1 
0 1  1 0 0 1  1 0 0 1 
1 0  0 0 1 2  0 0 1 2 
1 1  1 1 0 2  1 1 0 2 
   0 0 0 3  0 0 0 3 
   1 1 1 3  1 1 1 3 
   0 0 0 4  0 0 0 4 
   1 1 1 4  1 1 1 4 
        0 0 0 5 
        ... … … .. 

(d) Integration testing (t-way coverage) 
 
 

ii. Graph structure with loop 
Some graph structures may contain a loop. Fig.3 shows an 

example where there exists a loop involving nodes 
‘classpath’, ‘fileset’, ‘depend’, and ‘mapper’. (The edges are 
directed in terms of the compositional relation.) 

In the modeling process:  
 (1) Break the loop by removing the back edge. This is 

necessary to determine the order in which the nodes are 
going to be modeled. The back edge points from a node to 
another node that has already been visited during a DFS 
traverse.  

(2) Model the graph without the loop (as we discussed in 
previous section).  

(3) Place the back edge into the graph and add the 
destination node of the back edge into the model of the 
source node of the back edge.  

 
Fig.3: (a) Part of build.xml file used by Apache Ant (with a loop) 

 <fileset dir="src" includes="*.java"> 
      <depend targetdir="/lib"> 
 <mapper classname="mapper.classname"> 
      <classpath> 
    <fileset dir="lib"> 
           <include name="*.class"/> 
    </fileset> 
      </classpath> 
 <mapper> 
       </depend> 
</fileset> 

(b) The model of the example build file 
Task

FileSet

1
1..*

Depend

Mapper

1 *

Classpath

1 *

1

*

1*

Include

1*

 
 
In the above example, we break the loop by removing the 

back edge going from node ‘classpath’ to ‘filset’. After we 
modeled the graph without loop then we add the back edge 
and remodel the ‘classpath’ node. The ‘classpath’ node using 
the ‘fileset’ node as its nested element and we have already 
modeled the ‘fileset’ node which we can add to the model of 
‘classpath’. 

Another important task is to generate the concrete test 
cases using the model. In order to do so we have to unfold 
the loop based on our coverage criteria e.g., edge pair 
coverage, prime path coverage, simple round trip coverage. 
For example if we want to satisfy the simple round trip 
coverage, we unfold the loop just once. 

 
B. Input Parameter Modeling  

 
After we model the input structure of the system and in 

order to perform testing, we need to model the input 
parameter of each node. The IPM method identifies the 
abstract model for the parameters, values, constraints, and 
relations from the specification. One common approach is to 
identify factors that could affect the behavior of the object 
being modeled. Each of these factors can become an abstract 
parameter. The existing methods such as category 
partitioning and classification tree can be used to identify the  

 



 
Fig.4: <jar> task 2-way abstract test cases 

abstract values of each parameter. The constraints are 
introduced to avoid invalid combinations. The relations are 
introduced to group parameters that are related to each other 
so that the different groups can be covered at different 
strengths. 
 
C. Derive concrete test cases 

 
We use ACTS to generate t-way abstract test cases for 

each model. These test cases are abstract test cases because 
the parameters and values in the model are abstract. It is 
necessary to derive concrete test cases from these abstract 
test cases before testing is actually performed. Note that an 
abstract test case typically represents a set of concrete test 
cases, from which one representative is typically selected to 
perform the actual testing.  

 
Fig.5: Duplicate the nodes 

 
Since the graph structure represents the composition 

relation between different components, where one 
component may be composed of several other components, 
we often need to duplicate nodes that have more than one 
parent. Fig.5 shows an example of such duplication. The 
node ‘fileset’ has two parents meaning that ‘target’ and ‘task’ 
both will use the ‘fileset’. In order to generate the test, we 
need to duplicate the node ‘fileset’ to two nodes ‘fileset1’ 
and ‘fileset2’ such that each only has one parent. This does 

not mean that we model the ‘fileset’ node two times. Instead 
we reuse the same abstract model for the ‘fileset’ node to 
create two concrete values, which may be the same or 
different, to be used for the ‘task’ and ‘target’ nodes. The 
concept of auxiliary aggregate is to factor out the common 
parameters with identical concrete values in the model [26]. 
In contrast, we reuse the abstract model and the concrete 
values can be different. 

We implemented a test case generator specific to each 
subject to automatically derive concrete values from the 
abstract test cases. Fig.4 and Fig.6 show the 2-way abstract 
test set for the ‘fileset’ and ‘jar’ tasks respectively. Each 
column represents a test factor (or abstract parameter) of the 
task and each row represents an abstract test case. The test 
case generator will select one representative for each test 
case and create a concrete test case.  

A sample concrete test for the test case number 14 in the 
Fig.4 is: 

 
<jar destfile="test14.jar" compress="true" 
fileonly="false" update="false" duplicate="preseve" 
keepcompression="true" > 

    <fileset dir="/test" excludes=”*.jar" 
include=”*.class”/> 

    <fileset dir="/test" defaultexcludes=”yes” 
include=”*.java” /> 
</jar> 

 
In test case 14, the abstract value of the parameter 

nestedfileset is ‘two or more’. Therefore, in the concrete test 
case we include two nested <fileset> elements. The <fileset> 
elements are further selected from the <fileset> abstract test 
cases shown in Fig.6. 

 

 
Fig.6:  <fileset> 2-way abstract test cases 

 
 

 



In addition, the test environment should contain a 
directory name ‘test’ and files with different extensions such 
as ‘.java’, ‘.class’ and ‘.jar’, in order for us to test the 
functionality of the above elements. Therefore, our test 
generator creates files with predefined extensions inside the 
‘test’ directory. 

IV. EXPERIMENTS 
We conducted two experiments in which the proposed 

methodology was applied to two real-life programs: Apache 
Ant and Space. The two experiments are designed to serve 
two purposes. First, they are designed to validate the 
proposed methodology in a practical setting. Second, they 
are intended to evaluate the effectiveness of combinatorial 
testing.  

In our experiments, we compared combinatorial testing 
based on the proposed methodology to two other random 
approaches. The first random approach, referred to as pure-
random, spends minimum effort on modeling and generates 
random tests mainly based on the syntactic structure of the 
input space. The second random approach, referred to as 
modeled-random, generates random tests from the same 
model created by the proposed methodology.  

We also considered the possibility of comparing our 
approach to an approach where we could create a model 
purely on the syntactic structure of the input space and then 
generate a t-way test set from this syntactical model. This 
approach requires minimal modeling effort, since no 
semantic information needs to be considered in the modeling 
process. The two approaches differ only in the modeling 
process. Thus this comparison would be good to show the 
difference caused by different modeling approaches. 
However, we found it was difficult to implement this 
approach. For example, we tried to apply this approach to the 
Apache Ant program and identified about 300 parameters. In 
addition, we had to introduce a large number of constraints 
to reflect the hierarchical structure. Thus we did not perform 
this comparison in our experiments. 

 
A. Subject programs 
 

Table 1: Statistics about the two subject programs 
Subject 
programs 

LOC # of classes/ 
procedures 

# of Faults in 
each faulty 
version 

Type 
of 
faults 

Ant 1.6 beta 80500 627 6 Seeded 
Space 9127 136 35 Real 

 
Table 1 shows some statistics about the two subject 

programs. The two programs are selected because of several  

desired attributes, including their complex input space, the 
existence of a clean version and multiple faulty versions, a 
relatively large number of lines of code, and the availability 
of their specifications. 

 
B. Input model 

 
Table 2 shows some information about the input models built 
for each program. The second column shows the number of 
models created for each program. The 3rd column shows the 
total number of parameters and their domain size in an 
exponential format, i.e.,  (d1

p1 
d2

p2 
d3

p3
) , where di

pi 
indicates 

that there are pi number of parameters with domain size of 
di. Note that the total number of parameters equals to 
p1+p2+p3.... The 5th column represents the total number of 
constraints and the number of parameters involved in each 
constraint also in an exponential format, i.e., (p1

c1 
p2

c2 
p3

c3
) , 

where pi
ci 

indicates that there are ci constraints with pi 
parameters. Note that the total number of constraints is 
equal to c1+c2+c3+…. The 7th column shows the total 
number of relations and the number of parameters involved 
in each relation also in an exponential format, i.e., (p1

r1 
p2

r2 

p3
r3

) , where pi
ri 

indicates that there are ri number of relations 
with pi number of parameters. The total number of relations 
is equal to r1+r2+r3+… .  

For example, Space has 7 models with a total number of 
78 parameters. Five parameters have the domain size of 2, 
21 parameters have the domain size of 3 and so on. 

 
C. Test generation 

 
We used ACTS (version 2.7) [12] to generate t-way 

abstract test cases. We started from 2-way testing and then 
we extended the generated test cases to perform 3-way 
testing. As the number of test cases increases rapidly as the 
test strength increases, therefore we did not go beyond 3-way 
testing. 

We generated the modeled-random abstract test cases by 
using the RANDBETWEEN(m,n) function of Microsoft 
Excel. The integer numbers (m and n) indicate the first and 
the last index of the parameter values.  

For example, consider a model of three parameters with 
domain size 4, RANDBETWEEN(1,4) generates a random 
integer between 1 and 4 for each parameter in a test case 
(Table 3). We used an IF function to check whether a test 
case satisfies all the constraints. In this study, we only used 
valid test cases, i.e., invalid tests were discarded. 

 
 

Table 2: Input Model 

S
u

b
je

c
t 

p
r
o
g

ra
m

s 

N
u

m
b

er
 o

f 

m
o

d
el

s 

T
o

ta
l 

#
 o

f 

p
a

ra
m

e
te

r
 

a
n

d
 t

h
e
ir

 

d
o

m
a

in
 s

iz
e 

T
o

ta
l 

#
 o

f 

p
a

ra
m

e
te

r
s 

T
o

ta
l 

#
 o

f 

c
o

n
st

ra
in

t 
a

n
d

 

th
e
 n

u
m

b
er

 o
f 

p
a

ra
m

e
te

r
 

in
v
o

lv
e 

T
o

ta
l 

#
 o

f 

c
o

n
st

ra
in

ts
 

T
o

ta
l 

#
 o

f 

r
e
la

ti
o

n
s 

a
n

d
 

th
e
 n

u
m

b
er

 o
f 

p
a

ra
m

e
te

r
 

in
v
o

lv
e 

T
o

ta
l 

#
 o

f 

r
e
la

ti
o

n
s 

ANT 53 296321445 56627192 172 2113184135575 52 293341 13 
SPACE 7 25321446 51627182 78 221394854637182101147182 58 214344261 21 



 
We used the sample xml generator Oxygen [25], to 

generate random XML files for the pure-random approach. 
Oxygen is an XML editor that creates XML documents 
based on a schema or a DTD file. It accepts a DTD file as 
input and converts it to a XML schema file (i.e., a XSD file). 
It generates a user-defined number of random xml files from 
the schema. We set the number of repetitions and recursive 
levels to 2. 

 
Table 3: Example of random abstract test case generation 

Parameters P1 P2 P3 valid/invalid 

Formula 

R
A

N
D

 
BE

TW
EE

N
(

1,
4)

 
R

A
N

D
 

BE
TW

EE
N

(
1,

4)
 

R
A

N
D

 
BE

TW
EE

N
(

1,
4)

 =IF( 
AND(A2=B2,B2=C2), 

"invalid", "valid") 

Test1 1 4 1 valid 
Test 2 3 3 3 invalid 
  
The space program takes as input a file in the ADL 

format. We wrote a program to convert the file from the 
ADL format to the XML format. Then, we generated random 
XML files using Oxygen, which are converted back to the 
ADL format. 

The Apache Ant program takes as input a XML file. The 
DTD for this XML file is available. However, we did not 
model all the tasks1 of the Apache Ant. Thus tasks that are 
not modeled in our approach were removed from the DTD 
file. Table 4 shows the number of test cases generated for 
each subject program. 

 
Table 4: Number of test cases 

Testing method 
2-way 3-way 

Subject program 
Ant 836 2121 

Space 120 315 
 

D. Metrics 
 
Two metrics are used to measure the effectiveness of each 
approach. The first metric is statement coverage. We use 
clover [7] to collect code coverage information for Apache 
Ant, which is written in java, and gcov [18] for Space, which 
is written in C.  
 

 
Fig.7: Fault detection procedure 

 

                                                 
1  We only modeled common tasks of Apache Ant such as archive, compile, documentation, 
exestuation, file tasks and logging tasks 

The second metric is the number of faults detected by each 
approach. Each of the two subject programs has multiple 
versions available in the SIR repository: one clean version 
and several faulty versions. Each faulty version contains a 
single fault (Fig.7). We count the number of faulty version 
that can be detected by each approach.  

 
E. Results and discussion 
 

For the pure-random approach, we first tried to generate 
random XML files using Oxygen solely based on the DTD 
file, i.e., without supplying any additional information. This 
approach only achieved 22% statement coverage on average. 
Since this approach is so ineffective, we do not consider it in 
the rest of our experiments.  

To make the pure-random approach more meaningful, we 
provided additional information to the random XML files 
generation process. There are two types of additional 
information: (1) Information about the environment such as 
directory name, file name, class path, etc.; and (2) 
Constraints that may exist between different elements, e.g. 
uniqueness constraints, cross-reference constraints, etc. 

For example the following is part of the original Apache 
Ant DTD file: 

 

<!ELEMENT PROJECT (TARGET)+> 
<!ATTLIST PROJECT 
          Name    CDATA #IMPLIED 

                 Basedir CDATA #REQUIRED > 
  
The PROJECT element has two attributes Name and 

Basedir listed in ATTLIST. The CDATA element indicates 
that the value is a character data. The REQUIRED or 
IMPLIED element indicates that the value is required or not.  

The Name attribute represents the name of the project, 
which is an optional value. The Basedir attribute represents 
the base directory of the project. The Basedir attribute is 
required and cannot be a random string. This is because the 
Apache Ant program terminates if the base directory does not 
exist. Therefore, we modified the DTD file and fixed the 
value of Basedir to current directory. 

The pure-random approach with such semantic 
information added to the schema achieved 53% statement 
coverage on average (Fig.8). While this is a significant 
improvement over the pure-random approach without any 
additional information, there is still a lot of room for 
improvement. 

The modeled-random approach used the same model as 
our combinatorial testing approach, but instead of generating 
t-way abstract test cases using ACTS, it used MS Excel to 
generate the random abstract test cases. 

The results in Fig.8 show that our approach achieved 
higher code coverage than the modeled-random approach, 
which further achieved higher code coverage than the pure-
random approach. The results in Fig.8 also show that 3-way 
testing achieved higher code coverage than 2-way testing.  

We also conducted an investigation to find out how many 
t-way combinations are covered with the test set generated 
by the modeled-random approach. The results show that with 
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the same number of test cases as t-way testing, modeled-
random covers more than 90% of (t-1)-way combinations 
and 81% to 87% of t-way combinations. This explains in part 
why the modeled-random approach achieved code coverage 
competitive to our combinatorial testing approach. 

 
Fig.8: Code coverage results 

The number of test cases for pure-random1 and modeled-random1 is 
the same as 2-way testing, and the number of test cases for pure-

random2 and modeled-random2 is the same as 3-way testing. 
 
After we executed the test cases, we inspected the faults to 

see how many versions we killed by looking at the source 
code. (We did not look at the source code during the 
modeling process.) Some of the faults are only triggered by 
invalid inputs and since we focused on interaction testing, we 
exclude those faults that can only be triggered by single 
invalid values. Therefore, we have 6 faulty versions for 
Apache Ant and 32 faulty versions for the Space. 

 
Table 5: Fault detection results 

Subject Programs Ant Space 
 killed not killed killed not killed 
pure-random1 1 5 12 20 
pure-random2 1 5 15 17 
modeled-random1 4 2 23 9 
modeled-random2 4 2 26 6 
2-way 4 2 28 4 
3-way 5 1 30 2 
 
Table 5 shows the fault detection results of the different 

approaches. These results are largely consistent with the 
code coverage results. That is, our approach detected more 
faults than modeled-random testing which further detected 
more faults than pure-random testing.  

The modeled-random testing for Space detected a new 
fault with higher interaction strength. The notion of fault  

strength or degree of fault is introduced to show the number 
of parameters that are involved in causing the fault. The 
detail of this fault is explained below. 

Table 6 shows a part of the fault detection table for Space. 
This table only shows faults that were not detected by at least 
one of our testing approaches. In other words, faults that 
were detected by all the three approaches are not shown. 3-
way testing was able to detect 93.7% of the faults. The faulty 
versions 12 and 18 (v12 and v18) were only killed by 3-way 
testing. None of our tests was able to detect v27. Version v33 
was only detected by modeled-random testing (with the same 
number of tests as 2-way testing). 

To find out why some faults were not detected, we 
conducted an investigation to determine the strength of the 
faults mentioned above. Our investigation suggests that the 
strengths of fault for v12, v18, v27, and v33, are likely to be 
4, 5, 7, and 5, respectively. This explains why they were not 
detected by some approaches. Note that a t-way test set also 
contains higher strength combinations. This is why v12 and 
v18 were detected by 3-way testing, even though they have a 
strength higher than 3. Similarly, the v33 was detected by 
modeled-random testing. 

It is important to note that it can be difficult to determine 
the strength of fault for a large and/or complex program. In 
the following, we use v33 as an example to show how we 
determined the strength of a fault. The test case that killed 
the fault v33 includes 10 parameters. (Table 7) 

In order to identify the suspicious parameters, we 
generated 20 more test cases by changing one parameter at a 
time and fixing the others. 8 out of 20 test cases were able to 
kill the version. By comparing the parameter values of these 
test cases, we were able to detect five suspicious parameters 
that could cause the fault. 

To determine the strength of the fault, we generated 486 
exhaustive test cases by fixing the value of the suspicious 
parameters. We randomly executed 10 out of 846, which 
they all failed. Therefore, we believe the strength of this fault 
is likely to be 5. [42] 

We performed a similar investigation for v12 and v18 
which both were killed only by 3-way testing. 

In addition, we performed an investigation for v27. This 
version was not killed by any of our tests. The code coverage 
data showed that 14 out of 315 test cases executed the faulty 
statement. We traced the source code while executing the 
identified test cases. We applied the same method as 
described above. 

Although a 3-way test set guarantees to kill the faulty 
version when the fault strength does not go over 3, but it is 
possible that a 3-way test set kills a version with fault 
strength greater than 3. Hence 3-way testing was able to kill 
v12 and v18.  

Table 6: Part of the fault detection table for Space (killed=1, not killed=0) 
Version # v7 v8 v12 v13 v16 v18 v20 v21 v22 v27 v29 v31 v33 v35 v36 v37 

pure-random1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
pure-random2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 

modeled-random1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 
modeled-random2 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 

2-way 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 
3-way 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 

41% 

61% 

44% 

68% 
60% 

71% 
65% 

74% 
68% 

76% 
79% 81% 

ANT SPACE

Code Coverage 

pure-random1 pure-random2 modeled-random1

modeled-random2 2-way 3-way



Table 7: Test case parameters of v33 

Test Factors Test Values 

grid 

square 
triang 
rectang 
hex 

geometry rect 
circle 

geop >0 
<0 
=0 

geoQ >0 
<0 
=0 

polarization NA 
linepol 
circlpol 

add node 
block 
poly 
hex 

THETA NA 
>0 
<0 
=0 

PHI NA 
>0 
<0 
=0 

PSI NA 
>0 
<0 
=0 

phase NA 
uni 
secor 
rotate 
point 
pqpha 

 

V. THREATS TO VALIDITY  
The main threat to external validity is that the two subject 

programs used in our experiments may not be representatives 
of true practice. We plan to conduct more experiments on 
real-life programs in the future. 

Threats to internal validity are factors that may be 
responsible for the experimental results without our 
knowledge. We have tried to automate the experimental 
procedure as much as possible, in an effort to remove human 
errors. Furthermore, since our experiments use open source 
programs, the validity of our results would be in jeopardy if 
knowledge of the source code were used to identify these 
parameters and values in our experiments. To alleviate this 
potential threat, we only used the source code information to 
inspect the faults after our testing process is completed. 

 

VI. CONCLUSION AND FUTURE WORK 
In this paper we presented an input space modeling 

methodology for combinatorial testing. Input space modeling 
is problem zero of combinatorial testing, and it determines to 
a large extent the effectiveness of combinatorial testing. The 
key idea of our methodology is to consider the modeling 
process as two steps, input structure modeling and input 
parameter modeling. We mainly considered the graph 
structure, which is further divided into graphs without loop 
and graphs with loop. We also suggest some guidelines to 

perform unit and integration testing based on the graph 
structure. We believe that input structure modeling is 
essential to manage complex input spaces such as those 
represented by XML files.  

We also reported two experiments of applying our 
methodology to two real-life programs. The results showed 
that combinatorial testing achieved higher code coverage and 
detected more faults than modeled-random testing. Both of 
these two approaches used the proposed methodology to 
model the input space and generated the same number of 
tests cases from the same model. In addition, the results 
show that both combinatorial testing and modeled-random 
testing are significantly more effective, in terms of code 
coverage and fault detection, than pure-random testing. This 
suggests that input space modeling is an essential step in the 
testing process. 

We plan to conduct more studies for other real-life 
programs. The goal is to further validate the proposed 
methodology and develop a set of guidelines that can be used 
by practitioners to apply combinatorial testing in practice. 
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