
An Efficient Algorithm for Constraint Handling in Combinatorial Test Generation 

Linbin Yu1, Yu Lei1, Mehra Nourozborazjany1, Raghu N. Kacker2, D. Richard Kuhn2 
 

1Department of Computer Science and Engineering 
University of Texas at Arlington 

Arlington, TX 76019, USA  
{linbin.yu, mehra.nourozborazjany}@mavs.uta.edu, 

ylei@cse.uta.edu 

2Information Technology Laboratory 
National Institute of Standards and Technology 

Gaithersburg, MD 20899, USA  
{raghu.kacker, kuhn}@nist.gov 

 
 

Abstract— Combinatorial testing has been shown to be a very 
effective testing strategy. An important problem in 
combinatorial testing is dealing with constraints, i.e., 
restrictions that must be satisfied in order for a test to be 
valid. In this paper, we present an efficient algorithm, called 
IPOG-C, for constraint handling in combinatorial testing. 
Algorithm IPOG-C modifies an existing combinatorial test 
generation algorithm called IPOG to support constraints. The 
major contribution of algorithm IPOG-C is that it includes 
three optimizations to improve the performance of constraint 
handling. These optimizations can be generalized to other 
combinatorial test generation algorithms. We implemented 
algorithm IPOG-C in a combinatorial test generation tool 
called ACTS. We report experimental results that 
demonstrate the effectiveness of algorithm IPOG-C. The three 
optimizations increased the performance by one or two orders 
of magnitude for most subject systems in our experiments. 
Furthermore, a comparison of ACTS to three other tools 
suggests that ACTS can perform significantly better for 
systems with more complex constraints.  

Keywords-Combinatorial Testing; Constraint Handling; 
Test Genration; 

I.  INTRODUCTION 
Combinatorial testing (CT) has been shown to be a very 

effective testing strategy [14] [15] [20]. Given a system with 
n parameters, t-way combinatorial testing requires that all t-
way combinations, i.e., all combinations involving any t 
parameter values, be covered by at least one test, where t is 
referred to as test strength and is typically a small number. 
A widely cited NIST study of several fault databases reports 
that all the faults in these databases are caused by no more 
than six factors [14]. If test parameters are modeled 
properly, t-way testing can expose all the faults involving no 
more than t parameters. 

Practical applications often have constraints on how 
parameter values can be combined in a test [11]. For 
example, one may want to ensure that a web application can 
be executed correctly in different web browsers running on 
different operating systems. Consider that Internet Explorer 
(or IE) 6.0 or later cannot be executed on MacOS. Thus, if 
the web browser is IE 6.0 or later, the operating system must 
not be MacOS. This constraint must be taken into account 
such that IE 6.0 or later and Mac OS do not appear in the 
same test.  

Constraints must be specified by the user before they are 
handled during test generation. One approach is to specify 
constraints as a set of forbidden tuples. A forbidden tuple is 
a value combination that should not appear in any test. 
When there are a large number of forbidden tuples, it can be 
difficult for the user to enumerate them. Alternatively, 
constraints can be specified as a set of logical expressions. 
A logical expression describes a condition that must be 
satisfied by every test. Logical expressions are more concise 
than explicit enumeration of forbidden tuples. In this paper, 
we assume that constraints are specified using logical 
expressions.   

A major step in constraint handling is validity check, 
i.e., checking whether all the constraints are satisfied by a 
test. One approach to performing this check is to ensure that 
a test contains no forbidden tuples. This approach needs to 
maintain the complete list of all the forbidden tuples, which 
can be expensive when there are a large number of 
forbidden tuples. Alternatively, we can employ a constraint 
solver to perform this check. In this approach, we encode 
the problem of validity check as a constraint satisfaction 
problem. In this paper we focus on the latter approach, since 
it avoids maintaining the complete set of forbidden tuples 
and is thus a more scalable approach.  

It is important to note that the way in which validity 
check is performed is independent from the way in which 
constraints are specified. For example, a tool called mAETG 
[6] uses forbidden tuples to specify constraints. Forbidden 
tuples are converted into a set of Boolean logic expressions, 
which are then solved by a SAT solver. In contrast, a tool 
called PICT [8] uses logic expressions to specify constraints. 
A list of forbidden tuples are first generated from the 
specified logic expressions and then used to perform 
validity check during test generation.  

Both combinatorial testing and constraint solving are 
computation-intensive processes. The main challenge of 
constrained combinatorial test generation is dealing with 
this complexity. In this paper, we present an efficient 
algorithm, called IPOG-C, to address this challenge. 
Algorithm IPOG-C modifies an existing combinatorial test 
generation algorithm called IPOG [17] and employs a 
constraint solver to handle constraints. To optimize the 
performance of constraint handling, algorithm IPOG-C tries 
to reduce the number of calls to the constraint solver. In case 
that such a call cannot be avoided, algorithm IPOG-C tries 
to simplify the solving process as much as possible.  
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Specifically, algorithm IPOG-C includes the following 
three optimizations: 

1) Avoiding unnecessary validity checks on t-way 
combinations. A t-way test set must cover all the 
valid t-way combinations. A t-way combination is 
valid if it can be covered by at least one valid test. 
Checking the validity of each t-way combination 
can be expensive since there often exist a large 
number of t-way combinations. The key insight in 
our optimization is that if a test is found valid, then 
all the combinations covered by this test would be 
valid, and thus do not have to be explicitly checked.  

2) Checking relevant constraints only. When we 
perform a validity check, some constraints may not 
be relevant and thus do not have to be checked. We 
use a notion called constraint relation graph to 
identify groups of constraints that are related to each 
other, which are then used to identify relevant 
constraints in a validity check. Algorithm IPOG 
builds a test set incrementally, i.e., covering one 
parameter at a time. This incremental framework is 
leveraged in this optimization to further reduce the 
number of relevant constraints that have to be 
involved in a validity check. 

3) Recording the solving history. This optimization 
tries to reduce the number of calls to the constraint 
solver by saving previous solving results. This 
optimization works together with 2) to maximize 
reduction in the number of calls to the constraint 
solver. 

For the purpose of evaluation, we implemented 
algorithm IPOG-C in a combinatorial test generation tool 
called ACTS. ACTS is freely available to the public [1]. We 
conducted experiments on a set of real-life and synthesized 
systems. The experimental results indicate that the three 
optimizations employed in algorithm IPOG-C increased the 
performance by one or two orders of magnitude for most 
subject systems. For example, for a real-life system GCC, 
the optimizations reduced the number of calls to the 
constraint solver from 34613 to 631 and the execution time 
from 683.599 seconds to 1.139 seconds. Furthermore, the 
optimizations significantly slow down the increase in the 
number of calls to the constraint solver and the execution 
time as test strength, number of parameters, domain size, or 
number of forbidden tuples increases. Finally, a comparison 
of ACTS to three other tools suggests that ACTS can 
perform significantly better for systems with more complex 
constraints. 

The rest of this paper is organized as follows. Section II 
gives a formalization of the constrained combinatorial test 
generation problem. Section III presents the original IPOG 
algorithm without constraint support. Section IV presents 
the new algorithm, i.e., IPOG-C. In particular we discuss the 
three optimizations. Section V reports some experimental 
results. Section VI discusses related work. Section VII 
concludes this paper and discusses future work. 

II. PRELIMINARY  
In this section, we formally define the problem of 

constrained combinatorial test generation. 

Definition 1 (Parameter) A parameter p is a set of 
values, i.e., p = {v1, v2, …, vp}. 

Value v for parameter p can be denoted as p.v. For ease 
of notation, we assume that different parameters are disjoint. 
This implies that each parameter value belongs to a unique 
parameter. This allows us to refer to a parameter value by 
itself, i.e., without mentioning which parameter it belongs to.  

Definition 2 (Tuple) Let G = {p1, p2, …, pm} be a set of 
parameters. A tuple τ = {v1, v2, …, vm} of G is a set of 
values where vi ��pi. That is, τ � p1 × p2 … × pm.  

Intuitively, a tuple τ consists of a value v for each 
parameter p in a given set of parameters. We refer to a tuple 
of size t as a t-tuple. We also refer to v as the value of p in τ 
if there is no ambiguity. This effectively overloads the 
notion of a parameter, which may represent a set of values 
or may take a particular value, depending on its context. We 
use �({p1, …, pm}) to denote p1 × p2 … × pm.  

Definition 3 (SUT) A System Under Test (SUT) M = 
<P, C> consists of a set P = {p1, p2, …, p|P|} of parameters, 
where pi is a parameter, and a set C = {c1, c2, …, c|C|} of 
constraints, where each constraint ci is a function: � (P) → 
{true, false}. 

We refer to each tuple in �(P) as a test of M. In other 
words, a test is a special tuple whose size equals the number 
of parameters in a system. A constraint is a function that 
maps a test to a Boolean value true or false.  

Definition 4. (Covering) A tuple τ is said to be covered 
by another tuple τ’ if τ ��τ’.  

Note that a tuple is covered by itself. In this paper, we 
are particularly interested in the case where a tuple is 
covered by a test. 

Definition 5. (Validity) Given a SUT M = <P, C>, a 
tuple τ of M is valid if ∃ τ’ � �(P), such that τ �� τ’, and ∀c 
� C, c(τ’) = true.  Otherwise, τ�is invalid. 

   If τ� is a test, τ� is valid if it satisfies all constraints. If τ�
is a t-tuple, where t < |P|, then τ�  is valid if there exists at 
least one valid test τ’ that covers τ.  

Definition 6. (Constrained T-Way Test Set) Let M = 
<P, C> be a SUT. Let � be the set of all valid t-tuples. A t-
way constrained test set is a set � �� �(P) of tests such that, 
∀ σ ���, there exists τ����������	�
	�τ�is valid and σ ��τ.  

 
Intuitively, a constrained t-way test set is a set of valid 

tests in which each valid t-tuple is covered by at least one 
test. The problem of constrained t-way test generation is to 
generate a constrained t-way test set of minimal size. In 
practice, a tradeoff is often made between the size of the 
resulting test set and the time and space requirements.  

III. THE IPOG ALGORITHM 
In this section, we introduce the original IPOG 

algorithm without constraint handling [17]. Due to space 
limit, we only present the major steps relevant to constraint 
handling. Refer to the original paper [17] for more details. 
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Algorithm IPOG works as follows: For a system with t 
or more parameters, we first build a t-way test set for the 
first t parameters. We then extend this test set to a t-way test 
set for the first t+1 parameters, and continue to do so until it 
builds a t-way test set for all the parameters.  

Assume that we already covered the first k parameters. 
To cover the (k+1)-th parameter, say p, it is sufficient to 
cover all the t-way combinations involving parameter p and 
any group of (t-1) parameters among the first k parameters. 
These combinations are covered in two steps, horizontal 
growth and vertical growth. Horizontal growth adds a value 
of p to each existing test. Each value is chosen such that it 
covers the most uncovered combinations. During vertical 
growth, the remaining combinations are covered one at a 
time, either by changing an existing test or by adding a new 
test. When we add a new test to cover a combination, 
parameters that are not involved in the combination are 
given a special value called don’t care. These don’t care 
values can be later changed to cover other combinations. 

Fig. 1 illustrates how algorithm IPOG works. Assume 
that the system contains 4 parameters p1, p2, p3, and p4, 
and each parameter has 2 values {0, 1}. The test strength is 
2. Assume that the 2-way test set for the first 3 parameters 
has been generated, as shown in Fig. 1(a).  

 
Figure 1.  Illustration of the IPOG Algorithm 

To cover the last parameter p4, we first generate all 2-
way combinations that need to be covered. Fig. 1(b) shows 
12 2-way combinations to be covered. During horizontal 
growth, we add value 0 of P4 into the first test since it 
covers the most uncovered tuples {p1.0, p4.0}, {p2.0, p4.0} 
and {p3.0, p4.0}. Similarly, we add values 1, 0 and 0 of P4 
into the next three tests, respectively, as shown in Fig. 1(c). 
There are still 3 uncovered 2-way combinations, {p1.1, 
p4.1}, {p2.0, p4.1} and {p3.0, p4.1}. During vertical growth, 
we first generate a new test to cover {p1.1, p4.1}. Then we 
add p2.0 and p3.0 into the same test to cover {p2.0, p4.1} 
and {p3.0, p4.1}, respectively. Fig. 1(d) shows the complete 
2-way test set.  

IV. THE IPOG-C ALGORITHM 
In this section, we modify algorithm IPOG to handle 

constraints. We refer to the new algorithm as IPOG-C. We 
first present a base version of algorithm IPOG-C. Then we 
propose three optimizations. The final version of algorithm 

IPOG-C is obtained by applying these optimizations to the 
base version. We also discuss how to apply these 
optimizations to other test generation algorithms. 

A. The Base Version of Algorithm IPOG-C  
Fig. 2 shows the base version of the IPOG-C algorithm. 

The modifications made to the original IPOG algorithm are 
highlighted. These modifications do not change the main 
structure of the original IPOG algorithm. If no constraints 
are specified, the modified algorithm will generate the same 
test set as the original IPOG algorithm does.  

Algorithm IPOG-C modifies the original IPOG 
algorithm to make sure: (1) all the valid t-way target tuples 
are covered; and (2) all the generated tests are valid. In line 
5, we perform validity check on each t-way combination to 
identify all the valid t-way combinations that need to be 
covered. In lines 8 & 13, we perform the validity check to 
ensure that every test is valid. Since the algorithm 
terminates only when π is empty (line 12), all the valid t-
way combinations must be covered upon termination.  

 
Algorithm IPOG-C (int t, ParameterSet ps) 
{ 
1. initialize test set ts to be an empty set 
2. sort the parameters in set ps in a non-increasing order of their   
        domain sizes, and denote  them as P1, P2, …, and Pk 
3. add into test set ts a test for each valid combination of values  
        of the first t parameters 
4. for (int i = t + 1; i � k; i ++){ 
5.     let π be the set of all valid t-way combinations of values 
            involving parameter Pi and any group of  (t-1) parameters
            among the first i-1 parameters 
6.     // horizontal growth for parameter Pi 
7.     for (each test τ = (v1, v2, …, vi-1) in test set ts) { 
8.         choose a value vi of Pi and replace τ with τ’ = (v1, v2, …, 
                vi-1, vi) so that τ’ is valid and it covers the most  
                number  of combinations of values in π 
9.         remove from π the combinations of values covered by τ’ 
10.    } // end for at line 7 
11.    // vertical growth for parameter Pi 
12.    for (each combination σ in set π){ 
13.        if (there exists a test τ in test set ts that can be changed to   
                 a valid test τ’ that covers both τ and σ { 
14.            change test τ to τ’  
15.        } else { 
16.            add a new test only contains σ to cover σ 
17.        } // end if at line 13 
18.    } // end for at line 12 
19. }// end for at line 4 
20. return ts; 
} 

Figure 2.  The base version of the IPOG-C algorithm  

B. Validity Check 
Assume that we want to check the validity of a 

combination (or test) τ� for a system S. This validity check 
problem is converted to a Constraint Satisfaction Problem 
(CSP), in which the variables are the parameters of S. The 
constraints include the constraints specified by the user and 
some constraints derived from τ, where each parameter 
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value p.v in τ� is represented by a constraint e
(Alternatively, one may change the parame
fixed value if it is supported by the solver
constraint solver is then used to solve this CS

Consider that a system consists of 3 pa
each having 3 values, and one constraint “a 
shows the CSP for checking the validity 
{a.0, b.0}. Note that two constraints “a = 0”
added for parameter values a.0 and b.0, in
user-specified constraint, i.e., “a + b > c”.  

 
  [ Variable ]   [ Constraints ] 
a: 0, 1, 2 (1) a + b > c 

b: 0, 1, 2 (2) a = 0 
c: 0, 1, 2 (3) b = 0 

Figure 3.  An example CSP problem

C. Optimizations 
In this section, we propose several sche

the performance of constraint handling in alg

1) Avoiding Unnecessary Validity Ch
Combinations 

In line 5 of Fig. 2, we first compute the
all valid t-way combinations that need to b
involves performing validity check o
combination. This computation can be very 
there are typically a large number of t-way c

We propose an optimization to reduce
validity checks on target combinations. The 
is that there exists significant redundancy b
checks for finding valid target tuples, and 
for choosing a valid parameter value du
growth. That is, when we choose a new va
validity check to ensure that the resulting te
all the tuples covered in a test must be v
implicitly checks validity of every tuple cov
As a result, even though we do not have the
tuples, it is guaranteed that any tuple cover
removed from the target set π, must be valid

The above observation suggests 
optimization. That is, we do not need to ch
of target tuples (line 5 of Fig. 2) before horiz
is important to note that the existence of inv
target set (π) will not affect the greed
horizontal growth (line 8 of Fig. 2). This 
candidate test covers any invalid t-tuple,
invalid test and will not be selected. S
comparison only happens between valid can

After horizontal growth is finished, valid
to be performed on the remaining target com
is, line 12 of Fig. 2 should be changed to 
combination σ  in set π)”. At this point, man
are likely to have already been covered by h
This means that the number of validity 
significantly reduced.  

2) Checking Relevant Constraints Only 
For a given validity check, some constra

relevant, and thus do not need to be c

expression p = v. 
eter domain to a 
r.) A third party 
SP. 

arameters a, b, c, 
 + b > c”. Fig. 3 
of combination 

” and “b = 0” are 
n addition to the 

m  

emes to optimize 
gorithm IPOG-C.  

hecks of Target 

e complete set of 
be covered. This 
on each t-way 

expensive since 
combinations.  
e the number of 

key observation 
between validity 

d validity checks 
uring horizontal 
alue, we perform 
st is valid. Since 

valid, this check 
vered in this test. 
e list of all valid 
red in a test, and 
d.  

the following 
heck the validity 
zontal growth. It 
alid tuples in the 
dy selection in 

is because if a 
 it must be an 

So the effective 
ndidates.  
dity check needs 
mbinations. That 
“for (each valid 
ny combinations 
orizontal growth. 
checks can be 

 
aints may not be 
checked. In this 

optimization, we identify constrain
validity check and ignore the ot
simplify the corresponding constrai

We first divide constraints into
To do this, we use a graph str
relation graph, to represent rela
constraints. In a constraint rela
represents a constraint, and each (u
that two constraints have one or m
Then we find all the connected c
The constraints in each connected 
one group. Intuitively, constraint
parameter, directly or indirectly, are

 

Figure 4.  Illustration of Co

Fig. 4(a) shows a system that c
4 constraints. Fig. 4 (b) shows the 
for the system. There are two con
4(c) shows two constraint grou
constraint relation graph. Note tha
to be executed once. As mentione
techniques, which are often referre
inside many constraint solvers. 

Now we explain how to use con
irrelevant constraints. To check th
combination) τ, we identify releva
For each parameter in τ, if it is invo
the constraints in the same con
identified to be relevant to this va
constraints are encoded in the CS
solver.  

This optimization can be very e
algorithm IPOG-C builds a test se
we build a t-way test set for the fir
extend this test set to cover the firs
on. When we try to cover a new pa
to check the constraints in the same

Consider the example system 
add a new parameter value f.0 to a
c.0, d.0, e.1}, which must be valid.
the new test, i.e., {a.0, b.1, c.0, d.0
to consider c3. Constraints c1, c2 a
this case.  

3) Recording the Solving Histo
In this optimization, we record

each constraint group to avoid 
multiple times. As discussed in I
from a set of parameter values in 
checked, and is then solved by 
Boolean value “true” or “false” tha

nts that are relevant to a 
her ones. This helps to 
int solving problem.  

o non-intersecting groups. 
ructure called constraint 
ations between different 
ation graph, each node 
undirected) edge indicates 

more common parameters. 
omponents in the graph. 
components are put into 
s that share a common 
e grouped together.  

 
onstraint Group  

contains 7 parameters and 
constraint relation graph 

nnected components. Fig. 
ups identified from the 
t this process only needs 
ed in Section VI, similar 
ed to as slicing, are used 

nstraint groups to identify 
he validity of a test (or 
nt constraints as follows. 
olved in a constraint c, all 
nstraint group as c are 
alidity check. Only these 
SP sent to the constraint 

effective considering that 
et incrementally. That is, 
rst t parameters, and then 
st t+1 parameters, and so 
arameter p, we only need 
e group as p.   
in Fig. 4(a). Assume we 
an existing test {a.0, b.1, 
. To check the validity of 
0, e.1, f.0}, we only need 
and c4 are not relevant in 

ory 
d the solving history for 
solving the same CSP 

IV.B, a CSP is encoded 
the test that needs to be 
a constraint solver. A 

at indicates the validity of 
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the test will be returned. For each constraint
save solving history, i.e., the set of parame
to the CSP solver and the Boolean value 
CSP solver. Next time when a constraint
going to make, we first search for th
parameters values in the solving history, an
found, we can reused the cached result to av
call. Recall that in the previous optimiza
constraints into several non-intersecting gro
the hit rate of the cached solving history, w
problem into several independent sub-prob
constraint groups, and then save the solving
of them.  

Consider the example system in Fig. 4(
parameters a, b, c, d and e have been cove
trying to cover parameter f. Fig. 5(a) sh
candidate tests. As discussed earlier, the
constraint is c3, which involves param
Therefore the validity of the two can
essentially determined by the the combinati
parameters e and f in the two tests. Wherea
need to be checked are different, their validi
by the same value combination, i.e. {e.0, 
checking the first test, we have the solving 
f.1} (which is invalid), as shown in Fig. 5(b)
to derive that the second test is invalid witho
to the constraint solver. 

 

Figure 5.  Illustration of using constraint solv

D. Applying Optimizations to Other Algorit
Our optimizations can be applied to othe

algorithms. Due to space limitations, we 
apply our optimizations to the AETG algo
algorithm IPOG, the AETG algorithm a
framework. However, it builds a test set on
instead of one-parameter-at-a-time. 

 The key to apply the first optimization
the existence of invalid t-way combinations 
which is supposed to contain only valid t-wa
This could affect the greedy selection of 
AETG, a test value is selected such that it 
valid combinations in the target set. Ac
principle of the first optimization, all th
covered by a valid test are guaranteed to be
long as the validity of the resulting test is c
selection of a test value, the existen
combinations would not affect the sel
However, there is an exception with the sele
t – 1 values in a test. In the AETG algorith
are selected such that they appear in the m
combinations in the target set.  

One approach to dealing with this excep
the AETG algorithm as follows. Instead of c
t – 1 values one by one, we choose the first 

t solving call, we 
eters values send 

returned by the 
t solving call is 

he same set of 
nd if a match is 
void this solving 
ation, we divide 
ups. To increase 

we divide a CSP 
blems based on 

g history for each 

(a). Assume that 
ered and we are 

hows 2 different 
e only relevant 

meters e and f. 
ndidate tests is 
ions of values of 
as the 2 tests that 
ity is determined 
f.1}. Thus after 
history for {e.0, 
). This allows us 

out making a call 

 
ving history 

thms 
er test generation 

discuss how to 
orithm [5]. Like 
adopts a greedy 
ne-test-at-a-time, 

n is dealing with 
in the target set, 

ay combinations. 
a test value. In 
covers the most 

ccording to the 
he combinations 
e valid. Thus, as 
checked after the 
nce of invalid 
lection process. 
ection of the first 
hm, these values 
most number of 

tion is to change 
choosing the first 
t values in a test 

altogether. This is done by findi
combination that remains in the ta
the t values in this combination 
makes the selection of the first
However, we note that t is typically
of the other values remains unchang

The existence of invalid t-way c
set may also affect the termination
algorithm, the test generation proc
target set is empty. However
combinations may never be covere
may never be empty. It is inter
problem can be resolved by the 
earlier. That is, if we select the 
altogether by finding a valid t-way 
set, the test generation process com
no valid combination can be found.

The second and third optimizat
the core test generation process. T
only during valid checks. Thus, th
AETG algorithm without modificat

V. EXPERIM

We implemented algorithm IP
into a combinatorial test generatio
which is freely available to the pub
solver called Choco [4] is used for c

Our experiments consist of th
(Section V.B) is designed to evalu
the three optimizations. The second
investigate how the performance 
affected by several factors, includi
of parameters, size of domain and 
tuples. The third part (Section V.D
other combinatorial test genera
experiments were performed on 
2410M 2.30GHz CPU and 4.0 GB
Windows 7.  

A. Subject Systems  
We use both real-life and syn

experiments. The real-life systems 
introduced in [7], and a system ca
[16]. We adopt the exponential n
parameter configurations, where d
parameters with domain size d. T
systems were given in the form o
and [16]. We also use an expone
constraints, where dn means there
each of which involves d paramete
each forbidden tuple to an equivale
For example, a forbidden tuple {a.
logic expression “! (a=0 && b=1)”
real-life systems are listed in Table 

We created 10 synthesized syst
of 10 parameters of domain s
parameters as p1, p2, …, and p10
single constraint which is carefully
number of forbidden tuples. The nu
is an important measure of the co

ng the first valid t-way 
arget set, and then assign 
to the test. This change 
t t values less greedy. 
y small, and the selection 
ged. 
combinations in the target 
n condition. In the AETG 
cess terminates when the 
r, some invalid t-way 
ed, and thus the target set 
resting to note that this 

same change suggested 
first t values of a test 

combination in the target 
mes to a natural stop when 

 
tions do not interact with 
That is, they take effect 

hey can be applied to the 
tions. 

MENTS 
POG-C and integrated it 
on tool called ACTS [1], 
blic. An open source CSP 
constraint solving.  

hree parts. The first part 
uate the effectiveness of 
d part (Section V.C) is to 
of algorithm IPOG-C is 
ing test strength, number 
the number of forbidden 

D) compares ACTS with 
ation tools. All these 
a laptop with Core i5 

B memory, running 64-bit 

nthesized systems in our 
include the five systems 

lled TCAS introduced in 
notation in [7] to denote 
dn means that there are n 
The constraints in these 

of forbidden tuples in [7] 
ential notation to denote 
e are n forbidden tuples 
ers. We manually convert 
ent constraint expression. 
.0, b.1} is converted to a 
”. The configurations of 6 
1. 

tems, all of which consist 
ize 4. We denote the 
. Each system contains a 
y designed to control the 
umber of forbidden tuples 
mplexity of a constraint. 

246



Note that the number of constraints is not important as 
different constraints can be joined together.  

TABLE I.  CONFIGURATIONS OF REAL-LIFE SYSTEMS 

Name Num. of 
Parameters 

Num. of 
Constraints 

Parameter 
Configuration 

Constraint 
Configuration

Apache 172 7 2158 38 44 51 61 23 31 42 51 
Bugzilla 52 5 249 31 42 24 31 

GCC 199 40 2189 310 237 33 
SPIN-S 18 13 213 45 213 
SPIN-V 55 49 242 32 411 247 32 
TCAS 12 3 27 32 41 102 23 
 
Some existing tools only support forbidden tuples as 

constraints. To compare to these tools, we derive all the 
forbidden tuples encoded by each constraint. Take system 
C1 as an example, we enumerate all 3-way value 
combinations of parameter p1, p2 and p3, and found 30 
combinations that violate the constraint (p1>p2 || p3>p2) as 
forbidden tuples. We list the configurations, the number of 
derived forbidden tuples and detailed constraints for these 
synthesized systems in Table II. 

TABLE II.  CONFIGURATIONS OF SYNTHESIZED SYSTEMS 

Name Param. 
Config. 

Num. of 
Forbidd. 
Tuples 

Constraint 

C1 410 30 p1>p2 || p3>p2 
C2 410 100 p1>p2 || p3>p4 
C3 410 200 p1>p2 || p3>p4 || p5>p1 
C4 410 300 p1>p2 || p3>p4 || p5>p2 
C5 410 1000 p1>p2 || p3>p4 || p5>p6 
C6 410 2000 p1>p2 || p3>p4 || p5>p6 || p7>p1 
C7 410 3000 p1>p2 || p3>p4 || p5>p6 || p7>p2 
C8 410 10000 p1>p2 || p3>p4 || p5>p6 || p7>p8 
C9 410 20000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p1
C10 410 30000 p1>p2 || p3>p4 || p5>p6 || p7>p8 || p9>p2

B. Evaluation of the Optimizations 
To evaluate he effectiveness of individual optimizations 

and their combination, we tested multiple configurations. 
Table III shows five different configurations of the 
optimization options, where a tick denotes that the 
corresponding optimization is enabled, and dash means not. 
The first configuration represents the base version of IPOG-
C, i.e., without any optimization, and the last one contains 
all the optimizations.  

TABLE III.  CONFIGURATION OF OPTIMIZATION OPTIONS 

Optimization Base O1 O2 O3 All 
Avoiding unnecessary validity checks on 
 t-way combinations - � - - � 

Checking relevant constraints only - - � - � 

Recording the solving history - - - � � 
 
Due to limited space, we use 6 real-life systems and the 

synthesized system with the most complex constraint, i.e., 

C10. The test strength is set to 2. We measure the 
performance of constrained test generation in terms of 
number of constraint solving calls (i.e., the number of times 
the constraint solver is called) and execution time. The 
number of constraint solving calls is an importance metric 
because it is independent from the program implementation, 
the hardware configuration or different constraint solvers. 
The comparison results are shown in Tables IV and V. We 
do not show the number of tests, which is not affected by 
these optimizations.  

TABLE IV.  COMPARISON  OF NUMBER OF CONSTRAINT SOLVING 
CALLS (2-WAY) 

System 
IPOG-C with Different Optimizations 

Base O1 O2 O3 All 
Apache 15751 3903 12314 284 155 
Bugzilla 2843 732 2352 57 50 

GCC 34613 4753 31250 1032 631 
SPIN-S 1183 478 1002 293 171 
SPIN-V 10770 3679 9609 766 546 
TCAS 828 597 535 59 42 
C10 991 287 954 796 246 

TABLE V.  COMPARISON OF EXECUTION TIME (IN SECONDS) 

System 
IPOG-C with Different Optimizations 

Base O1 O2 O3 All 
Apache 105.411 6.225 9.403 0.687 0.577 
Bugzilla 2.808 0.904 1.763 0.328 0.296 

GCC 683.599 24.462 59.429 1.809 1.139 
SPIN-S 1.545 0.92 1.31 0.749 0.53 
SPIN-V 81.323 18.239 11.169 1.124 0.889 
TCAS 0.874 0.749 0.702 0.36 0.328 
C10 1.014 0.53 0.89 0.828 0.515 

 
The results in Tables IV and V suggest that the 

optimizations are very effective. Recall that the first 
optimization avoids validity check for all t-way target tuples 
in the beginning of test generation. This optimization is very 
effective when the system has a large number of t-way 
target tuples. For example, Apache contains 172 parameters 
and GCC has 199 parameters. They both have a large 
number of target tuples. With this optimization, the 
generation process runs 17 times faster for Apache, and 28 
times faster for GCC.  

The second optimization reduced the execution 
significantly, but not the number of constraint solving calls.. 
This is because this optimization is aimed to simplify the 
actual constraint solving process by only considering 
relevant constraints. Note that the number of constraint 
solving classes is also slightly decreased. This is because a 
parameter may not be involved in any constraint. In this 
case, no relevant constraints are found and thus no 
constraints need to be solved.  

The third optimization seems to be the most effective 
optimization in the experiments. Recall that it records the 
solving history based on constraint groups to reduce 
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redundant solvings. This optimization is more effective with 
small constraint groups, where redundant solvings are more 
likely to happen. On the other hand, this optimization is less 
effective with large constraint groups. For example, for 
system C10, where 9 of 10 parameters belong to the same 
constraint group, this optimization is not very effective.  

The three optimizations are complementary to each 
other and can be combined to further reduce the number of 
constraint solving calls and the execution time. In particular, 
for all of the real-life systems, the number of constraint 
solving calls was reduced by one or two orders of 
magnitude.  

C. Evaluation of Different Factors 
In this section, we explore how the performance of the 

entire test generation process is affected by different factors, 
including test strength, number of parameter, domain size 
and number of forbidden tuples. Each time we fix all the 
factors but one. We compare the test generation 
performance of our algorithm between with all the 
optimizations (i.e., the optimized version of algorithm 
IPOG-C) and without any optimization (the base version of 
algorithm IPOG-C).  

1) Test Strength 
We use system C1 to evaluate the performance of 

constrained test generation using different test strengths. 
Recall that C1 has 10 parameters of domain size 4. We 
record number of validity checks, number of times the 
constraint solver is called, and execution time in Table VI.  

TABLE VI.  TEST GENERATION WITH DIFFERENT TEST STRENGTHS 

Test 
Strength 

Num. of 
Target 
Tuples 

Base Optimized 

Num.  of 
Solving Calls 

Time  
(sec) 

Num.  of 
Solving Calls

Time 
(sec) 

2 683 644 0.67 77 0.31 
3 7062 6869 3.9 121 0.32 
4 47656 51787 64.17 122 0.40 
5 218848 267421 1368.01 124 1.35 
6 690816 Out of Memory Out of Memory 124 14.39 

 
One may find that as the test strength increases, the 

number of target tuples increase very fast. However, after 
those optimizations are applied, the number of constraint 
solving calls increases very slowly, and is even unchanged 
from strength 5 to 6. This is mainly due to the third 
optimization, which records the solving history for each 
constraint group. This system contains a single constraint 
group involving only 3 parameters. After all of the possible 
43 = 64 value combinations, have been checked, all validity 
checks can be handled by looking up the solving history. 
That is, no more solving calls are needed.  

2) Number of Parameters 
In this section, we evaluate the performance of the test 

generation process with respect to different numbers of 
parameters. We built 8 systems with the number of 
parameters ranging from 4, 6, 8 to 18. The constraint 
“(p1>p2 || p3>p2)” in system C1 is used for all of these 8 
systems. The test strength is set to 3. 

Fig. 6 show that as the number of parameters increases, 
the number of constraint solving calls and the execution 
time increase very fast for the base version, but very slow 
for the optimized version.  

 
Figure 6.  Performance w.r.t. different numbers of parameters 

3) Domain Size 
In this experiment, we still use system C1, but change 

the domain size to build 8 different systems. These systems 
have the same number of parameters and the same 
constraint, but the domain size increases from 2, 3, 4 until 9. 
The test strength is set to 3.  

 
Figure 7.  Performance w.r.t. different domain sizes 

Again, Fig. 7 shows that as the domain size increases, 
the number of constraint solving calls and the execution 
time increase very fast for the base version, but very slow 
for the optimized version.  

4) Number of Forbidden Tuples 
We use all of the 10 synthesized systems in this section 

to evaluate how the performance of the test generation 
process changes when the number of forbidden tuples 
changes. As discussed earlier, these systems have the same 
parameter configuration but different constraints. Those 
constraints are carefully designed to control the number of 
forbidden tuples. The test strength is set to 3. 

Fig. 8 shows that as the number of forbidden tuples 
increases, the number of constraint solving calls and the 
execution time increase very fast for the base version, but 
very slow for the optimized version.  

 
Figure 8.  Performance w.r.t. different numbers of forbidden tuples  
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D. Comparison With Other Tools 
In this section, we compare ACTS [1] (using the 

optimized IPOG-C algorithm) to other test generation tools. 
First we briefly introduce several existing test generation 
tools with constraint support. 

CASA [7] integrates a SAT solver into a simulated 
annealing algorithm. Constraints are specified as Boolean 
formulas. We record the best result among five runs since 
this algorithm is not deterministic.  

mAETG [6] integrates a SAT solver into an AETG-like 
algorithm. However, we did not make a comparison in this 
paper since mAETG is not available to public. 

Ttuples [3] uses a greedy algorithm based on a property 
of (unconstrained) t-way test set, i.e., if two parameters have 
the same domain, it’s safe to exchanging all their values. 
Constraints are specified as a set of forbidden tuples.  

PICT [8] also adopts an AETG-like greedy algorithm. 
Constraints are specified in the form of logical expressions, 
but forbidden tuples are derived from the constraints to 
perform validity check.  

These tools are compared in two dimensions: size of test 
set and execution time. However, it is important to note that 
size of test set mainly depends on the core test generation 
algorithms. Also even without constraints, the performances 
of different test generation algorithms are different. 
Furthermore, we did not make a comparison on the number 
of constraint solving calls or the number of validity checks, 
since we cannot obtain them from other tools. 

Our comparison uses the 6 real-life systems and 10 
synthesized systems introduced in Section VI.A. Since 
CASA and Ttuples cannot handle constraint expressions, we 
derived all forbidden tuples for 10 synthesized systems. The 
number of generated tests and the execution time for each 
system are shown in Table VII. The number of forbidden 
tuples is also listed. The test strength is set to 3. We limit the 
execution time within 500 seconds.  

TABLE VII.  COMPARISION OF DIFFERENT TOOLS (3-WAY) 

System 
Num. of 
Forbid. 
Tuples 

CASA Ttuples PICT ACTS 
size time(s) size time(s) size time(s) size time(s)

Apache 7 - - - - 202 176.01 173 25.2 
Bugzilla 5 71 497.76 62 4.55 70 0.69 68 0.61 

GCC 40 - - - - 134 170.26 108 35.52
SPIN-S 13 103 187.51 127 0.30 113 0.09 98 1.82 
SPIN-V 49 - - 306 12.1 345 4.92 284 5.09 
TCAS 3 405 99.7 402 0.27 409 0.11 405 0.55 

C1 30 146 26.2 207 0.53 163 0.06 158 0.36 
C2 100 164 47.23 202 1.31 171 0.06 168 0.58 
C3 200 162 45.94 191 1.35 166 0.07 163 0.71 
C4 300 157 59.15 200 2.69 166 0.08 161 0.74 
C5 1000 157 72.86 196 5.03 170 0.18 160 0.87 
C6 2000 161 68.83 195 7.12 163 0.96 161 0.97 
C7 3000 166 70.14 188 14.94 162 1.09 160 1.00 
C8 10000 160 99.12 196 257.75 163 17.34 164 1.11 
C9 20000 150 131.5 - - 162 242.1 157 1.06 

C10 30000 155 114.63 - - 161 461.5 158 1.21 

* Dash (-) means the execution time is longer than 500 seconds. 

We make several observations from Table VII.  
CASA uses a non-deterministic generation algorithm. 

CASA generates relatively small test sets, but its execution 
time is relatively longer. This is because the simulated 
annealing algorithm is able to find a more optimal solution, 
but is usually much slower than greedy algorithms. Ttuples 
runs fast on small real life systems (SPIN-S, TCAS) and 
synthesized systems with small number of forbidden tuples. 
However, it takes much longer time to handle other systems. 
Generally speaking, it’s more efficient to handle constraints 
using forbidden tuples when the number of forbidden tuples 
is small, but the test generation algorithm of Ttuples may 
not be efficient for large systems. For synthesized systems, 
the execution time of Ttuples increases very fast as the 
number of forbidden tuples increases. This is a disadvantage 
of using forbidden tuples. Similar to Ttuples, the execution 
time of PICT also increases very fast as the number of 
forbidden tuples increases. For other systems, PICT is fast 
and generates good results. ACTS generates relatively small 
test sets, and runs fast overall. For some systems, ACTS 
runs slightly slower than PICT, but the differences are very 
small. ACTS runs much faster than other tools on systems 
with large number of parameters (Apache, GCC) and 
systems with large number of forbidden tuples (C9, C10), 
exhibiting very good scalability. This can be a significant 
advantage when we deal with systems with more complex 
constraints. 

Fig. 9 shows how execution time changes as number of 
forbidden tuples in 10 synthesized systems increases. When 
the number of forbidden tuples is small, Ttuples, PICT and 
ACTS have similar execution time, while CASA takes 
longer time to finish. However, as the number of forbidden 
tuples increases, the execution time of Ttuples and PICT 
increases significantly. In contrast, the execution time of 
CASA increases slowly, and the execution time for ACTS 
remains almost unchanged. The reason is that CASA and 
ACTS use constraint solver for validity checks, and do not 
have to maintain a large number of forbidden tuples during 
test generation. This demonstrates a major advantage of 
using a constraint solver instead of forbidden tuples.  

 
Figure 9.  Camparison of Different Number of Tuples   

E. Threats to Validity 
The main external threat to validity is that the 

benchmark systems used in our experiments may not be 
representative of real-life applications. We used both real-
life and synthesized systems to reduce this threat. The 
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internal threat to validity is mainly due to potential mistakes 
made in the experiments. We tried to automate the 
experiments as much as possible to reduce chances of error. 
For example, a tool was used to automatically derive 
forbidden tuples from the constraint expressions of the 
synthesized systems. Bugs may also exist in the 
implementation of the test generation algorithm. To reduce 
this threat, we used an independent procedure to check the 
validity of each test and the coverage.   

VI. RELATED WORK 
We focus our discussion on work that handles 

constraints using a constraint solver. Garvin et al. integrated 
a SAT solver into a meta-heuristic search algorithm, called 
simulated annealing, for constrained combinatorial test 
generation [9][10]. It was found that integration with the 
original version of the search algorithm did not produce 
competitive results, both in terms of number of tests and test 
generation time. Thus, a couple of changes were made to the 
original search algorithm to improve the results. The 
modified search algorithm could produce a different test set 
than the original search algorithm. This is in contrast to our 
work, where our optimizations do not change the original 
test generation algorithm, i.e., IPOG. In particular, our 
optimizations reduce the execution time spent on constraint 
handling, but do not change the size of the test set. 

Cohen et al. integrated a SAT solver into an AETG-like 
test generation algorithm [6] [7]. They also proposed two 
optimizations to improve the overall performance. In their 
optimizations, the history of the SAT solver is exploited to 
reduce the search space of the original test generation 
algorithm. Like the work in [9], their optimizations require 
changes to the original test generation algorithm, and thus 
could produce a different test set. In addition, their 
optimizations require access to the solving history and are 
thus tightly coupled with the SAT solver. This is in contrast 
with our optimizations, which do not change the original 
test generation algorithm and are independent from the 
constraint solver.  

Recent work has applied combinatorial testing to 
software product lines. A software product line is a family 
of products that can be created by combining a set of 
common features. In this domain, constraint handling is a 
must because dependencies naturally exist between different 
features. Hervieu et al [12] developed a constraint 
programming approach for pairwise testing of software 
product lines. The focus of their work is on the conversion 
of the pairwise test generation problem to a constraint-
programming problem. In particular, they formulated a 
global constraint to achieve pairwise coverage. Their work 
relies on the underlying constraint solver to achieve the best 
result. That is, they do not explicitly address the 
optimization problem.   

Perrouin et al. [19] addressed the scalability of a 
constraint solver in the context of t-way testing of software 
product lines. Specifically, they address the problem that 
current constraint solvers have a limit in the number of 
clauses they can solve at once. They use a divide-and-
conquer strategy to divide the t-way test generation problem 
for the entire feature model into several sub-problems. Their 

work addresses a different problem than, and is 
complementary to, our work, which tries to reduce the 
number of calls to a constraint solver and to remove 
constraints that are not relevant in a constraint solving call.  

Johansen et al. [13] developed an algorithm called ICPL 
that applies t-way testing to software product lines. Similar 
to our algorithm, algorithm ICPL includes several 
optimizations to reduce the number of calls to a constraint 
solver. There are two major ideas in their optimizations that 
are closely related to our optimizations. The first idea is to 
postpone removal of invalid target combinations (called t-
sets in [13]). This achieves an effect similar to our first 
optimization, i.e., avoiding unnecessary validity checks of 
target combinations. However, there are two important 
differences. First, algorithm ICPL uses a heuristic to 
determine at which point to remove invalid target 
combinations. In contrast, our algorithm, IPOG-C, removes 
invalid target combinations during vertical growth, without 
using any heuristic condition. Second, they have very 
different motivations. Algorithm ICPL adopts a target 
combination-oriented framework, where the main loop 
iterates through the set of target combinations and covers 
them as they are encountered. Removing invalid 
combinations up front would cause two constraint solving 
calls for many valid combinations. (The other call is needed 
when a valid combination is actually covered in a test.) In 
contrast, our algorithm largely uses a test-oriented 
framework, where we try to determine each value in a test 
such that it covers as many combinations as possible. The 
key insight in our optimization is that if a test is found valid, 
then all the combinations covered by this test would be 
valid, and thus do not have to be explicitly checked. 

The second optimization idea in algorithm ICPL that is 
closely related to ours is trying to check the validity of a t-
way combination without actually calling the constraint 
solver. Algorithm ICPL is recursive in which a t-way test set 
is built by extending a (t-1)-way test set. The set of invalid 
combinations is maintained at each strength in the recursive 
process. An invalid t-way target combination is identified if 
it is an extension of an invalid (t-1)-way combination. In 
contrast, our algorithm records the solving history, which is 
used to determine the validity of a target combination as 
well as a test without calling the constraint solver. Also, our 
algorithm is not recursive, and does not maintain a set of 
invalid target combinations.  

It is important to note that work on testing software 
product lines assumes Boolean parameters and constraints in 
the form of Boolean logic expressions. In contrast, our work 
does not have this restriction. Furthermore, software product 
lines typically have a large number of constraints but a 
small t-way test set. As a result, some optimizations that are 
effective for software product lines may not be very 
effective for general systems, and vice versa. 

Finally we note that many optimization techniques are 
employed inside existing constraint solvers. In principle, our 
second and third optimizations are similar to constraint 
slicing and caching strategies used in some constraint 
solvers like zChaff [18] and STP [2]. These optimizations 
are also used outside a constraint solver in program analysis 
tools such as EXE [2]. However, we differ in that our 
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optimizations work together with the combinatorial test 
generation algorithm and leverage its incremental 
framework to achieve maximal performance improvements. 
To our best knowledge, this is the first time these techniques 
are applied in a way that is integrated with the combinatorial 
test generation framework.  

VII. CONCLUSION AND FUTURE WORK 
In this paper, we present an efficient algorithm, called 

IPOG-C, for constrained combinatorial test generation. The 
major contribution of our work is three optimizations 
employed by algorithm IPOG-C to improve the 
performance of constraint handling. These optimizations try 
to reduce the number of calls to a constraint solver. When 
such a call cannot be avoided, these optimizations try to 
reduce the number of constraints that have to be solved. We 
show that these optimizations can be applied to other test 
generation algorithms. Experiment results show that these 
optimizations can achieve performance improvements of up 
to two orders of magnitude. The IPOG-C algorithm is 
implemented in a combinatorial test generation tool, i.e., 
named ACTS, which is freely available to public. A 
comparative evaluation suggests that ACTS can perform 
significantly better than other tools for systems that have 
more complex constraints. 

There are several directions to continue our work. First, 
we want to conduct more experiments to evaluate the 
effectiveness of our algorithm. In particular, the real-life 
systems in our experiments have a very small number of 
forbidden tuples. We want to investigate whether this is the 
case in general and if possible, apply our algorithm to real-
life systems with a large number of forbidden tuples.  
Second, we want to develop efficient schemes to parallelize 
our algorithm. For example, we could divide the complete 
set of target combinations into several subsets, and then 
assign these subsets to different cores or processors. As 
another example, when we try to select the best value of a 
parameter, we could employ multiple cores or processors to 
determine the weight of each value. Finally, we plan to 
investigate how to integrate our algorithm into an existing 
test infrastructure. Most work on combinatorial testing only 
addresses the test generation problem. Combinatorial testing 
can generate a large number of tests. It is thus particularly 
important to streamline the entire test process, i.e., integrate 
our test generation tool with other tools that automate test 
execution and test evaluation.  
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