
An Efficient Algorithm for Constraint Handling in Combinatorial Test Generation

Linbin Yu1, Yu Lei1, Mehra Nourozborazjany1, Raghu N. Kacker2, D. Richard Kuhn2

1Department of Computer Science and Engineering
University of Texas at Arlington

Arlington, TX 76019, USA
{linbin.yu, mehra.nourozborazjany}@mavs.uta.edu,

ylei@cse.uta.edu

2Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA
{raghu.kacker, kuhn}@nist.gov

Abstract— Combinatorial testing has been shown to be a very
effective testing strategy. An important problem in
combinatorial testing is dealing with constraints, i.e.,
restrictions that must be satisfied in order for a test to be
valid. In this paper, we present an efficient algorithm, called
IPOG-C, for constraint handling in combinatorial testing.
Algorithm IPOG-C modifies an existing combinatorial test
generation algorithm called IPOG to support constraints. The
major contribution of algorithm IPOG-C is that it includes
three optimizations to improve the performance of constraint
handling. These optimizations can be generalized to other
combinatorial test generation algorithms. We implemented
algorithm IPOG-C in a combinatorial test generation tool
called ACTS. We report experimental results that
demonstrate the effectiveness of algorithm IPOG-C. The three
optimizations increased the performance by one or two orders
of magnitude for most subject systems in our experiments.
Furthermore, a comparison of ACTS to three other tools
suggests that ACTS can perform significantly better for
systems with more complex constraints.

Keywords-Combinatorial Testing; Constraint Handling;
Test Genration;

I. INTRODUCTION
Combinatorial testing (CT) has been shown to be a very

effective testing strategy [14] [15] [20]. Given a system with
n parameters, t-way combinatorial testing requires that all t-
way combinations, i.e., all combinations involving any t
parameter values, be covered by at least one test, where t is
referred to as test strength and is typically a small number.
A widely cited NIST study of several fault databases reports
that all the faults in these databases are caused by no more
than six factors [14]. If test parameters are modeled
properly, t-way testing can expose all the faults involving no
more than t parameters.

Practical applications often have constraints on how
parameter values can be combined in a test [11]. For
example, one may want to ensure that a web application can
be executed correctly in different web browsers running on
different operating systems. Consider that Internet Explorer
(or IE) 6.0 or later cannot be executed on MacOS. Thus, if
the web browser is IE 6.0 or later, the operating system must
not be MacOS. This constraint must be taken into account
such that IE 6.0 or later and Mac OS do not appear in the
same test.

Constraints must be specified by the user before they are
handled during test generation. One approach is to specify
constraints as a set of forbidden tuples. A forbidden tuple is
a value combination that should not appear in any test.
When there are a large number of forbidden tuples, it can be
difficult for the user to enumerate them. Alternatively,
constraints can be specified as a set of logical expressions.
A logical expression describes a condition that must be
satisfied by every test. Logical expressions are more concise
than explicit enumeration of forbidden tuples. In this paper,
we assume that constraints are specified using logical
expressions.

A major step in constraint handling is validity check,
i.e., checking whether all the constraints are satisfied by a
test. One approach to performing this check is to ensure that
a test contains no forbidden tuples. This approach needs to
maintain the complete list of all the forbidden tuples, which
can be expensive when there are a large number of
forbidden tuples. Alternatively, we can employ a constraint
solver to perform this check. In this approach, we encode
the problem of validity check as a constraint satisfaction
problem. In this paper we focus on the latter approach, since
it avoids maintaining the complete set of forbidden tuples
and is thus a more scalable approach.

It is important to note that the way in which validity
check is performed is independent from the way in which
constraints are specified. For example, a tool called mAETG
[6] uses forbidden tuples to specify constraints. Forbidden
tuples are converted into a set of Boolean logic expressions,
which are then solved by a SAT solver. In contrast, a tool
called PICT [8] uses logic expressions to specify constraints.
A list of forbidden tuples are first generated from the
specified logic expressions and then used to perform
validity check during test generation.

Both combinatorial testing and constraint solving are
computation-intensive processes. The main challenge of
constrained combinatorial test generation is dealing with
this complexity. In this paper, we present an efficient
algorithm, called IPOG-C, to address this challenge.
Algorithm IPOG-C modifies an existing combinatorial test
generation algorithm called IPOG [17] and employs a
constraint solver to handle constraints. To optimize the
performance of constraint handling, algorithm IPOG-C tries
to reduce the number of calls to the constraint solver. In case
that such a call cannot be avoided, algorithm IPOG-C tries
to simplify the solving process as much as possible.

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.35

242

Specifically, algorithm IPOG-C includes the following
three optimizations:

1) Avoiding unnecessary validity checks on t-way
combinations. A t-way test set must cover all the
valid t-way combinations. A t-way combination is
valid if it can be covered by at least one valid test.
Checking the validity of each t-way combination
can be expensive since there often exist a large
number of t-way combinations. The key insight in
our optimization is that if a test is found valid, then
all the combinations covered by this test would be
valid, and thus do not have to be explicitly checked.

2) Checking relevant constraints only. When we
perform a validity check, some constraints may not
be relevant and thus do not have to be checked. We
use a notion called constraint relation graph to
identify groups of constraints that are related to each
other, which are then used to identify relevant
constraints in a validity check. Algorithm IPOG
builds a test set incrementally, i.e., covering one
parameter at a time. This incremental framework is
leveraged in this optimization to further reduce the
number of relevant constraints that have to be
involved in a validity check.

3) Recording the solving history. This optimization
tries to reduce the number of calls to the constraint
solver by saving previous solving results. This
optimization works together with 2) to maximize
reduction in the number of calls to the constraint
solver.

For the purpose of evaluation, we implemented
algorithm IPOG-C in a combinatorial test generation tool
called ACTS. ACTS is freely available to the public [1]. We
conducted experiments on a set of real-life and synthesized
systems. The experimental results indicate that the three
optimizations employed in algorithm IPOG-C increased the
performance by one or two orders of magnitude for most
subject systems. For example, for a real-life system GCC,
the optimizations reduced the number of calls to the
constraint solver from 34613 to 631 and the execution time
from 683.599 seconds to 1.139 seconds. Furthermore, the
optimizations significantly slow down the increase in the
number of calls to the constraint solver and the execution
time as test strength, number of parameters, domain size, or
number of forbidden tuples increases. Finally, a comparison
of ACTS to three other tools suggests that ACTS can
perform significantly better for systems with more complex
constraints.

The rest of this paper is organized as follows. Section II
gives a formalization of the constrained combinatorial test
generation problem. Section III presents the original IPOG
algorithm without constraint support. Section IV presents
the new algorithm, i.e., IPOG-C. In particular we discuss the
three optimizations. Section V reports some experimental
results. Section VI discusses related work. Section VII
concludes this paper and discusses future work.

II. PRELIMINARY
In this section, we formally define the problem of

constrained combinatorial test generation.

Definition 1 (Parameter) A parameter p is a set of
values, i.e., p = {v1, v2, …, vp}.

Value v for parameter p can be denoted as p.v. For ease
of notation, we assume that different parameters are disjoint.
This implies that each parameter value belongs to a unique
parameter. This allows us to refer to a parameter value by
itself, i.e., without mentioning which parameter it belongs to.

Definition 2 (Tuple) Let G = {p1, p2, …, pm} be a set of
parameters. A tuple τ = {v1, v2, …, vm} of G is a set of
values where vi ��pi. That is, τ � p1 × p2 … × pm.

Intuitively, a tuple τ consists of a value v for each
parameter p in a given set of parameters. We refer to a tuple
of size t as a t-tuple. We also refer to v as the value of p in τ
if there is no ambiguity. This effectively overloads the
notion of a parameter, which may represent a set of values
or may take a particular value, depending on its context. We
use �({p1, …, pm}) to denote p1 × p2 … × pm.

Definition 3 (SUT) A System Under Test (SUT) M =
<P, C> consists of a set P = {p1, p2, …, p|P|} of parameters,
where pi is a parameter, and a set C = {c1, c2, …, c|C|} of
constraints, where each constraint ci is a function: � (P) →
{true, false}.

We refer to each tuple in �(P) as a test of M. In other
words, a test is a special tuple whose size equals the number
of parameters in a system. A constraint is a function that
maps a test to a Boolean value true or false.

Definition 4. (Covering) A tuple τ is said to be covered
by another tuple τ’ if τ ��τ’.

Note that a tuple is covered by itself. In this paper, we
are particularly interested in the case where a tuple is
covered by a test.

Definition 5. (Validity) Given a SUT M = <P, C>, a
tuple τ of M is valid if ∃ τ’ � �(P), such that τ �� τ’, and ∀c
� C, c(τ’) = true. Otherwise, τ�is invalid.

 If τ� is a test, τ� is valid if it satisfies all constraints. If τ�
is a t-tuple, where t < |P|, then τ� is valid if there exists at
least one valid test τ’ that covers τ.

Definition 6. (Constrained T-Way Test Set) Let M =
<P, C> be a SUT. Let � be the set of all valid t-tuples. A t-
way constrained test set is a set � �� �(P) of tests such that,
∀ σ ���, there exists τ����������	�
	�τ�is valid and σ ��τ.

Intuitively, a constrained t-way test set is a set of valid

tests in which each valid t-tuple is covered by at least one
test. The problem of constrained t-way test generation is to
generate a constrained t-way test set of minimal size. In
practice, a tradeoff is often made between the size of the
resulting test set and the time and space requirements.

III. THE IPOG ALGORITHM
In this section, we introduce the original IPOG

algorithm without constraint handling [17]. Due to space
limit, we only present the major steps relevant to constraint
handling. Refer to the original paper [17] for more details.

243

Algorithm IPOG works as follows: For a system with t
or more parameters, we first build a t-way test set for the
first t parameters. We then extend this test set to a t-way test
set for the first t+1 parameters, and continue to do so until it
builds a t-way test set for all the parameters.

Assume that we already covered the first k parameters.
To cover the (k+1)-th parameter, say p, it is sufficient to
cover all the t-way combinations involving parameter p and
any group of (t-1) parameters among the first k parameters.
These combinations are covered in two steps, horizontal
growth and vertical growth. Horizontal growth adds a value
of p to each existing test. Each value is chosen such that it
covers the most uncovered combinations. During vertical
growth, the remaining combinations are covered one at a
time, either by changing an existing test or by adding a new
test. When we add a new test to cover a combination,
parameters that are not involved in the combination are
given a special value called don’t care. These don’t care
values can be later changed to cover other combinations.

Fig. 1 illustrates how algorithm IPOG works. Assume
that the system contains 4 parameters p1, p2, p3, and p4,
and each parameter has 2 values {0, 1}. The test strength is
2. Assume that the 2-way test set for the first 3 parameters
has been generated, as shown in Fig. 1(a).

Figure 1. Illustration of the IPOG Algorithm

To cover the last parameter p4, we first generate all 2-
way combinations that need to be covered. Fig. 1(b) shows
12 2-way combinations to be covered. During horizontal
growth, we add value 0 of P4 into the first test since it
covers the most uncovered tuples {p1.0, p4.0}, {p2.0, p4.0}
and {p3.0, p4.0}. Similarly, we add values 1, 0 and 0 of P4
into the next three tests, respectively, as shown in Fig. 1(c).
There are still 3 uncovered 2-way combinations, {p1.1,
p4.1}, {p2.0, p4.1} and {p3.0, p4.1}. During vertical growth,
we first generate a new test to cover {p1.1, p4.1}. Then we
add p2.0 and p3.0 into the same test to cover {p2.0, p4.1}
and {p3.0, p4.1}, respectively. Fig. 1(d) shows the complete
2-way test set.

IV. THE IPOG-C ALGORITHM
In this section, we modify algorithm IPOG to handle

constraints. We refer to the new algorithm as IPOG-C. We
first present a base version of algorithm IPOG-C. Then we
propose three optimizations. The final version of algorithm

IPOG-C is obtained by applying these optimizations to the
base version. We also discuss how to apply these
optimizations to other test generation algorithms.

A. The Base Version of Algorithm IPOG-C
Fig. 2 shows the base version of the IPOG-C algorithm.

The modifications made to the original IPOG algorithm are
highlighted. These modifications do not change the main
structure of the original IPOG algorithm. If no constraints
are specified, the modified algorithm will generate the same
test set as the original IPOG algorithm does.

Algorithm IPOG-C modifies the original IPOG
algorithm to make sure: (1) all the valid t-way target tuples
are covered; and (2) all the generated tests are valid. In line
5, we perform validity check on each t-way combination to
identify all the valid t-way combinations that need to be
covered. In lines 8 & 13, we perform the validity check to
ensure that every test is valid. Since the algorithm
terminates only when π is empty (line 12), all the valid t-
way combinations must be covered upon termination.

Algorithm IPOG-C (int t, ParameterSet ps)
{
1. initialize test set ts to be an empty set
2. sort the parameters in set ps in a non-increasing order of their
 domain sizes, and denote them as P1, P2, …, and Pk
3. add into test set ts a test for each valid combination of values
 of the first t parameters
4. for (int i = t + 1; i � k; i ++){
5. let π be the set of all valid t-way combinations of values
 involving parameter Pi and any group of (t-1) parameters
 among the first i-1 parameters
6. // horizontal growth for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. choose a value vi of Pi and replace τ with τ’ = (v1, v2, …,
 vi-1, vi) so that τ’ is valid and it covers the most
 number of combinations of values in π
9. remove from π the combinations of values covered by τ’
10. } // end for at line 7
11. // vertical growth for parameter Pi
12. for (each combination σ in set π){
13. if (there exists a test τ in test set ts that can be changed to
 a valid test τ’ that covers both τ and σ {
14. change test τ to τ’
15. } else {
16. add a new test only contains σ to cover σ
17. } // end if at line 13
18. } // end for at line 12
19. }// end for at line 4
20. return ts;
}

Figure 2. The base version of the IPOG-C algorithm

B. Validity Check
Assume that we want to check the validity of a

combination (or test) τ� for a system S. This validity check
problem is converted to a Constraint Satisfaction Problem
(CSP), in which the variables are the parameters of S. The
constraints include the constraints specified by the user and
some constraints derived from τ, where each parameter

244

value p.v in τ� is represented by a constraint e
(Alternatively, one may change the parame
fixed value if it is supported by the solver
constraint solver is then used to solve this CS

Consider that a system consists of 3 pa
each having 3 values, and one constraint “a
shows the CSP for checking the validity
{a.0, b.0}. Note that two constraints “a = 0”
added for parameter values a.0 and b.0, in
user-specified constraint, i.e., “a + b > c”.

 [Variable] [Constraints]
a: 0, 1, 2 (1) a + b > c

b: 0, 1, 2 (2) a = 0
c: 0, 1, 2 (3) b = 0

Figure 3. An example CSP problem

C. Optimizations
In this section, we propose several sche

the performance of constraint handling in alg

1) Avoiding Unnecessary Validity Ch
Combinations

In line 5 of Fig. 2, we first compute the
all valid t-way combinations that need to b
involves performing validity check o
combination. This computation can be very
there are typically a large number of t-way c

We propose an optimization to reduce
validity checks on target combinations. The
is that there exists significant redundancy b
checks for finding valid target tuples, and
for choosing a valid parameter value du
growth. That is, when we choose a new va
validity check to ensure that the resulting te
all the tuples covered in a test must be v
implicitly checks validity of every tuple cov
As a result, even though we do not have the
tuples, it is guaranteed that any tuple cover
removed from the target set π, must be valid

The above observation suggests
optimization. That is, we do not need to ch
of target tuples (line 5 of Fig. 2) before horiz
is important to note that the existence of inv
target set (π) will not affect the greed
horizontal growth (line 8 of Fig. 2). This
candidate test covers any invalid t-tuple,
invalid test and will not be selected. S
comparison only happens between valid can

After horizontal growth is finished, valid
to be performed on the remaining target com
is, line 12 of Fig. 2 should be changed to
combination σ in set π)”. At this point, man
are likely to have already been covered by h
This means that the number of validity
significantly reduced.

2) Checking Relevant Constraints Only
For a given validity check, some constra

relevant, and thus do not need to be c

expression p = v.
eter domain to a
r.) A third party
SP.

arameters a, b, c,
 + b > c”. Fig. 3
of combination

” and “b = 0” are
n addition to the

m

emes to optimize
gorithm IPOG-C.

hecks of Target

e complete set of
be covered. This
on each t-way

expensive since
combinations.
e the number of

key observation
between validity

d validity checks
uring horizontal
alue, we perform
st is valid. Since

valid, this check
vered in this test.
e list of all valid
red in a test, and
d.

the following
heck the validity
zontal growth. It
alid tuples in the
dy selection in

is because if a
 it must be an

So the effective
ndidates.
dity check needs
mbinations. That
“for (each valid
ny combinations
orizontal growth.
checks can be

aints may not be
checked. In this

optimization, we identify constrain
validity check and ignore the ot
simplify the corresponding constrai

We first divide constraints into
To do this, we use a graph str
relation graph, to represent rela
constraints. In a constraint rela
represents a constraint, and each (u
that two constraints have one or m
Then we find all the connected c
The constraints in each connected
one group. Intuitively, constraint
parameter, directly or indirectly, are

Figure 4. Illustration of Co

Fig. 4(a) shows a system that c
4 constraints. Fig. 4 (b) shows the
for the system. There are two con
4(c) shows two constraint grou
constraint relation graph. Note tha
to be executed once. As mentione
techniques, which are often referre
inside many constraint solvers.

Now we explain how to use con
irrelevant constraints. To check th
combination) τ, we identify releva
For each parameter in τ, if it is invo
the constraints in the same con
identified to be relevant to this va
constraints are encoded in the CS
solver.

This optimization can be very e
algorithm IPOG-C builds a test se
we build a t-way test set for the fir
extend this test set to cover the firs
on. When we try to cover a new pa
to check the constraints in the same

Consider the example system
add a new parameter value f.0 to a
c.0, d.0, e.1}, which must be valid.
the new test, i.e., {a.0, b.1, c.0, d.0
to consider c3. Constraints c1, c2 a
this case.

3) Recording the Solving Histo
In this optimization, we record

each constraint group to avoid
multiple times. As discussed in I
from a set of parameter values in
checked, and is then solved by
Boolean value “true” or “false” tha

nts that are relevant to a
her ones. This helps to
int solving problem.

o non-intersecting groups.
ructure called constraint
ations between different
ation graph, each node
undirected) edge indicates

more common parameters.
omponents in the graph.
components are put into
s that share a common
e grouped together.

onstraint Group

contains 7 parameters and
constraint relation graph

nnected components. Fig.
ups identified from the
t this process only needs
ed in Section VI, similar
ed to as slicing, are used

nstraint groups to identify
he validity of a test (or
nt constraints as follows.
olved in a constraint c, all
nstraint group as c are
alidity check. Only these
SP sent to the constraint

effective considering that
et incrementally. That is,
rst t parameters, and then
st t+1 parameters, and so
arameter p, we only need
e group as p.
in Fig. 4(a). Assume we
an existing test {a.0, b.1,
. To check the validity of
0, e.1, f.0}, we only need
and c4 are not relevant in

ory
d the solving history for
solving the same CSP

IV.B, a CSP is encoded
the test that needs to be
a constraint solver. A

at indicates the validity of

245

the test will be returned. For each constraint
save solving history, i.e., the set of parame
to the CSP solver and the Boolean value
CSP solver. Next time when a constraint
going to make, we first search for th
parameters values in the solving history, an
found, we can reused the cached result to av
call. Recall that in the previous optimiza
constraints into several non-intersecting gro
the hit rate of the cached solving history, w
problem into several independent sub-prob
constraint groups, and then save the solving
of them.

Consider the example system in Fig. 4(
parameters a, b, c, d and e have been cove
trying to cover parameter f. Fig. 5(a) sh
candidate tests. As discussed earlier, the
constraint is c3, which involves param
Therefore the validity of the two can
essentially determined by the the combinati
parameters e and f in the two tests. Wherea
need to be checked are different, their validi
by the same value combination, i.e. {e.0,
checking the first test, we have the solving
f.1} (which is invalid), as shown in Fig. 5(b)
to derive that the second test is invalid witho
to the constraint solver.

Figure 5. Illustration of using constraint solv

D. Applying Optimizations to Other Algorit
Our optimizations can be applied to othe

algorithms. Due to space limitations, we
apply our optimizations to the AETG algo
algorithm IPOG, the AETG algorithm a
framework. However, it builds a test set on
instead of one-parameter-at-a-time.

 The key to apply the first optimization
the existence of invalid t-way combinations
which is supposed to contain only valid t-wa
This could affect the greedy selection of
AETG, a test value is selected such that it
valid combinations in the target set. Ac
principle of the first optimization, all th
covered by a valid test are guaranteed to be
long as the validity of the resulting test is c
selection of a test value, the existen
combinations would not affect the sel
However, there is an exception with the sele
t – 1 values in a test. In the AETG algorith
are selected such that they appear in the m
combinations in the target set.

One approach to dealing with this excep
the AETG algorithm as follows. Instead of c
t – 1 values one by one, we choose the first

t solving call, we
eters values send

returned by the
t solving call is

he same set of
nd if a match is
void this solving
ation, we divide
ups. To increase

we divide a CSP
blems based on

g history for each

(a). Assume that
ered and we are

hows 2 different
e only relevant

meters e and f.
ndidate tests is
ions of values of
as the 2 tests that
ity is determined
f.1}. Thus after
history for {e.0,
). This allows us

out making a call

ving history

thms
er test generation

discuss how to
orithm [5]. Like
adopts a greedy
ne-test-at-a-time,

n is dealing with
in the target set,

ay combinations.
a test value. In
covers the most

ccording to the
he combinations
e valid. Thus, as
checked after the
nce of invalid
lection process.
ection of the first
hm, these values
most number of

tion is to change
choosing the first
t values in a test

altogether. This is done by findi
combination that remains in the ta
the t values in this combination
makes the selection of the first
However, we note that t is typically
of the other values remains unchang

The existence of invalid t-way c
set may also affect the termination
algorithm, the test generation proc
target set is empty. However
combinations may never be covere
may never be empty. It is inter
problem can be resolved by the
earlier. That is, if we select the
altogether by finding a valid t-way
set, the test generation process com
no valid combination can be found.

The second and third optimizat
the core test generation process. T
only during valid checks. Thus, th
AETG algorithm without modificat

V. EXPERIM

We implemented algorithm IP
into a combinatorial test generatio
which is freely available to the pub
solver called Choco [4] is used for c

Our experiments consist of th
(Section V.B) is designed to evalu
the three optimizations. The second
investigate how the performance
affected by several factors, includi
of parameters, size of domain and
tuples. The third part (Section V.D
other combinatorial test genera
experiments were performed on
2410M 2.30GHz CPU and 4.0 GB
Windows 7.

A. Subject Systems
We use both real-life and syn

experiments. The real-life systems
introduced in [7], and a system ca
[16]. We adopt the exponential n
parameter configurations, where d
parameters with domain size d. T
systems were given in the form o
and [16]. We also use an expone
constraints, where dn means there
each of which involves d paramete
each forbidden tuple to an equivale
For example, a forbidden tuple {a.
logic expression “! (a=0 && b=1)”
real-life systems are listed in Table

We created 10 synthesized syst
of 10 parameters of domain s
parameters as p1, p2, …, and p10
single constraint which is carefully
number of forbidden tuples. The nu
is an important measure of the co

ng the first valid t-way
arget set, and then assign
to the test. This change
t t values less greedy.
y small, and the selection
ged.
combinations in the target
n condition. In the AETG
cess terminates when the
r, some invalid t-way
ed, and thus the target set
resting to note that this

same change suggested
first t values of a test

combination in the target
mes to a natural stop when

tions do not interact with
That is, they take effect

hey can be applied to the
tions.

MENTS
POG-C and integrated it
on tool called ACTS [1],
blic. An open source CSP
constraint solving.

hree parts. The first part
uate the effectiveness of
d part (Section V.C) is to
of algorithm IPOG-C is
ing test strength, number
the number of forbidden

D) compares ACTS with
ation tools. All these
a laptop with Core i5

B memory, running 64-bit

nthesized systems in our
include the five systems

lled TCAS introduced in
notation in [7] to denote
dn means that there are n
The constraints in these

of forbidden tuples in [7]
ential notation to denote
e are n forbidden tuples
ers. We manually convert
ent constraint expression.
.0, b.1} is converted to a
”. The configurations of 6
1.

tems, all of which consist
ize 4. We denote the
. Each system contains a
y designed to control the
umber of forbidden tuples
mplexity of a constraint.

246

Note that the number of constraints is not important as
different constraints can be joined together.

TABLE I. CONFIGURATIONS OF REAL-LIFE SYSTEMS

Name Num. of
Parameters

Num. of
Constraints

Parameter
Configuration

Constraint
Configuration

Apache 172 7 2158 38 44 51 61 23 31 42 51
Bugzilla 52 5 249 31 42 24 31

GCC 199 40 2189 310 237 33
SPIN-S 18 13 213 45 213
SPIN-V 55 49 242 32 411 247 32
TCAS 12 3 27 32 41 102 23

Some existing tools only support forbidden tuples as

constraints. To compare to these tools, we derive all the
forbidden tuples encoded by each constraint. Take system
C1 as an example, we enumerate all 3-way value
combinations of parameter p1, p2 and p3, and found 30
combinations that violate the constraint (p1>p2 || p3>p2) as
forbidden tuples. We list the configurations, the number of
derived forbidden tuples and detailed constraints for these
synthesized systems in Table II.

TABLE II. CONFIGURATIONS OF SYNTHESIZED SYSTEMS

Name Param.
Config.

Num. of
Forbidd.
Tuples

Constraint

C1 410 30 p1>p2 || p3>p2
C2 410 100 p1>p2 || p3>p4
C3 410 200 p1>p2 || p3>p4 || p5>p1
C4 410 300 p1>p2 || p3>p4 || p5>p2
C5 410 1000 p1>p2 || p3>p4 || p5>p6
C6 410 2000 p1>p2 || p3>p4 || p5>p6 || p7>p1
C7 410 3000 p1>p2 || p3>p4 || p5>p6 || p7>p2
C8 410 10000 p1>p2 || p3>p4 || p5>p6 || p7>p8
C9 410 20000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p1
C10 410 30000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p2

B. Evaluation of the Optimizations
To evaluate he effectiveness of individual optimizations

and their combination, we tested multiple configurations.
Table III shows five different configurations of the
optimization options, where a tick denotes that the
corresponding optimization is enabled, and dash means not.
The first configuration represents the base version of IPOG-
C, i.e., without any optimization, and the last one contains
all the optimizations.

TABLE III. CONFIGURATION OF OPTIMIZATION OPTIONS

Optimization Base O1 O2 O3 All
Avoiding unnecessary validity checks on
 t-way combinations - � - - �

Checking relevant constraints only - - � - �

Recording the solving history - - - � �

Due to limited space, we use 6 real-life systems and the

synthesized system with the most complex constraint, i.e.,

C10. The test strength is set to 2. We measure the
performance of constrained test generation in terms of
number of constraint solving calls (i.e., the number of times
the constraint solver is called) and execution time. The
number of constraint solving calls is an importance metric
because it is independent from the program implementation,
the hardware configuration or different constraint solvers.
The comparison results are shown in Tables IV and V. We
do not show the number of tests, which is not affected by
these optimizations.

TABLE IV. COMPARISON OF NUMBER OF CONSTRAINT SOLVING
CALLS (2-WAY)

System
IPOG-C with Different Optimizations

Base O1 O2 O3 All
Apache 15751 3903 12314 284 155
Bugzilla 2843 732 2352 57 50

GCC 34613 4753 31250 1032 631
SPIN-S 1183 478 1002 293 171
SPIN-V 10770 3679 9609 766 546
TCAS 828 597 535 59 42
C10 991 287 954 796 246

TABLE V. COMPARISON OF EXECUTION TIME (IN SECONDS)

System
IPOG-C with Different Optimizations

Base O1 O2 O3 All
Apache 105.411 6.225 9.403 0.687 0.577
Bugzilla 2.808 0.904 1.763 0.328 0.296

GCC 683.599 24.462 59.429 1.809 1.139
SPIN-S 1.545 0.92 1.31 0.749 0.53
SPIN-V 81.323 18.239 11.169 1.124 0.889
TCAS 0.874 0.749 0.702 0.36 0.328
C10 1.014 0.53 0.89 0.828 0.515

The results in Tables IV and V suggest that the

optimizations are very effective. Recall that the first
optimization avoids validity check for all t-way target tuples
in the beginning of test generation. This optimization is very
effective when the system has a large number of t-way
target tuples. For example, Apache contains 172 parameters
and GCC has 199 parameters. They both have a large
number of target tuples. With this optimization, the
generation process runs 17 times faster for Apache, and 28
times faster for GCC.

The second optimization reduced the execution
significantly, but not the number of constraint solving calls..
This is because this optimization is aimed to simplify the
actual constraint solving process by only considering
relevant constraints. Note that the number of constraint
solving classes is also slightly decreased. This is because a
parameter may not be involved in any constraint. In this
case, no relevant constraints are found and thus no
constraints need to be solved.

The third optimization seems to be the most effective
optimization in the experiments. Recall that it records the
solving history based on constraint groups to reduce

247

redundant solvings. This optimization is more effective with
small constraint groups, where redundant solvings are more
likely to happen. On the other hand, this optimization is less
effective with large constraint groups. For example, for
system C10, where 9 of 10 parameters belong to the same
constraint group, this optimization is not very effective.

The three optimizations are complementary to each
other and can be combined to further reduce the number of
constraint solving calls and the execution time. In particular,
for all of the real-life systems, the number of constraint
solving calls was reduced by one or two orders of
magnitude.

C. Evaluation of Different Factors
In this section, we explore how the performance of the

entire test generation process is affected by different factors,
including test strength, number of parameter, domain size
and number of forbidden tuples. Each time we fix all the
factors but one. We compare the test generation
performance of our algorithm between with all the
optimizations (i.e., the optimized version of algorithm
IPOG-C) and without any optimization (the base version of
algorithm IPOG-C).

1) Test Strength
We use system C1 to evaluate the performance of

constrained test generation using different test strengths.
Recall that C1 has 10 parameters of domain size 4. We
record number of validity checks, number of times the
constraint solver is called, and execution time in Table VI.

TABLE VI. TEST GENERATION WITH DIFFERENT TEST STRENGTHS

Test
Strength

Num. of
Target
Tuples

Base Optimized

Num. of
Solving Calls

Time
(sec)

Num. of
Solving Calls

Time
(sec)

2 683 644 0.67 77 0.31
3 7062 6869 3.9 121 0.32
4 47656 51787 64.17 122 0.40
5 218848 267421 1368.01 124 1.35
6 690816 Out of Memory Out of Memory 124 14.39

One may find that as the test strength increases, the

number of target tuples increase very fast. However, after
those optimizations are applied, the number of constraint
solving calls increases very slowly, and is even unchanged
from strength 5 to 6. This is mainly due to the third
optimization, which records the solving history for each
constraint group. This system contains a single constraint
group involving only 3 parameters. After all of the possible
43 = 64 value combinations, have been checked, all validity
checks can be handled by looking up the solving history.
That is, no more solving calls are needed.

2) Number of Parameters
In this section, we evaluate the performance of the test

generation process with respect to different numbers of
parameters. We built 8 systems with the number of
parameters ranging from 4, 6, 8 to 18. The constraint
“(p1>p2 || p3>p2)” in system C1 is used for all of these 8
systems. The test strength is set to 3.

Fig. 6 show that as the number of parameters increases,
the number of constraint solving calls and the execution
time increase very fast for the base version, but very slow
for the optimized version.

Figure 6. Performance w.r.t. different numbers of parameters

3) Domain Size
In this experiment, we still use system C1, but change

the domain size to build 8 different systems. These systems
have the same number of parameters and the same
constraint, but the domain size increases from 2, 3, 4 until 9.
The test strength is set to 3.

Figure 7. Performance w.r.t. different domain sizes

Again, Fig. 7 shows that as the domain size increases,
the number of constraint solving calls and the execution
time increase very fast for the base version, but very slow
for the optimized version.

4) Number of Forbidden Tuples
We use all of the 10 synthesized systems in this section

to evaluate how the performance of the test generation
process changes when the number of forbidden tuples
changes. As discussed earlier, these systems have the same
parameter configuration but different constraints. Those
constraints are carefully designed to control the number of
forbidden tuples. The test strength is set to 3.

Fig. 8 shows that as the number of forbidden tuples
increases, the number of constraint solving calls and the
execution time increase very fast for the base version, but
very slow for the optimized version.

Figure 8. Performance w.r.t. different numbers of forbidden tuples

248

D. Comparison With Other Tools
In this section, we compare ACTS [1] (using the

optimized IPOG-C algorithm) to other test generation tools.
First we briefly introduce several existing test generation
tools with constraint support.

CASA [7] integrates a SAT solver into a simulated
annealing algorithm. Constraints are specified as Boolean
formulas. We record the best result among five runs since
this algorithm is not deterministic.

mAETG [6] integrates a SAT solver into an AETG-like
algorithm. However, we did not make a comparison in this
paper since mAETG is not available to public.

Ttuples [3] uses a greedy algorithm based on a property
of (unconstrained) t-way test set, i.e., if two parameters have
the same domain, it’s safe to exchanging all their values.
Constraints are specified as a set of forbidden tuples.

PICT [8] also adopts an AETG-like greedy algorithm.
Constraints are specified in the form of logical expressions,
but forbidden tuples are derived from the constraints to
perform validity check.

These tools are compared in two dimensions: size of test
set and execution time. However, it is important to note that
size of test set mainly depends on the core test generation
algorithms. Also even without constraints, the performances
of different test generation algorithms are different.
Furthermore, we did not make a comparison on the number
of constraint solving calls or the number of validity checks,
since we cannot obtain them from other tools.

Our comparison uses the 6 real-life systems and 10
synthesized systems introduced in Section VI.A. Since
CASA and Ttuples cannot handle constraint expressions, we
derived all forbidden tuples for 10 synthesized systems. The
number of generated tests and the execution time for each
system are shown in Table VII. The number of forbidden
tuples is also listed. The test strength is set to 3. We limit the
execution time within 500 seconds.

TABLE VII. COMPARISION OF DIFFERENT TOOLS (3-WAY)

System
Num. of
Forbid.
Tuples

CASA Ttuples PICT ACTS
size time(s) size time(s) size time(s) size time(s)

Apache 7 - - - - 202 176.01 173 25.2
Bugzilla 5 71 497.76 62 4.55 70 0.69 68 0.61

GCC 40 - - - - 134 170.26 108 35.52
SPIN-S 13 103 187.51 127 0.30 113 0.09 98 1.82
SPIN-V 49 - - 306 12.1 345 4.92 284 5.09
TCAS 3 405 99.7 402 0.27 409 0.11 405 0.55

C1 30 146 26.2 207 0.53 163 0.06 158 0.36
C2 100 164 47.23 202 1.31 171 0.06 168 0.58
C3 200 162 45.94 191 1.35 166 0.07 163 0.71
C4 300 157 59.15 200 2.69 166 0.08 161 0.74
C5 1000 157 72.86 196 5.03 170 0.18 160 0.87
C6 2000 161 68.83 195 7.12 163 0.96 161 0.97
C7 3000 166 70.14 188 14.94 162 1.09 160 1.00
C8 10000 160 99.12 196 257.75 163 17.34 164 1.11
C9 20000 150 131.5 - - 162 242.1 157 1.06

C10 30000 155 114.63 - - 161 461.5 158 1.21

* Dash (-) means the execution time is longer than 500 seconds.

We make several observations from Table VII.
CASA uses a non-deterministic generation algorithm.

CASA generates relatively small test sets, but its execution
time is relatively longer. This is because the simulated
annealing algorithm is able to find a more optimal solution,
but is usually much slower than greedy algorithms. Ttuples
runs fast on small real life systems (SPIN-S, TCAS) and
synthesized systems with small number of forbidden tuples.
However, it takes much longer time to handle other systems.
Generally speaking, it’s more efficient to handle constraints
using forbidden tuples when the number of forbidden tuples
is small, but the test generation algorithm of Ttuples may
not be efficient for large systems. For synthesized systems,
the execution time of Ttuples increases very fast as the
number of forbidden tuples increases. This is a disadvantage
of using forbidden tuples. Similar to Ttuples, the execution
time of PICT also increases very fast as the number of
forbidden tuples increases. For other systems, PICT is fast
and generates good results. ACTS generates relatively small
test sets, and runs fast overall. For some systems, ACTS
runs slightly slower than PICT, but the differences are very
small. ACTS runs much faster than other tools on systems
with large number of parameters (Apache, GCC) and
systems with large number of forbidden tuples (C9, C10),
exhibiting very good scalability. This can be a significant
advantage when we deal with systems with more complex
constraints.

Fig. 9 shows how execution time changes as number of
forbidden tuples in 10 synthesized systems increases. When
the number of forbidden tuples is small, Ttuples, PICT and
ACTS have similar execution time, while CASA takes
longer time to finish. However, as the number of forbidden
tuples increases, the execution time of Ttuples and PICT
increases significantly. In contrast, the execution time of
CASA increases slowly, and the execution time for ACTS
remains almost unchanged. The reason is that CASA and
ACTS use constraint solver for validity checks, and do not
have to maintain a large number of forbidden tuples during
test generation. This demonstrates a major advantage of
using a constraint solver instead of forbidden tuples.

Figure 9. Camparison of Different Number of Tuples

E. Threats to Validity
The main external threat to validity is that the

benchmark systems used in our experiments may not be
representative of real-life applications. We used both real-
life and synthesized systems to reduce this threat. The

249

internal threat to validity is mainly due to potential mistakes
made in the experiments. We tried to automate the
experiments as much as possible to reduce chances of error.
For example, a tool was used to automatically derive
forbidden tuples from the constraint expressions of the
synthesized systems. Bugs may also exist in the
implementation of the test generation algorithm. To reduce
this threat, we used an independent procedure to check the
validity of each test and the coverage.

VI. RELATED WORK
We focus our discussion on work that handles

constraints using a constraint solver. Garvin et al. integrated
a SAT solver into a meta-heuristic search algorithm, called
simulated annealing, for constrained combinatorial test
generation [9][10]. It was found that integration with the
original version of the search algorithm did not produce
competitive results, both in terms of number of tests and test
generation time. Thus, a couple of changes were made to the
original search algorithm to improve the results. The
modified search algorithm could produce a different test set
than the original search algorithm. This is in contrast to our
work, where our optimizations do not change the original
test generation algorithm, i.e., IPOG. In particular, our
optimizations reduce the execution time spent on constraint
handling, but do not change the size of the test set.

Cohen et al. integrated a SAT solver into an AETG-like
test generation algorithm [6] [7]. They also proposed two
optimizations to improve the overall performance. In their
optimizations, the history of the SAT solver is exploited to
reduce the search space of the original test generation
algorithm. Like the work in [9], their optimizations require
changes to the original test generation algorithm, and thus
could produce a different test set. In addition, their
optimizations require access to the solving history and are
thus tightly coupled with the SAT solver. This is in contrast
with our optimizations, which do not change the original
test generation algorithm and are independent from the
constraint solver.

Recent work has applied combinatorial testing to
software product lines. A software product line is a family
of products that can be created by combining a set of
common features. In this domain, constraint handling is a
must because dependencies naturally exist between different
features. Hervieu et al [12] developed a constraint
programming approach for pairwise testing of software
product lines. The focus of their work is on the conversion
of the pairwise test generation problem to a constraint-
programming problem. In particular, they formulated a
global constraint to achieve pairwise coverage. Their work
relies on the underlying constraint solver to achieve the best
result. That is, they do not explicitly address the
optimization problem.

Perrouin et al. [19] addressed the scalability of a
constraint solver in the context of t-way testing of software
product lines. Specifically, they address the problem that
current constraint solvers have a limit in the number of
clauses they can solve at once. They use a divide-and-
conquer strategy to divide the t-way test generation problem
for the entire feature model into several sub-problems. Their

work addresses a different problem than, and is
complementary to, our work, which tries to reduce the
number of calls to a constraint solver and to remove
constraints that are not relevant in a constraint solving call.

Johansen et al. [13] developed an algorithm called ICPL
that applies t-way testing to software product lines. Similar
to our algorithm, algorithm ICPL includes several
optimizations to reduce the number of calls to a constraint
solver. There are two major ideas in their optimizations that
are closely related to our optimizations. The first idea is to
postpone removal of invalid target combinations (called t-
sets in [13]). This achieves an effect similar to our first
optimization, i.e., avoiding unnecessary validity checks of
target combinations. However, there are two important
differences. First, algorithm ICPL uses a heuristic to
determine at which point to remove invalid target
combinations. In contrast, our algorithm, IPOG-C, removes
invalid target combinations during vertical growth, without
using any heuristic condition. Second, they have very
different motivations. Algorithm ICPL adopts a target
combination-oriented framework, where the main loop
iterates through the set of target combinations and covers
them as they are encountered. Removing invalid
combinations up front would cause two constraint solving
calls for many valid combinations. (The other call is needed
when a valid combination is actually covered in a test.) In
contrast, our algorithm largely uses a test-oriented
framework, where we try to determine each value in a test
such that it covers as many combinations as possible. The
key insight in our optimization is that if a test is found valid,
then all the combinations covered by this test would be
valid, and thus do not have to be explicitly checked.

The second optimization idea in algorithm ICPL that is
closely related to ours is trying to check the validity of a t-
way combination without actually calling the constraint
solver. Algorithm ICPL is recursive in which a t-way test set
is built by extending a (t-1)-way test set. The set of invalid
combinations is maintained at each strength in the recursive
process. An invalid t-way target combination is identified if
it is an extension of an invalid (t-1)-way combination. In
contrast, our algorithm records the solving history, which is
used to determine the validity of a target combination as
well as a test without calling the constraint solver. Also, our
algorithm is not recursive, and does not maintain a set of
invalid target combinations.

It is important to note that work on testing software
product lines assumes Boolean parameters and constraints in
the form of Boolean logic expressions. In contrast, our work
does not have this restriction. Furthermore, software product
lines typically have a large number of constraints but a
small t-way test set. As a result, some optimizations that are
effective for software product lines may not be very
effective for general systems, and vice versa.

Finally we note that many optimization techniques are
employed inside existing constraint solvers. In principle, our
second and third optimizations are similar to constraint
slicing and caching strategies used in some constraint
solvers like zChaff [18] and STP [2]. These optimizations
are also used outside a constraint solver in program analysis
tools such as EXE [2]. However, we differ in that our

250

optimizations work together with the combinatorial test
generation algorithm and leverage its incremental
framework to achieve maximal performance improvements.
To our best knowledge, this is the first time these techniques
are applied in a way that is integrated with the combinatorial
test generation framework.

VII. CONCLUSION AND FUTURE WORK
In this paper, we present an efficient algorithm, called

IPOG-C, for constrained combinatorial test generation. The
major contribution of our work is three optimizations
employed by algorithm IPOG-C to improve the
performance of constraint handling. These optimizations try
to reduce the number of calls to a constraint solver. When
such a call cannot be avoided, these optimizations try to
reduce the number of constraints that have to be solved. We
show that these optimizations can be applied to other test
generation algorithms. Experiment results show that these
optimizations can achieve performance improvements of up
to two orders of magnitude. The IPOG-C algorithm is
implemented in a combinatorial test generation tool, i.e.,
named ACTS, which is freely available to public. A
comparative evaluation suggests that ACTS can perform
significantly better than other tools for systems that have
more complex constraints.

There are several directions to continue our work. First,
we want to conduct more experiments to evaluate the
effectiveness of our algorithm. In particular, the real-life
systems in our experiments have a very small number of
forbidden tuples. We want to investigate whether this is the
case in general and if possible, apply our algorithm to real-
life systems with a large number of forbidden tuples.
Second, we want to develop efficient schemes to parallelize
our algorithm. For example, we could divide the complete
set of target combinations into several subsets, and then
assign these subsets to different cores or processors. As
another example, when we try to select the best value of a
parameter, we could employ multiple cores or processors to
determine the weight of each value. Finally, we plan to
investigate how to integrate our algorithm into an existing
test infrastructure. Most work on combinatorial testing only
addresses the test generation problem. Combinatorial testing
can generate a large number of tests. It is thus particularly
important to streamline the entire test process, i.e., integrate
our test generation tool with other tools that automate test
execution and test evaluation.

ACKNOWLEDGMENT
This work is partly supported by three grants

(70NANB9H9178, 70NANB10H168, 70NANB12H175)
from Information Technology Laboratory of National
Institute of Standards and Technology (NIST) and a grant
(61070013) of National Natural Science Foundation of
China.

DISCLAIMER: NIST does not endorse or recommend
any commercial product neither referenced in this paper nor
imply that the referenced product is necessarily the best.

REFERENCES
[1] ACTS, http:// csrc.nist.gov/acts/
[2] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, Dawson

Engler, “EXE: Automatically Generating Inputs of Death,” ACM
Transactions on Information and System Security (TISSEC) Volume
12, No. 2, December 2008

[3] A. Calvagna, A. Gargantini, “T-wise combinatorial interaction test
suitees construction based on coverage inheritance,” In: Software
Testing, Verification and Reliability, 2009

[4] Choco Solver, http://www.emn.fr/z-info/choco-solver/
[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The

AETG system: An approach to testing based on combinatorial
design,” IEEE Transactions On Software Engineering, 23(7):437–
444, 1997

[6] M.B. Cohen, M.B. Dwyer, J. Shi., “Interaction testing of highly-
configurable systems in the presence of constraints,” In: 5th
international symposium on software testing and analysis, pp 129–
139, 2007

[7] M.B. Cohen, M.B. Dwyer, J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints:
a greedy approach”, IEEE Trans. Softw. Eng. 34, 633–650, 2008

[8] J. Czerwonka, “Pairwise testing in real world,” In: 10th Pacific
northwest software quality conference, pp 419–430, 2006

[9] B.J. Garvin, M.B. Cohen, and M.B. Dwyer. “An improved meta-
heuristic search for constrained interaction testing,” In: 1st
international symposium on search based software engineering, pp
13–22, 2009

[10] B.J. Garvin, M.B. Cohen, and M.B. Dwyer, “Evaluating
Improvements to a Meta-Heuristic Search for Constrained
Interaction Testing,” Empirical Software Engineering (EMSE),
16(1), pp.61-102, 2011

[11] Mats Grindal, Jeff Offutt, Jonas Mellin, “Managing con�icts when
using combination strategies to test software,” Proceedings of the
2007 Australian Software Engineering Conference (ASWEC 2007),
pp. 255–264, 2007

[12] Aymeric Hervieu, Benoit Baudry, Arnaud Gottlieb, “PACOGEN :
Automatic Generation of Test Configurations from Feature Models,”
Proc. of Int. Symp. on Soft. Reliability Engineering (ISSRE'11),
2011

[13] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey,
“An Algorithm for Generating T-wise Covering Arrays from Large
Feature Models,” In Proceedings of the 16th International Software
Product Line Conference - Volume 1 (SPLC 2012), pages 46-55.

[14] D.R. Kuhn, M.J. Reilly, “An investigation of the applicability of
design of experiments to software testing,” Proceedings of 27th
NASA/IEEE Software Engineering Workshop, 2002; 91–95

[15] D.R. Kuhn, D.R. Wallace, Jr. A.M. Gallo, “Software fault
interactions and implications for software testing,” Software
Engineering, IEEE Transactions on, 2004

[16] D.R. Kuhn, Vadim Okum, “Pseudo-exhaustive testing for software,”
In SEW ’06: IEEE/NASA Software Engineering Workshop, Los
Alamitos, CA, USA, 2006

[17] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, “IPOG: A
general strategy for t-way software testing,” In: 14th international
conference on the engineering of computer-based systems, 2007

[18] Y. S. Mahajan and S. M. Z. Fu, “Zchaff2004: An efficient sat
solver,” in SAT 2004, pp. 360–375, 2004

[19] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, Yves le
Traon, “Automated and Scalable T-wise Test Case Generation
Strategies for Software Product Lines,” 2010 IEEE International
Conference on Software Testing Validation and Verification, 2010

[20] D.R. Wallace, D.R. Kuhn, “Failure modes in medical device
software: An analysis of 15 years of recall data,” International
Journal of Reliability, Quality and Safety Engineering 2001

251

