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Magnetic structure of the conductive triangular-lattice antiferromagnet PdCrO2
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We performed neutron single-crystal and synchrotron x-ray powder diffraction experiments in order to
investigate the magnetic and crystal structures of the conductive layered triangular-lattice antiferromagnet PdCrO2

with a putative spin chirality, which contributes to an unconventional anomalous Hall effect. We revealed that
the ground-state magnetic structure is a commensurate and nearly coplanar 120◦ spin structure. The 120◦ planes
in different Cr layers seem to tilt with one another, leading to a small noncoplanarity. Such a small but finite
noncoplanar stacking of the 120◦ planes gives rise to a finite scalar spin chirality, which may be responsible for
the unconventional nature of the Hall effect of PdCrO2.
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I. INTRODUCTION

Recently, there has been a rapid progress in the study of
novel magnetoelectric phenomena, such as magnetic multi-
ferroics and unconventional anomalous Hall effects (UAHE)
[1–4]. Common to all of these is that they involve a spin
current, i.e., magnetic structures with spin chiralities. In case
of UAHE, a topological quantum effect has been proposed as
a potential mechanism [1,2]: In a magnetic structure with the
scalar spin chirality χijk = Si · (Sj × Sk), the wave function
of a conduction electron gains a Berry phase, which plays a role
of a fictitious magnetic field and leads to appearance of the Hall
voltage even without the net magnetization. The magnitude of
the fictitious field is proportional to the solid angle formed
by the three noncoplanar spins [5–14]. This mechanism is in
analogy to the Aharonov-Bohm effect [15].

In search of UAHE attributable to the spin chirality,
geometrically frustrated magnets are particularly promising,
because they often exhibit noncoplanar spin configurations
with finite spin chiralities. Indeed, the UAHE has been ob-
served in materials with structures that are three-dimensional
analogs of the triangular lattice (TL) [5–9]. However, in
two-dimensional (2D) TL systems, which is the simplest
example of a geometrically frustrated spin system, the UAHE
has been observed only recently [16,17]. Naively, the UAHE
driven by the Berry-phase concept cannot be expected in
a coplanar 120◦ spin structure, which is often realized in
2D-TL antiferromagnets. This is because χijk is locally zero
for every triangle or, even if χijk is locally finite, the net
chirality vanishes because χijk of different triangles cancels
out [1,12]. However, χijk may remain finite, if the spin chirality
and magnetization are coupled with the help of the spin-orbit
interaction [12,18], or in noncoplanar spin structures with a
four-site magnetic unit cell [19–21], both of which change the
balance of the uniform χijk on each triangle. The fundamental

mechanism for the UAHE observed in the frustrated 2D-TL
systems is thus not well understood and is awaited to be
clarified.

The delafossite compound PdCrO2 is a rare example of a
2D-TL antiferromagnet that exhibits UAHE [16]. The metallic
conduction of this material is predominantly attributed to the
Pd 4d electron band [22–24], and the magnetic properties are
governed by the localized spins of Cr3+ ions (S = 3/2), which
order antiferromagnetically at TN = 37.5 K [25–27]. The spin
Hamiltonian of this system is approximately written as

H = −2J
∑

<i,j>

Si · Sj − 2J ′ ∑
<l,m>

Sl · Sm + D
∑

i

(
Sz

i

)2
,

(1)

where J (< 0) and J ′ are the nearest-neighbor intraplane and
interplane interactions, respectively, and D is the single ion
anisotropy. The anisotropy of the magnetic susceptibility χ ,
associated with a sharp drop in χc below TN, strongly suggests
an easy-axis anisotropy along the z axis, D < 0 [24,28].
Remarkably, this material exhibits UAHE below T ∗ � 20 K,
noticeably lower than TN [16]: The Hall resistivity ρxy exhibits
an unusual nonlinear field dependence. Apparently it deviates
from the conventional behavior that is a linear function of
both magnetic induction and magnetization [29], since the
magnetization of PdCrO2 is proportional to H down to 2 K
[16]. We expect that a noncoplanar spin structure with a finite
spin chirality probably plays a crucial role for the emergence
of the UAHE in this compound.

In this study, we have performed neutron scattering exper-
iments on a single crystalline sample of PdCrO2 to determine
the magnetic structure in zero magnetic field. We found that
it is a commensurate 120◦ spin structure, and that a small
change of the magnetic structure occurs around T ∗. The
magnetic structure analysis suggests alternative stacking of
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120◦ spin layers, which seems to be tilted with one another.
We thus identify a noncoplanar 120◦ spin structure as the
probable origin of the UAHE, because the scalar spin chirality
mechanism will work in this structure in the presence of a net
magnetization induced by an external magnetic field.

II. EXPERIMENT

Single crystals of PdCrO2 were grown by a NaCl flux
using PdCrO2 powder synthesized via a solid-state reaction
[30]. Synchrotron x-ray powder diffraction experiments were
performed on the BL02B2 beam line at SPring-8 from 300 K
to 11 K. We used a powder sample prepared by crushing
single crystals. The powder was packed into a glass tube
(φ = 0.1 mm) and mounted into a closed-cycle 4He-gas refrig-
erator. The wavelength of the incident beam was λ = 0.6 Å.
A homogeneous granularity of the sample was checked by
a homogeneous intensity distribution in the Debye-Scherrer
diffraction rings.

Neutron single-crystal diffraction experiments were per-
formed with the triple-axis spectrometers 4G and C11 installed
at the research reactor JRR-3M at Japan Atomic Energy
Agency. The neutron wavelength was fixed at either λ = 1.64
or 2.35 Å (4G), and at 4.07 Å (C11). Pyrolytic graphite
(PG) (002) reflections were used as both monochromator and
analyzer. Higher-order neutrons were removed by a PG filter or
a Be filter. We employed collimations 20’-20’-20’-20’ (4G) or
20’-20’-open (C11). The sample was mounted in a closed-
cycle 4He-gas refrigerator so that the horizontal scattering
plane of the spectrometer coincided with the hexagonal (h
h l) or (h k 0) zones of the R3̄m symmetry. A precise
determination of the crystal structure symmetry is described
later. Integrated intensities of many Bragg reflections were
measured with the four-circle diffractometer D10 at Institute
Laue-Langevin (ILL). Incident neutrons of wavelength λ =
2.36 Å monochromated by PG(002) were used. The sample
was mounted in a He flow cryostat. In order to perform a
detailed structural analysis, experiments were also carried out
at room temperature (RT) with the hot-neutron four-circle
diffractometer D9 at ILL. We used a neutron wavelength of
λ = 0.838 Å. In all the experiments, we used the same single
crystal that has the dimensions 1.5 × 3.0 × 0.2 mm3 with the
flat plane shape along the hexagonal ab plane.

III. RESULTS

A. Determination of the crystal structure

Since a precise crystal structure determination of PdCrO2

has not been reported, we have undertaken single-crystal
neutron and powder x-ray characterization. Figure 1 shows
powder x-ray diffraction patterns taken at 300 K and 11 K.
The diffraction patterns were reasonably fitted by parameters
of the delafossite structure with the space group R3̄m for
both temperatures. The R factors of the Rietveld refinement
[31] were obtained as Rwp = 4.95%, Re = 3.87%, Rp =
3.61%, RB = 4.94% for 300 K, and Rwp = 4.36%, Re =
3.20%, Rp = 3.27%, RB = 4.70% for 11 K, respectively. The
goodness-of-fit parameter, S = Rwp/Re, was S = 1.28 and
1.36 for 300 K and 11 K, respectively. Excellent refinement
was also confirmed by using neutron data at D9, which
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FIG. 1. (Color online) Synchrotron x-ray diffraction patterns of
PdCrO2 measured at T = 300 K and 11 K. Observed and refined data
are shown by crosses and solid curves, respectively. The difference
between the data and the model is plotted by the dashed curves
in the lower part. Vertical bars represent positions of the Bragg
reflections. Additional Cu peaks come from the sample holder used
in the experiments. The Rietveld refinement revealed that PdCrO2

retains to have the R3̄m crystal-structure symmetry down to 11 K.

achieved χ2 = 1.015 for 86 unique reflections. The resulting
structure parameters are listed in Tables I and II. These results
demonstrate that PdCrO2 remains in the R3̄m symmetry down
to low temperatures.

B. Neutron diffraction

Magnetic reflections of PdCrO2 were observed at Q =
( 1

3 , 1
3 ,l) and ( 2

3 , 2
3 ,l) with l = 0, 1

2 ,1, 3
2 ,2 . . ., being consistent

with the previous reports of powder neutron diffraction
[26,27]. We confirmed that those magnetic peaks appear

TABLE I. Structure parameters for PdCrO2 refined by Rietveld
analysis of the x-ray data and the neutron data from D9. The analysis
was performed assuming the space group R3̄m with atomic positions:
Pd 3a (0,0,0), Cr 3b (0,0,0.5), and O 6c (0,0,z). Uiso represents the
isotropic atomic displacement parameter.

x-ray (300 K) neutron (RT) x-ray (11 K)

Cell parameters and positions
a (Å) 2.9228(2) 2.9280(1) 2.9011(3)
c (Å) 18.093(1) 18.1217(9) 18.028(2)
z 0.1105(1) 0.11057(3) 0.1102(1)

Uiso (10−3Å2)
Pd 5.1(1) 5.8(3) 1.8(1)
Cr 4.4(1) 4.6(3) 2.3(1)
O 4.4(3) 5.3(3) 3.7(3)
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TABLE II. Anisotropic atomic displacement parameters Uij (in
units of 10−3Å2) of PdCrO2 at RT. The parameters were refined with
the neutron data from D9.

Atom U11 U22 U33 U12 U13 U23

Pd 6.2(3) 6.2(3) 4.9(3) 3.1(3) 0 0
Cr 4.1(3) 4.1(3) 5.5(3) 2.0(3) 0 0
O 5.2(3) 5.2(3) 5.4(2) 2.6(3) 0 0

at commensurate positions within the present experimental
accuracies of the 4G and C11 spectrometers. We did not find
any magnetic reflections at Q = (00l), (10l), (01l),(11l) with
l = 0, 1

2 ,1, 3
2 , . . .. Figure 2 shows the temperature dependence

of intensities of the magnetic reflections at ( 1
3 , 1

3 ,0) and
( 1

3 , 1
3 , 7

2 ). The magnetic peaks appear at temperatures below
TN and their intensities monotonically increase on cooling.
Two successive phase transitions, separated by ΔT = 0.4 K,
are observed in the specific heat data [32]. These transitions
are expected for a small finite D (<0) [33–35]. However, such
splitting of TN could not be detected in the neutron diffraction
experiment within the experimental accuracy of 1 K. This
small split of TN will have to be confirmed by diffraction
experiments in future. The intensity ratio between ( 1

3 , 1
3 ,0)

and ( 1
3 , 1

3 , 7
2 ) reflections is still slightly temperature dependent

below about 20–30 K (the inset of Fig. 2). This feature is also
confirmed by intensity ratios of magnetic reflections taken at
2 K and 30 K (Fig. 3). These results imply that a slight change
of magnetic structure occurs around T ∗ ∼ 20 K, which is in
accord with the appearance of UAHE below this temperature.

To analyze the magnetic and crystal structures, we mea-
sured integrated intensities of the Bragg reflections at 2 K and
30 K with the four-circle spectrometer D10. Observed and
calculated squares of the structure factor of nuclear reflections
are listed in Table I of the Supplemental Material [36]. For the
calculation, we assumed the delafossite structure and refined
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FIG. 2. (Color online) Temperature dependence of the intensity
I (l) of magnetic reflections at (1/3, 1/3, l) with l = 0 and 7

2 . The
inset shows the temperature dependence of the intensity ratio I (l =
0)/I (l = 7

2 ). The deviation from the constant value for its ratio below
TN suggests that a slight change in the spin configuration appears at
temperatures below 30 K.
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FIG. 3. (Color online) Intensity ratios of magnetic or nuclear
reflections taken at 30 and 2 K. The graph is plotted for the ratios vs
the distance between lattice planes, d . The ratio of nuclear reflections
(|FL,Obs|2(30K)/|FL,Obs|2(2K)) is constant, while that of magnetic
reflections (|FM,Obs|2(30K)/|FM,Obs|2(2K)) deviates from a constant
value. This result also suggests appearance of a small difference in
the magnetic structure between 30 K and 2 K.

one parameter of the oxygen-ion position z. We obtained
z = 0.1104(1), which agrees well with results given in Table I.
Due to the secondary extinction effect, the observed values for
the larger intensities tend to deviate from the calculated values,
while those for the smaller intensities are in agreement with
calculations (Fig. 4).

C. Magnetic structure analysis

In order to fit the integrated intensities of the magnetic
reflections, we considered four structure models for the mag-
netic structure. All of these consist of spins that lie in a plane
containing the hexagonal c axis: (i) the coplanar single-q 120◦
spin structure, where the integer l and half-integer l reflections
come from different q modulation domains [Fig. 5(a)]; (ii) a
single-q structure with a collinear polarization, which also
forms multiple domains [Fig. 5(b)]; (iii) a general multi-q
coplanar 120◦ spin structure, which has a clockwise (+) and
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FIG. 4. (Color online) Observed and calculated values of the
squared nuclear and magnetic structure factors. The results at 2 K
are presented for the + − + − +− 120◦ coplanar spin structure in a
plane including the c axis [model (iii)] and for the noncoplanar spin
structure [model (iv)]. These models are considered meaningful for
the magnetic structure of PdCrO2.
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FIG. 5. (Color online) Magnetic structure models of PdCrO2. (a) One solution of a single-q 120◦ spin structure of the model (i) at 2 K.
Here, the solution of the domain given by q1 and q4. The magnetic domain of q1 = ( 1

3 , 1
3 ,0) gives rise to integer-l reflections of ( 1

3 , 1
3 ,l), while

that of q4 = ( 1
3 , 1

3 , 1
2 ) provide half-integer-l reflections. 18 arrows labeled by An, Bn, and Cn (n = 0,1, . . . ,5) represent 18 sublattice spins SAn

,
SBn

, and SCn
, respectively. (b) A single-q collinear spin structure of the model (ii). Magnetic domains of q1 and q4 are shown. Closed circles

in the structure of q4 indicate S = 0. (c) One of the solutions of the coplanar 120◦ spin structure of the model (iii) at 2 K. Clockwise and
anticlockwise rotational directions are represented by + and −. The alternative stacks of the + and − layers shown in the figure represent
the best fit result, i.e., the + − + − +− structure. (d) One of the solutions of the noncoplanar spin structure of the model (iv) at 2 K. The
noncoplanarity of spins arises from a rotation of the 120◦ spin plane around the c axis in subsequent z layers, that is, the azimuthal angles of
the normal vector to the 120◦ spin plane, αn (n = 0,1,2,3,4,5), are different for each layer. Here a case in which there is only a difference
between αn of even layers (n = 0,2,4) and that of odd layers (n = 1,3,5) is considered. (e) Schematic drawing of layered triangular network of
Cr atoms with spins of the model structure of (d). âM, b̂M and ĉM represent the magnetic unit cell vectors, consisting of the magnetic structure
of the 18 sublattices of Cr ions: âM = 2â + b̂, b̂M = â + 2b̂, and ĉM = 2ĉ. Here, â, b̂, and ĉ are the unit-cell vectors for the hexagonal lattice
setting (â = a x̂, b̂ = a(− 1

2 x̂ +
√

3
2 ŷ), ĉ = c ẑ, where x̂, ŷ, and ẑ are orthogonal unit vectors, and a and c are the lattice constants, respectively).

anticlockwise (−) rotation degree of freedom in each layer
[Fig. 5(c)]; (iv) a noncoplanar spin structure based on the
general 120◦ spin structure of the model (iii), where now
the spin plane can rotate around the c axis from one z layer
to the next [Fig. 5(d)]. This rotational misfit is characterized by
the normal vector to the 120◦ spin plane, which is considered to
point into different directions for each z layer. The orientation
of the 120◦ spin plane can be described by different azimuthal
angles of its normal vector αn (n = 0,1,2,3,4,5) for each layer.
We performed a least-squares fit by these models and found
that models (iii) and (iv) provide solutions that account for
the observed intensities. The representation analysis revealed
that these magnetic structures can be classified by using
small representations deduced from the R3̄m crystal symmetry
(Sec. III C 6 and Appendix). The details of analysis are as
follows.

The intensity of the magnetic reflection at a wave vector Q
is written as

I = (γ r0)2|FM( Q)|2
[
g

2
f ( Q)

]2

, (2)

FM( Q) =
∑

magnetic
unit cell

exp(i Q · R)[SR − Q̂( Q̂ · SR)], (3)

where γ = 1.913, r0 is the classical radius of the electron, g

and f ( Q) are the g factor and magnetic form factor of Cr3+,
respectively. Here, we assumed g � 2 following the result
of the electron spin resonance spectroscopy [37]. Q̂ is the
unit vector along the wave-vector transfer Q. In Eq. (2), the
temperature factor is neglected. For the analysis, we have taken
an average of |FM( Q)|2 over magnetic structure domains,
which are naturally derived by symmetry operations of the
space group R3̄m.

Magnetic structure models of PdCrO2 that we consider
consist of 18 sublattice structures, whose 18 magnetic Cr sites
An, Bn, and Cn (n = 0,1,2,3,4,5) are shown in Fig. 5(e). The
hexagonal coordinates of the sublattice sites RAn

, RBn
, and

RCn
are

RA0 = (
0,0, 1

2

)
, RA1 = (

2
3 , 1

3 , 5
6

)
, RA2 = (

4
3 , 2

3 , 7
6

)
RA3 = (

0,0, 3
2

)
, RA4 = (

2
3 , 1

3 , 11
6

)
, RA5 = (

4
3 , 2

3 , 13
6

)
RBn

= RAn
+ (1,0,0),

RCn
= RAn

+ (2,0,0).

The observation of no magnetic intensity at reflections Q =
(00l), (10l), (01l), (11l) with l = 0, 1

2 ,1, 3
2 , . . . indicates that the
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18 sublattice spins SAn
, SBn

, and SCn
satisfy constraints

SAn
+ SBn

+ SCn
= 0. (4)

These constraints are alternatively expressed by a six-q
structure

SXn
=

6∑
j=1

(aj exp[iqj · RXn
] + a∗

j exp[−iqj · RXn
])

=
6∑

j=1

2(a′
j cos[qj · RXn

] + a′′
j sin[qj · RXn

]), (5)

where Xn stands for An, Bn, or Cn, and wave vectors qj are

q1 = (
1
3 , 1

3 ,0
)
, q2 = (− 2

3 , 1
3 ,0

)
, q3 = (

1
3 , − 2

3 ,0
)
,

(6)
q4 = (

1
3 , 1

3 , 1
2

)
, q5 = (− 2

3 , 1
3 , 1

2

)
, q6 = (

1
3 , − 2

3 , 1
2

)
.

In Eq. (5), aj = a′
j − ia′′

j are complex vectors, whereas a′
j

and a′′
j are real vectors.

In principle there are 36 adjustable parameters for the
present magnetic structure determination (12 real or 6 complex
vectors), we therefore considered the simplified structure
models (i)–(iv) to reduce number of fitting parameters. Note
that, as discussed later, we confirmed that all of these magnetic
structures were classified by using symmetry properties of the
space group R3̄m of the crystal symmetry.

1. Model (i): single-q 120◦ spin structure

We assume multiple domains of a single-q structure, which
consists of a 120◦ spin plane including the c axis [Fig. 5(a)].
This is the simplest structure model deduced from the spin
Hamiltonian of Eq. (1). The magnetic structure of one domain
responsible for integer-l reflections is

SXn
= S ẑ cos[φ + q1 · RXn

] + S êα sin[φ + q1 · RXn
],

(7)
êα = x̂ cos α + ŷ sin α,

where x̂, ŷ, and ẑ are orthogonal unit vectors [â = a x̂, b̂ =
a(− 1

2 x̂ +
√

3
2 ŷ), and ĉ = c ẑ], α and φ are constants. Note

that Eq. (7) is deduced from Eq. (5) by substituting a1 =
S
2 ( ẑ − i êα)eiφ . Each spin of this domain can be written as

SAn
= S[ ẑ cos φ1,n + êα sin φ1,n],

SBn
= S

[
ẑ cos

(
φ1,n + 2π

3

)
+ êα sin

(
φ1,n + 2π

3

)]
,

(8)

SCn
= S

[
ẑ cos

(
φ1,n − 2π

3

)
+ êα sin

(
φ1,n − 2π

3

)]
,

where φ1,n = φ + 2π
3 n, and φ is assumed to be zero in the

analysis. Symmetrically equivalent domains responsible for
integer-l reflections are obtained by transformations of the
space group operations with respect to q1 → qj (j = 2,3).

One magnetic domain responsible for half-integer-l reflec-
tions consists of the spin vectors

SXn
= S ẑ cos[φ + q4 · RXn

] + S êα sin[φ + q4 · RXn
],

êα = x̂ cos α + ŷ sin α, (9)

where α and φ are constants. Here, Eq. (9) is equivalent to
Eq. (5) with a4 = S

2 ( ẑ − i êα)eiφ , as in the case of the integer-l
domain. Each spin is

SAn
= S[ ẑ cos φ4,n + êα sin φ4,n],

SBn
= S

[
ẑ cos

(
φ4,n + 2π

3

)
+ êα sin

(
φ4,n + 2π

3

)]
, (10)

SCn
= S

[
ẑ cos

(
φ4,n − 2π

3

)
+ êα sin

(
φ4,n − 2π

3

)]
,

where φ4,n = φ + σn
π
2 and φ is assumed to be zero. Here,

σn = (−1)n. Symmetrically equivalent domains are obtained
by transformations of the space group operations with respect
to q4 → qj (j = 5,6).

2. Model (ii): single-q collinear spin structure

We assume a single-q collinear structure with multiple
domains [Fig. 5(b)]. The magnetic structure of a domain, which
is responsible for integer-l reflections, is described by, e.g.,

SXn
= a1 exp[iq1 · RXn

] + a∗
1 exp[−iq1 · RXn

],

a1 = 1
2S(cos β ẑ + sin β êα) exp(iφ), (11)

where S, β, and φ are constants. Each spin is

SAn
= S(cos β ẑ + sin β êα) cos φ1,n,

SBn
= S(cos β ẑ + sin β êα) cos

(
φ1,n + 2π

3

)
,

(12)

SCn
= S(cos β ẑ + sin β êα) cos

(
φ1,n − 2π

3

)
,

êα = x̂ cos α + ŷ sin α,

where φ1,n = φ + 2π
3 n (n = 0,1,2,3,4,5) and φ is assumed to

be zero. Symmetrically equivalent domains are obtained by
transformations of the space group operations with respect to
q1 → qj (j = 2,3).

A magnetic domain, which provides half-integer-l reflec-
tions, is

SXn
= a4 exp[iq4 · RXn

] + a∗
4 exp[−iq4 · RXn

],

a4 = 1
2S(cos β ẑ + sin β êα) exp(iφ). (13)

Each spin is written by

SAn
= S(cos β ẑ + sin β êα) cos φ4,n,

SBn
= S(cos β ẑ + sin β êα) cos

(
φ4,n + 2π

3

)
,

(14)

SCn
= S(cos β ẑ + sin β êα) cos

(
φ4,n − 2π

3

)
,

êα = x̂ cos α + ŷ sin α,

where φ4,n = φ + σn
π
2 and φ is assumed to be zero. Here,

σn = (−1)n. Symmetrically equivalent domains are obtained
by transformations of the space group operations with respect
to q4 → qj (j = 5,6).

3. Model (iii): coplanar 120◦ spin structure

For the model (iii), we consider as before a coplanar 120◦
spin structure in a plane parallel to the c axis [Fig. 5(c)]. Each

104408-5



HIROSHI TAKATSU et al. PHYSICAL REVIEW B 89, 104408 (2014)

spin is now written as

SAn
= S [ẑ cos φn + êα sin φn] ,

SBn
= S

[
ẑ cos

(
φn + ξn

2π

3

)
+ êα sin

(
φn + ξn

2π

3

)]
,

SCn
= S

[
ẑ cos

(
φn − ξn

2π

3

)
+ êα sin

(
φn − ξn

2π

3

)]
,

êα = x̂ cos α + ŷ sin α, (15)

where φn (n = 0,1,2,3,4,5) are constants, which represent
rotation angles of the 120◦ spin around the normal vector of
the plane consisting of the ĉ and êα vectors. Here we have
introduced an additional degree of freedom ξn = ±1, which
describes the rotation direction of spins: ξn = +1 represents
the clockwise rotation, while ξn = −1 describes the anticlock-
wise rotation. This parameter ξn allows to test 32 different
structures which can be grouped into eight independent classes
of spin structures, related to the rotation sense of spins in each
layer, that is, + + + + ++, + + + + +−, + + + + −−,
+ + + − +−, + + − + +−, + + + − −−, + + − + −−,
+ − + − +−. Here, +, − stand for ξn = +1, −1, respectively.

4. Model (iv): noncoplanar 120◦ spin structure

For the model (iv), we consider a noncoplanar 120◦ spin
structure where the noncoplanarity of spin configurations is
introduced by different orientations of the 120◦ spin planes in
subsequent z layers [Fig. 5(d)]. Spin vectors of this structure
are

SAn
= S[ ẑ cos γn cos φn + êαn

sin φn + êα′
n

sin γn cos φn],

SBn
= S

[
ẑ cos γn cos

(
φn + ξn

2π

3

)
+ êαn

sin

(
φn + ξn

2π

3

)

+ êα′
n

sin γn cos

(
φn + ξn

2π

3

)]
,

SCn
= S

[
ẑ cos γn cos

(
φn − ξn

2π

3

)
+ êαn

sin

(
φn − ξn

2π

3

)

+ êα′
n

sin γn cos

(
φn − ξn

2π

3

)]
, (16)

êαn
= x̂ cos αn + ŷ sin αn,

êα′
n

= x̂ cos

(
αn + π

2

)
+ ŷ sin

(
αn + π

2

)
,

where γn, αn and φn (n = 0,1,2,3,4,5) are constants, indicat-
ing polar angles from the z axis to the normal vector of the
plane consisting of the ĉ and êα vectors, azimuthal angles of the
spin-plane normal in the different z layers, and rotation angles
of the 120◦ spin around the normal vector, respectively. In
the analysis, we assume that in each z layer the 120◦ plane
is parallel to the c axis (i.e., γn = 0). We also consider a
case that there is a misfit between αn of even (n = 0,2,4)
layers and that of odd (n = 1,3,5) layers. This structure is,
however, represented by irreducible representations of the
R3̄m crystal symmetry, which will be discussed in detail
in Sec. III C 6. In Eq. (16), the definition of ξn is the
same as that of the model (iii). Here, we fixed ξn so that
ξn = +1 (n = 0,2,4) and ξn = −1 (n = 1,3,5). Note that we

TABLE III. Minimum values of χ 2, R factors, and magnetic
moments for models (i)–(iv). Values of the model (iii) are based
on one of the least-square solutions of the + − + − +− structure
which is the best fitted structure in the model (iii). Large χ2 value
of the model (i) and magnetic moment of the model (ii) beyond the
expected value of 3 μB indicate that these models can be ruled out
for the magnetic structure of PdCrO2.

model (i) model (ii) model (iii) model (iv)

χ 2(2 K) 2376 50 57 56
Rwp(2 K) 46.27% 6.69% 7.17% 7.08%
Re(2 K) 6.97% 6.84% 7.35% 7.35%
RB(2 K) 37.68% 5.20% 5.80% 5.68%

χ 2(30 K) 1707 51 74 60
Rwp(30 K) 45.03% 7.76% 9.40% 8.41%
Re(30 K) 8.01% 7.86% 8.44% 8.44%
RB(30 K) 37.47% 6.88% 8.10% 7.22%

Magnetic 1.82μB 3.15μB 2.20μB 2.20μB

moment (2K) (integer-l) (integer-l)
1.98μB 3.08μB

(half-int.-l) (half-int.-l)

can consider other combinations in these parameters, however
they do not change the general fitting result because misfit
angles αn between layers are fitting parameters, namely certain
values of αn can represent ξ1 = ±1; e.g., α1 = 0◦, α2 = 180◦,
and ξ1 = ξ2 = +1 represent the same structure as ξ1 = +1 and
ξ2 = −1 for α1 = α2 = 0◦ (in these, a case of φ1 = φ2 = 0◦
is considered).

5. Fit results of the model structures

Least-square fits were performed with four parameters
for the model (i); S and α for both integer- and half-
integer-l domain structures. For the model (ii), we used six
parameters; Sx , Sy , Sz for both integer- and half-integer-l
domain structures. Here, Sx , Sy , and Sz are parameters having a
relation that aj = 1

2S (cos β ẑ + sin β êα) eiφ = (Sx x̂ + Sy ŷ +
Sz ẑ)eiφ . The model (iii) considered seven parameters, S, α,
φn (n = 1,2,3,4,5), and examined eight independent classes
of magnetic structures. In the analysis, we fixed φ0 = 0◦ and
considered deviation from it for other angles of φn. For the
model (iv), we considered five parameters, S, φi , φj , αi , and
αj (i = 0,2,4, j = 1,3,5). The fit results are summarized in
Tables II, III, IV, and V in the Supplemental Material [36].

Spin structures corresponding to a set of obtained param-
eters at 2 K are shown in Figs. 5(a)–5(d). χ2 values of each
result and R factors are summarized in Tables III and IV. Here,
χ2 is defined by

χ2 =
m∑

i=1

( |FM|2obs,i − |FM|2cal,i

σ (|FM|2obs,i)

)2

, (17)

where m = 58 is the number of the observed magnetic
reflections. A good fit requires S ′ = [χ2/(m − δ)]

1
2 � 1.3,

where the number of fit parameters δ is subtracted from
the number of reflections m. For the model (i), we found
S ′(2K) = 6.6 and S ′(30K) = 5.7. Fits with the model (i)
and spins in the ab plane did not improve the value of
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TABLE IV. Minimum value of χ 2 for one of the least-square
solutions of the model (iii) in all eight independent spin structure
classes.

2K 30K

+ + + + ++ 2372 1710
+ + + + +− 901 634
+ + + + −− 717 546
+ + + − +− 227 171
+ + + − −− 448 388
+ + − + −− 961 548
+ − + − +− 57 74

S ′; S ′(2K) = 8.2 and S ′(30K) = 7.3. For the model (ii), we
found good fit results, S ′(2K) = 1.0 and S ′(30K) = 1.0, but
an unphysically large ordered moment as discussed below
(cf. Table III). Within the model (iii), the + − + − +−
structure class yields by far the best fit result (Table IV),
with S ′(2K) = 1.1 and S ′(30K) = 1.2. We obtained several
solutions in this structure class with the same values of S ′.
When evaluating the explicit mathematical form of Eq. (5),
we always find two large near-equal amplitudes, either |a1|
and |a5| for (q1,q5) or, equivalently, |a2| and |a6| for (q2,q6),
or |a3| and |a4| for (q3,q4) with all other amplitudes being an
order of magnitude smaller. This resembles the case of LiCrO2,
which is an analogous magnet with the same arrangement of
Cr sites, and implies a double-q structure [38]. We will discuss
this result on the basis of the representation analysis in a later
section. For the model (iv), an acceptable S ′ value was obtained
for a case that Δαn = αn − αn−1 � 40◦: S ′(2K) = 1.1 and
S ′(30K) = 1.1. Within this model we also obtained several
solutions, all of which indicate a finite Δαn, leading to a
noncoplanar spin configuration. Similar to the case of the
model (iii), two amplitudes |aj | are always large, the other
small. The estimated value of the average local scalar spin
chirality given in Eq. (24) is almost the same for all solutions,
although there are small differences in the value of φn and that
of αn among the solutions.

The estimated magnetic moments at 2 K are listed in
Table III. The magnetic moment value for the model (ii) clearly
exceeds the expected value of 3μB for the Cr3+ magnetic
system [39,40], which is unphysical. We therefore can rule
out the model (ii). Instead, the values for models (iii) and
(iv) are about 30% smaller than the expectation. For 2D
spin systems, the magnetic moment is indeed expected to be
smaller than gμBS due to quantum effects [38,41]. Moreover,
a reduction of the magnetic moment is known in materials with
antiferromagnetic coupling and covalent bonding [39]. It can
be attributed to hybridization of orbitals between magnetic and
neighboring-ligand ions. Therefore, the result of models (iii)
and (iv) can be considered relevant. We note that the magnetic
moment is the same in all the solutions in both models (iii) and
(iv). With these results and the requirement for the χ2 value,
at 2 K the structure of the + − + − +− structure of the model
(iii) or the model (iv) are considered to be plausible for the
magnetic structure of PdCrO2. At 30 K, the analysis provided
almost the same result as at 2 K, with a slight preference of
the model (iv) compared to the model (iii), cf. Table IV. In

Sec. IV, we discuss these magnetic structures in the context of
the UAHE.

6. Representation analysis

Before going to the discussion paragraph of Sec. IV, we
here discuss symmetry properties of the magnetic structures
from the representation analyses. We focus on the analysis
using model magnetic structures deduced from the irreducible
representation of the crystal symmetry, and then discuss
symmetries of models (iii) and (iv). Characterizations of other
models (i) and (ii) and details of the symmetry argument are
summarized in the Appendix.

From fit results of models (iii) and (iv) discussed in the
former section (Sec. III C 5), let us consider a double-q
structure such that consists of (q1,q5), (q2,q6), or (q3,q4).
In view of the representation analysis, these combinations are
the simplest combinations that can lead to a magnetic structure
having a 120◦ spin plane, since the basis vectors of such two
wave vectors consist of similar components (Table VIII). The
double-q structure is written as, for example,

S(R) =
4∑

j=3

{bj exp(iqj · R) + b∗
j exp(−iqj · R)}, (18)

b3 = C3�11ψ3�11 + C3�21ψ3�21, + C3�22ψ3�22, (19)

b4 = C4�11ψ4�11 + C4�12ψ4�12, + C4�21ψ4�21, (20)

where R = tn + d, tn and d are the nth lattice position
and a coordinate of the magnetic site of the chromium
atoms [i.e., d = (0,0, 1

2 ), the 3b site of R3̄m], respectively,
Cj�kl is a complex coefficient, and ψj�kl is a basis vector
of the irreducible representation for the space group R3̄m

appearing in the lth basis of a small representation �k with qj

(Table VIII).
Least-square fits were performed with six parameters of

Cj�kl and show an excellent fit result with χ2 = 50. The
parameters for results at 2 K were obtained as

C3�11 = (0 ± 16)eiφ3�11 ,

C3�21 = (0.15 ± 0.01)eiφ3�21 ,

C3�22 = (0.54 ± 0.01)eiφ3�22 ,

C4�11 = −(0.52 ± 0.01)eiφ4�11 ,

C4�12 = (0.16 ± 0.01)eiφ4�12 ,

C4�21 = (0.08 ± 0.03)eiφ4�21 .

Note that since multiplication of a phase factor eiφj�k l

doesn’t change the scattering intensity, φj�kl is a certain
constant. We confirmed that obtained parameters of Cj�kl

appear to be consistent with the parameters of the fit-
ted structure of the model (iv), leading to a noncopla-
nar 120◦ spin structure. In fact, the structure shown in
Fig. 5(d) is reproduced by Eq. (18) with C3�11 = −(0.06 ±
0.01)eiφ3�11 , C3�21 = (0.15 ± 0.01)eiφ3�21 , C3�22 = (0.53 ±
0.01)eiφ3�22 , C4�11 = −(0.52 ± 0.01)eiφ4�11 , C4�12 = (0.16 ±
0.01)eiφ4�12 , and C4�21 = (0.07 ± 0.01)eiφ4�21 , where φ3�11 =
72◦ ± 2◦, φ3�21 = −2◦ ± 2◦, φ3�22 = 1◦ ± 1◦, φ4�11 = 1◦ ±
0.3◦, φ4�12 = 1◦ ± 4◦, and φ4�21 = −14◦ ± 2◦, respectively.
Thus, we can now recognize that the model (iv) structure is a
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TABLE V. Calculated values of q3 · R and q4 · R − π/2 for
each sublattice site. i = 0,2,4 and j = 1,3,5 indicate suffixes of the
sublattice sites of even and odd layers, respectively.

R q3 · R q4 · R − π/2

(i = 0,2,4)
RAi

0 0
RBi

2π/3 2π/3
RCi

4π/3 4π/3

(j = 1,3,5)
RAj

0 π

RBj
2π/3 2π/3 + π

RCj
4π/3 4π/3 + π

double-q structure consisting of all the small representations
of two wave vectors. Note that although φj�kl is difficult to be
determined only from the analysis of the scattering intensity by
Eqs. (18)–(20), we can deduce such parameter from the fitted
structure of the model (iv) and its representation analysis, as
shown above. More detailed experiments are needed to clarify
precise values of φj�kl .

It is worth noting here that even though we assumed that
smaller contributions of ψ3�11 and ψ4�21 were negligible and
those coefficients were zero for the analysis by Eqs. (18)–(20),
we also reproduced the scattering intensities with good fittings
(χ2 = 51). This structure is a coplanar structure, correspond-
ing to the + − + − +− structure of the model (iii). From the
fittings, we confirmed that the magnetic structure shown in
Fig. 5(c) is approximately represented by using parameters
with C3�21 � S

2 sin(φ′)eiφ′′
, C3�22 � S

2 cos(φ′)eiφ′′
, C4�11 �

− S
2 cos(φ′)eiφ′′

, and C4�12 � S
2 sin(φ′)eiφ′′

, where S = 1.09 ±
0.06, φ′ = 16◦ ± 1◦ and φ′′ = −16◦ ± 1◦, respectively. Thus,
it is clear that the + − + − +− structure of the model (iii) is
also a double-q structure, written by the linear combination
of two of three small representations for each wave vector of,
e.g., (q3,q4). In this case, Eq. (18) is summarized as follows:

S(R) = S

2
cos(q3 · R − φ′′)ê1

+ S

2
sin

(
q4 · R − π

2
− φ′′

)
ê2 , (21)

ê1 = cos(φ′) ẑ + sin(φ′)ê30◦ , (22)

ê2 = cos

(
φ′ + π

2

)
ẑ + sin

(
φ′ + π

2

)
ê30◦ . (23)

Calculated values of q3 · R and q4 · R − π/2 are shown
in Table V. Since values of q4 · R − π/2 are different in
π (= 180◦) for even and odd layers, the rotation direction of
the spin plane becomes opposite for those layers. This is the
reason why the + − + − +− structure is realized in the model
(iii). Details of the spin configurations and relations between
vectors of ê1 and ê2 are shown in Fig. 6. Other results for the
representation analysis of models (i) and (ii) are summarized
in the Appendix.

spin plane odd layerseven layers

180

A1,3,5

B1,3,5

C1,3,5

A0,2,4

B0,2,4 C0,2,4e2 e2

e2

φ''
e1 ze1 z

φ' φ' φ' φ''+

φ' φ'
e30 e30

φ''

FIG. 6. (Color online) Relations of the spin configurations of the
model (iii) structure for each layer, deduced from the representation
analysis. The rotational direction of the spins on even and odd layers
is opposite, i.e., the + − + − +− structure is realized. Definitions
of ê1 and ê2 axes are in the text. Here, φ′ = 16◦ and φ′′ = −16◦,
respectively. The ĉ axis is parallel to the z axis and ê30◦ is the direction
of the spin plane; ê30◦ =

√
3

2 x̂ + 1
2 ŷ (see text for more details).

IV. DISCUSSION

For a rhombohedral antiferromagnet with the delafossite
type structure, the magnetic state is expected to display
a helical structure and to be highly degenerate [42–44].
The structure may become incommensurate due to certain
competition among the nearest-neighbor and longer-range
exchange interactions. Experimentally, it was found recently
that the magnetic structures of CuCrO2 and AgCrO2, which
belong to the same magnetic Cr delafossite family as PdCrO2,
are incommensurate with a propagation vector q = (kk0) [k ∼
0.329 for CuCrO2 and 0.327 for AgCrO2]. Their magnetic
structures are considered to be proper-screw-type structures
with {110} spiral planes [45–47]. In contrast, we found that a
commensurate magnetic structure is realized in PdCrO2. The
transition temperature as a function of the lattice parameter
a reveals a linear relation in the delafossites ACrO2 (A =
Pd,Cu,Ag) and the ordered rock salts A′CrO2 (A′ = Li,Na,K),
which all have a similar TL arrangement of Cr ions [Fig. 7(a)].
Meanwhile, the c-axis length does not exhibit a simple relation
with the value of TN [Fig. 7(b)]. Interestingly, systems that have
smaller a values (i.e., LiCrO2 and PdCrO2) exhibit commensu-
rate magnetic structures with magnetic Bragg reflections of ( 1

3
1
3 l) with l = integers and half integers (i.e., a commensurate
double-q structure), while systems that have larger a values
exhibit peculiar magnetic order including incommensurate
magnetic orders [45–48]. These results suggest that, while the
nearest-neighbor exchange interaction is predominant in all
these materials, types of other interactions are quite different
between materials with smaller a and those with larger a.

Our analysis of the magnetic structure leaves us with two
possibilities for the magnetic structure of PdCrO2, the + −
+ − +− 120◦ spin structures of the model (iii) and the model
(iv). The difference in the magnetic intensity between these
models is too small to distinguish them (Fig. 4). However, the
coplanar + − + − +− spin structure of the model (iii) has no
scalar spin chirality and hence cannot produce an anomalous
Hall current by the mechanism of the scalar spin chirality. Even
in an applied magnetic field along the c axis, the scalar spin
chirality is zero because the induced spin canting would be
parallel to the c axis and hence still within the 120◦ spin plane.
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FIG. 7. (Color online) Relation between TN and lattice parame-
ters a and c of chromium ordered rock salts and delafossites ACrO2

(ordered rock salts: A = Li,Na,K, delafossites: A = Pd,Cu,Ag).
The horizontal axis displays the lattice parameters at RT [49–52].
Open and filled symbols represent materials that have commensurate
magnetic structures and ones that have incommensurate magnetic
structures, respectively. In materials with smaller lattice constant a,
a commensurate magnetic structure is realized probably because the
nearest-neighbor interaction J is much larger than other interactions.

In contrast, the model (iv) structure has a noncoplanar spin
configuration with a locally finite scalar spin chirality. Note
that the mechanism of UAHE on the basis of the Berry-phase
concept with the four-site magnetic structure [19–21] could
be excluded for the case of PdCoO2, because magnetic Bragg
peaks are observed at ( 1

3 , 1
3 ,l) and ( 2

3 , 2
3 ,l), consisting of the

three sublattice magnetic structure. We will argue now that
within the model (iv) structure the spin chirality mechanism
could generate an UAHE. First we note that the global sum of
the scalar spin chiralities is zero in the model (iv) structure.
This result implies that an additional contribution is needed to
break the balance of the globally zero scalar spin chirality. One

q4

q3
a

b

b
c

30α=

c

a

q4

q3

spin plane

Cr

e30

e30
spin plane

FIG. 8. (Color online) (Color online) Schematic drawing of one
of the relations of two wave vectors and the spin plane of the model
(iii) structure. For q3 and q4, the spin plane consists of ĉ(‖ ẑ) and
ê30◦ (=

√
3

2 x̂ + 1
2 ŷ).

possible mechanism is in the spin-orbit interaction [12,18]. The
spin-orbit interaction breaks the perfect cancellation of local
scalar spin chiralities in the presence of a net magnetization
induced by an magnetic field. This gives then rise to an fine
contribution to the UAHE [12,18].

From the representation analysis, the noncoplanar magnetic
structure can be deduced from the symmetry properties of the
R3̄m crystal structure of PdCrO2. In particular, the model (iv)
structure is characterized by additional appearance of small
representations such as �11 of q3 and �21 of q4. In view of
the free-energy expansion, a higher-order term, third or fourth,
involving those small representations becomes important for
the realization of the noncoplanar double-q structure, since the
simple Heisenberg-type interaction with a small finite single-
ion anisotropy as given by Eq. (1), the model (i) simplest
120◦ spin structure (i.e., single-q coplanar 120◦ spin structure)
should be realized. More quantitative analysis is required to
explain why the structure appears in PdCrO2.

Finally, we discuss the small change of the magnetic
structure between 2 K and 30 K. Since the UAHE occurs
in this material below T ∗, we can consider two scenarios: One
is the change from the coplanar to noncoplanar spin structures
at temperatures between 2 and 30 K. The other scenario is the
change of the amount of the noncoplanarity with temperature:
i.e., a noncoplanar spin structure is already realized at 30 K and
the amount of noncoplanarity (or local scalar spin chirality)
changes on cooling. To evaluate the noncoplanarity in the
magnetic structure, we calculate the average absolute value of
the local scalar spin chirality over the 18 sublattice spins,

v =
∑18

i,j,k |Si · (Sj × Sk)|
|M|3 , (24)

where M is the magnetic moment of each Cr spin, and Si

represents a spin component such as S1 = SA0, S2 = SB0,
S3 = SC0, and etc. (i 
= j 
= k). In Eq. (24), we normalize
the absolute local scalar spin chirality by M3 in order to
estimate the amount of noncoplanarity independent of the
length of the ordered moment. Although a weight of a
spin-chirality contribution depends on a size of a triangle
formed by three noncoplanar spins [12], we calculate a simple
sum of Si · (Sj × Sk) in 18 magnetic sublattices, without
considering each the weight of each for the UAHE. From the
fit results of the model (iv), we obtained v(2K) = 0.010(4) and
v(30K) = 0.026(4). This result suggests that a slight difference
appears in the noncoplanarity of the magnetic structures
between 2 K and 30 K. However, the value at 30 K is a bit larger
than that at 2 K. Even if the sum of chiralities given Eq. (24)
was not normalized by M3, the value at 2 K is smaller. If the
second scenario is correct, the weight of Si · (Sj × Sk) from
each triangle for the UAHE is different, depending on the size
of triangles or carrier mobility μ: a larger carrier mobility
makes the conduction carriers interact with a larger number
of spins of the noncoplanar structure [12]. This result leads to
the change in the anomalous Hall conductivity σxy originating
in the scalar spin chirality χijk , if χijk is finite, because σxy

is closely related to both μ and χijk: σxy ∝ μ2χijk [12].
Experimentally, it was estimated that the mean free path at 2 K
is about ten times larger than that at 30 K [30]. Otherwise, the
first scenario may be more likely to explain the occurrence of
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the UAHE. In any case, a precise estimation of the knowledge
of the weight of Si · (Sj × Sk) of each triangle is important,
and here the trajectory of conduction carriers should be
taken into account. The multiple-q state of the magnetic
structure may also be important [53]. We now conclude that
the difference of the magnetic structure between 2 K and 30
K is small but may result from the noncoplanarity (misfit
of stacks for 120◦ layers) of the magnetic structure. Such a
minute change of the magnetic structure is consistent with
a small change of the intensity ratio of magnetic reflections
(Fig. 2 inset) and of entropy associated with a small hump in
the magnetic specific heat at T ∗ [27].

V. CONCLUSIONS

In conclusion, we performed neutron single-crystal and
x-ray powder diffraction experiments on the metallic 2D-TL
antiferromagnet PdCrO2 in zero field. We found that at
2 K the magnetic structure of Cr spins is a commensurate
120◦ spin structure where the spin plane includes the c

axis. It alternates clockwise and anticlockwise rotation in
different Cr layers. Noncoplanar spin configurations with an
additional rotation of the spin plane agree with the data slightly
better than the coplanar model. In view of the observed
UAHE, such a noncoplanar 120◦ spin structure is probably
realized in PdCrO2, which is a double-q structure derived
by the representation analysis. The identification of a precise
noncoplanarity as well as the magnetic structure in an applied
magnetic field should be addressed by future experiments on
much larger single crystals using polarized neutrons.
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APPENDIX

In this section, we summarize results of the representation
analysis and classification of model magnetic structures using
symmetry properties of the space group of R3̄m, discussed in
Sec. III C.

The basis vectors ψj�kl are calculated by using the
projection operator method [54]. For the little group Gqj

for
each wave vector qj , there are two one-dimensional small
representations

�k({γ |τγ }) = exp(−iqj · τα)Dk({γ |τγ }), (A1)

TABLE VI. Coordinate triple of the representative symmetry
operator {γ |τγ }.

q1, q5 q2, q6 q3, q4

{γ |τγ }1 (x,y,z) (x,y,z) (x,y,z)
{γ |τγ }2 (y,x, − z) (x − y, − y, − z) (−x, − x + y, − z)

TABLE VII. Matrix Dk({γ |τγ }) of Eq. (A1) for small represen-
tations �k .

rep. {γ |τγ }1 {γ |τγ }2

�1 1 1
�2 1 −1

where {γ |τγ } denotes a symmetry operator of Gqj
and

Dk({γ |τγ }) is the matrix of the small representation of Gqj
. In

Tables VI and VII, Dk({γ |τγ }) for each qj are summarized.
The basis vectors ψ j�kl are calculated by using these matrices
and the results are listed in Table VIII.

For the single-q structures of models (i) and (ii), the
magnetic representation of Eqs. (7), (9), (11), and (13) can
be rewritten by irreducible representations: i.e., Eqs. (7) and
(11) for integer-l reflections are

S(R) = b1 exp(iq1 · R) + b∗
1 exp(−iq1 · R), (A2)

b1 = C1�11ψ1�11 + C1�21ψ1�21, + C1�22ψ1�22, (A3)

and Eqs. (9) and (13) for half-integer-l reflections are

S(R) = b4 exp(iq4 · R) + b∗
4 exp(−iq4 · R), (A4)

b4 = C4�11ψ4�11 + C4�12ψ4�12, + C4�21ψ4�21. (A5)

Here, C1�21 = C4�11 = S
2 exp(−π

2 i), C1�22 = C4�12 = S
2 , and

C1�1l = C4�2l = 0 for the model (1), and C1�21 = C4�11 =
S
2 sin(β), C1�22 = C4�12 = S

2 cos(β), and C1�1l = C4�2l = 0
for the model (ii), respectively. Note that more generally, the
magnetic moment can be represented by summing the results
of six-q wave vectors:

S(R) =
6∑

j=1

{bj exp(iqj · R) + b∗
j exp(−iqj · R)}, (A6)

bX = CX�11ψX�11 + CX�21ψY�21, + CX�22ψX�22, (A7)

bY = CY�11ψY�11 + CY�12ψY�12, + CY�21ψY�21, (A8)

where X = 1,2,3 and Y = 4,5,6, respectively. This expression
is equal to that of Eq. (5). The relations of model structures and
results of the representation analysis are shown in Table IX.

TABLE VIII. The basis vectors ψ j�k l of the irreducible represen-
tations of the space group R3̄m (point group D5

3d ) appearing in the
lth basis of a small representation �k with qj . The notation of vectors
êα used here is defined in the main text and the relations with other
directions are schematically shown in Figs. 5 and 8.

qj (j = 1 − 6) q1 q2 q3 q4 q5 q6

ψ j�11 ê60◦ ê0◦ ê−60◦ ê30◦ ê150◦ ê90◦

ψ j�12 ẑ ẑ ẑ
ψ j�21 ê150◦ ê90◦ ê30◦ ê−60◦ ê60◦ ê0◦

ψ j�22 ẑ ẑ ẑ
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TABLE IX. Relations between the model magnetic structures and the results of the representation analysis.

model type example rep. basis vector

model (i) single-q, q1 domain (integer l) �21, �22 ψ1�21, ψ1�22

multiple domain q4 domain (half-int. l) �11, �12 ψ4�11, ψ4�12

model (ii) single-q, q1 domain (integer l) �21, �22 ψ1�21, ψ1�22

multiple domain q4 domain (half-int. l) �11, �12 ψ4�11, ψ4�12

model (iii) double-q, (q3,q4) domain �21, �22 ψ3�21, ψ3�22

multiple domain �11, �12 ψ4�11, ψ4�12

model (v) double-q, (q3,q4) domain �11, �21, �22 ψ3�11, ψ3�21, ψ3�22

multiple domain �11, �12, �21 ψ4�11, ψ4�12, ψ4�21
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