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Abstract

Comparisons of predictive fire models with each other or with experimental data have been
largely qualitative. By treating these time series curves as infinite-dimensional vectors, a branch
of mathematics called functional analysis defines geometrically meaningful operations on the
curves. This allows lengths, angles, and distance between two arbitrary curves to be defined and
quantified. An introduction to the theory and tools provided by functional analysis is presented.
Examples of the application of these tools to fire model evaluation are presented. Published by
Elsevier Science Ltd. All rights reserved.

1. Introduction and background

The ASTM guide for evaluating the predictive capability of fire models [ 1] identi-
fies four areas important for fire model evaluation: (1) model and scenario definition,
(2) theoretical basis and assumptions in the model, (3) mathematical and numerical
robustness of the model, and (4) quantifying the uncertainty and accuracy of the
model. The first two of thesc are largely documentation and policy issues. Additional
guidance is available in the ASTM guide for fire model documentation [2]. The work
of Forney [3] examines the mathematical robustness of fire models using the CFAST
model as an example. Sensitivity analysis and fire model comparisons are the primary
focus of the final area. Key to both sensitivity analysis and fire model comparisons
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is the ability to guantify the difference between model predictions and experimental
measurements or between two sets of model predictions or experimental measure-
ments. This paper examines techniques for quantifying these comparisons. These
techniques are of use in comparing models and experiments, comparing models to one
another, and comparing model predictions with sensor data for use in fire detection
and prediction in real-time systems.

A number of researchers have studied the level of agreement between computer fire
models and real-scale fires. These comparisons fall into two broad categories: fire
reconstruction and comparison with laboratory experiments. Both categories provide
a level of verification for the models used. Fire reconstruction, although often more
qualitative, provides a higher degree of confidence for the user when the models
successfully simulate real-life conditions. Comparisons with laboratory experiments,
however, can yield detailed comparisons that point out weaknesses in the individual
phenomena included in the models. The latter is also used for deciding what improve-
ments need to be made. Some of the comparisons in the literature are reviewed below.
Nelson [4] used simple computer fire models along with existing experimental data to
develop an analysis of a large high-rise building fire. This analysis showed the value of
available analytical calculations in reconstructing the events involved in a multiple-
story fire. Bukowski [5-7] has applied the FAST and CFAST models in several fatal
fire reconstructions. Details of the fires including temperatures, vent flows, and gas
concentrations were consistent with observed conditions and witness accounts. Em-
mons [8] applied computer fire modeling to the MGM Grand Hotel fire of 1980.
Using the HARVARD 5 model, he analyzed the relative contributions of booth
seating, ceiling tiles, decorative beams, and the HVAC system on the outcome of the
fire.

Several additional studies comparing model predictions with experimental mea-
surements are available. Mitler and Rockett [9] utilized the Harvard Computer Fire
Code V to model two in a series of eight well-instrumented full-scale room fires. They
reported “good to excellent” agrecment for most of the model variables studied.
Rockett, Morita, and Cooper [10] used the HARVARD VI multi-room fire model to
simulate the results of real-scale, multi-room fire experiments. While the model was
generally found to provide “favorable” simulations, several areas where improve-
ments were needed were identified. They pointed out limitations in modeling of
oxygen-limited burning, mixing of gases at vents, convective heat transfer, and plume
entrainment. Deal [11] reviewed four computer fire models (CCFM, FIRST,
FPETOOL [12] and FAST) to ascertain the relative performance of the models in
simulating fire experiments in a small room. All the models simulated experimental
conditions including temperature, species generation, and vent flows, “quite satisfac-
torily”. Duong [13] studied the predictions of several computer fire models (CCFM,
FAST, FIRST, and BRI}, comparing the models with one another and with large fires
in an aircraft hanger. For a 4 MW fire size, he concluded that all the models are
“reasonably accurate™. At 36 MW, however, “none of the models did well”. Beard [ 14]
evaluated four fire models (ASET, FAST, FIRST, and JASMINE [{5]) by modeling
three well-documented experimental fires, ranging in scope from the same tests used
by Mitler and Rockett to a large-department-store space with closed doors and
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windows. He provides both a qualitative and quantitative assessment of the models
ability to predict temperature, smoke obscuration, CO concentration, and layer
interface position (for the zone-based models). Peacock et al. [16] compared the
CFAST model to a range of experimental fires. The model provided predictions of the
magnitude and trends (time to critical conditions and general curve shape) for the
experiments studied which range in quality from within a few percent to a factor of
two or three of the measured values. Beck et al. [17] compared the NRCC fire growth
model [ 18] to experiments with three types of fires and two compartment ventilation
conditions. Comparisons of fuel burning rate, average compartment gas temperature,
CO concentration and CO; concentration were presented. Model agreement between
experimental and computational results was deemed “achieved in a qualitative sense”.
The model produced better estimates for fuel burning rate and average compartment
gas temperature than for gas species concentrations. Bjorkman and Keski-Rahkonen
[197 used the SOFIE CFD model [20] to predict conditions modeled after tests
conducted by Steckler [21]. The model predicted conditions that matched well with
experimental measurements. Velocities and temperatures in the compartment open-
ing matched well with experimental measurcments while temperatures inside the
compartment were calculated 20-30°C higher than experimental measurements.
Keski-Rahkonen [22] reviewed initial results of the CIB W14 round robin tests of
a number of models used worldwide to predict conditions in the same test cases. Most
of the variables studied were predicted within a factor of two. Davis et al. [23]
compared model predictions with measured temperature profiles in the ceiling jet and
fire plume using a range of fire models. Of the eight different comparisons made, the
prediction of the plume centerline temperature was within 20% for four of the seven
models studied. Model predictions of temperature and velocity within the ceiling jet
were deemed much less satisfactory.

Common to nearly all of these comparisons is their qualitative nature. The level of
agreement between the models and experiment is typically reported as “favorable”,
“satisfactory”, “well predicted”, “successful”, or “reasonable”. The intent of this study
is to provide a more quantitative approach to making such comparisons. This will be
done through the application of functional analysis to the comparison of fire model
calculations and experimental data.

2. Functional analysis and simple vector math

Functional analysis is a generalization of linear algebra, analysis, and geometry.
It is a field of study that arose around 1900 from the work of Hilbert and others.
Functional analysis is becoming of increasing importance in a number of fields
including theoretical physics, economics, and engineering to answer questions on
differential equations, numerical methods, approximation theory, and applied math-
ematical techniques. Its power lies in its ability to take different ideas and apply a
unified symbolism and theory with a strongly geometric flavor to deal with the impor-
tant central features of the problem. In practice, functional analysis allows problems
to be described in vector notation and defines operations on these vectors allowing
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quantitative analysis of the properties of the underlying physical system. For this
paper, the primary vector operations of interest are the norm, a measure of the length
of a vector, and inner product, a measure of the angle between two vectors.

A simple sample of experimental data and a model prediction is shown in Fig. 1.
A comparison of peak values at 60 s yields a difference of 6.9 or a relative difference,
lexperiment-model|/|experiment|, of 0.055.

While single-point comparisons are relatively easy to understand, comparing two
time-dependent curves is considerably more difficult. In many instances, data is
collected as a series of measurements over some time period. For the purposes of this
paper, these data may be treated as a multi-dimensional set of vectors. In a one-
dimensional space, the length of each vector is defined by the value of the data at that
particular point with the sign of the value giving the vector direction. Angles in this
space would be restricted to either 0 or 27. For data sets, the simple comparison of the
maxima for single points would evolve into finding the norm of the difference between
the two vectors representing the data. In addition, a measure based on derivatives
would be useful to quantify how well the shapes of the two curves match. For n data
points, a multi-dimensional set of n — 1 vectors can be defined to approximate the
derivative as

Xit1 — X;
x; = L’ (1

tivi — 4

where, x; is the measurement taken at time z;. Since such differencing-based operations
act like high-pass filters on the data, and can amplify jitter and transients present in
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Fig. 1. Simple example of experimental data with accompanying model prediction.
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the signal, smoothing techniques may be required to make the numerical derivatives
useful.

2.1. Finding the length of a vector, the norm

The concept of a norm provides a definition of the length of a vector. The distance
between two vectors is simply the length of the vector resulting from the difference of
two vectors. The symbolic representation is written as |lx|| where x is the notation for
the n-dimensional vector (xq, x5, ..., X,_ 1, X,). As an extension of the comparison of
maximum values, the norm based upon relative difference can be extended to multiple
dimensions. A vector of values measured at cach time point can represent all of the
data, E. A vector can also represent the model predictions at the same time points m.
The distance between thesc two vectors is the norm of the difference of the vectors, or
|E — m]|. It is convenient to normalize this as a relative difference to the experimental
data as

\E ~m|

TE @

The difference vector is calculated just as it was for the simple example comparing
the maxima of the two curves, taking the difference between the experiment and model
at each time point. The Euclidean norm takes the form

IE —m| = /0 (Ei — m)* (3)

where E; and m; are the ith experimental and model values. In statistics and curve-
fitting, Eq. (3) represents the square root of the the residual sum of squares. The relat-
ive difference would be

Eoml_ (SE
1] \/ () @

For the data of Fig. 1, the norm, ||[E — m||, is 14.1 and the relative difference is 0.056.

2.2. Finding the angle between two vectors, the inner product

While the difference, |[E — m|, and the relative difference, |E — m|/||E||, provide
measures of the difference between experimental data and model predictions, other
calculations provide useful information on the source of the difference. When compar-
ing vectors, there are basically two geometric components to consider: a distance
between the two vectors and an angle between the two vectors. The inner product,
{x,y) of two vectors is the product of the length of the two vectors and the cosine of
the angle between them, or

e,y = |xliylcos(L (x. y) ©)
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or
x>
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Choosing the inner product to be the standard dot product gives results consistent
with typical Euclidean geometric perception

cos( L (x,y)) = (6)

n

Coyd =), Xy (7
i=1
For the vectors represented by the two curves of Fig. 1, cos(Z (x,y)=1. This angle
between the two vectors represents a measure of how well the shape of the two vectors
match. As the cosine of the angle approaches unity, the two curves represented by the
two vectors differ only by a constant multiplier.

2.3. Properties of norms and inner products

Euclidean space is certainly not the only geometry that can provide a definition for
the norm and inner product. In general, an inner product is simply a function that
takes two vectors and returns a number. The number can be either real or complex.
For our purposes, only real inner products will be considered. The following axioms
provide a definition of the inner product and norm sufficient to have the necessary
properties to perform vector calculations [24]:

Inner product Norm
I {xx) 20, lxl =0,
II (x> =0<=x=0, x| =0 <ex =0,
HL o, p) = adx, ), lloe|| = Jatl 1],

IV x+p o=@+ 0w, Ix+yl<ix] +lyl

For consistency, the norm can be defined in terms of the inner product. This ensures
that appropriate, consistent definitions for the norm and inner product arc used in
calculations. Since the angle between a vector and itself is by definition zero, it follows
from Eq. (5) that

=/ <xx). @®)
With these properties and definitions of norms and inner products, additional useful
comparisons of data can be made. For this paper, we will present three applications of
these properties, discussed in the next sections.

(x, x> = |Ix||* or

Ix

2.4. Minimizing the difference between two vectors, the projection coefficient

One question that can be asked when comparing a model and an experiment is:
is there a number, g, by which the model can be multiplied to give the smallest
difference between the model and the experiment? The resulting vector, am, represents
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the closest prediction the model can make to the chosen experiment without changing
the functional form of the model. Solving for a is a minimization problem in the
chosen norm, or

solve : minflam — E|. 9

From calculus, the minimum occurs when the derivative of the function is zero. To
simplify, note that since the norm is non-negative the minimum of the norm occurs for
the same value of a as the minimum of the squared norm. Using the definition of
a norm in terms of the inner product and the rules for an inner product,

lam — E||*> = {am — E,am — E)
=a*lm|* —2alm, E) + |E}*. (10)

Since the norm and inner product are scalars, we can take the derivative with
respect to a as

2alm|* — 2{m, E>. (1
Finally setting the derivative equal to zero and solving for a gives

_Sm E)  |m{||E|cos0 _ |E|
&

os 0. (12)

m lm ] |ml]

For the purposes of this paper, a will be termed the projection coefficient. Geomet-
rically, the vector am is the projection of the vector E onto the vector m (Fig. 2). If the
sign of the projection coefficient is positive, the angle between the two vectors is less
than 90"; if the sign is negative, the angle is greater than 90°. If the magnitude of the
projection coefficient is greater than 1, the model vector is smaller in magnitude than
the experimental vector. The converse may or may not be true, depending upon the
value of the cosine. For the example of Fig. 1, the projection coefficient is 1.05,

-2
T
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m
4
13
0 >
—a 7
% am {

Fig. 2. The projection coeflficient for two vectors.
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indicating as expected, that increasing the model prediction by 5% would provide the
closest (in this case, exact) model prediction for the fictitious experimental data. For
real data, the projection coefficient would not lead to an exact match unless the
functional form of the model is identical to the underlying form of the experimental
data.

2.5. Other metrics

The properties for norms and inner products also provide appropriate rules to
define the inner product and norm for other geometries in addition to Euclidean
space. In this paper, two additional geometries, Hellinger and secant, will be investi-
gated. Leigh et al. have proposed variants of these metrics for applications to
coregistration and quantification of nonlinear correlation for matched two-dimen-
sional time-varying curves [25,26].

The Hellinger inner product for functions x such that x(0) = 0 is defined based on
the first derivative of the function

.
<x(t), y(1)> =J x'()y'(r) de. (13)
0
For discrete vectors, this can be approximated with first differences as
5o — X ) — Yie )
<x,y>=z< e =) (14)
i=2 [ T

Based on the first derivative or tangents to the curves, the Hellinger inner product
and norm provide a sensitive measure of the comparison of the shape of two vectors.
A variation of the Hellinger inner product can be defined based on the secant rather
than tangent as

T rolfy — vt — (1) — vl —
<x(t),y(z)>:j (x(t) = x(¢ = pTH(1) — ¥t pT))dz, (15)

pT (p T)Z

where T defines the time interval for integration and 0 < p < 0.5 defines the length of
the secant within this time interval. The limit of the secant inner product as p -0 is
the Hellinger integral. For evenly spaced discrete vectors, this can be approximated
analogous to the Hellinger geometry

<x,y> — i ((xi _S xi*s)(yi - yis‘)>’ (16)

i=s+1 $7(t — ti-y)

where s represents the number of data points in the interval. When s = 1, the secant
definition i1s equivalent to the discrete Hellinger inner product. Depending on the
value of p or s, the secant inner product and norm provide a level of smoothing of the
data and thus better measures large-scale differences between vectors. For experi-
mental data with inherent small-scale noise or model predictions with numerical
instabilities, the secant provides a filter to compare the overall functional form of the
curves without the underlying noise.
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Appendix A contains the expressions necessary to calculate the norms and inner
products for each of the three geometries.

3. Simple applications of functional analysis to data comparisons

To illustrate the use of the metrics in the comparison of time series data, this section
will consider several examples of simple data sets and compare data from multiple
curves using three measures. While these three measures are not the only ones that
could be used to represent a comparison between two curves, they do provide a suffi-
cient comparison for several areas important for the comparison of model predictions
with experimental data.

e The norm based upon relative difference provides a measure of the difference in the
overall magnitude for the two curves normalized to the experimental data. The
norm based upon relative diflerence approaches zero when the two curves are
identical in magnitude.

e The inner product cosine provides a comparison of ithe shapes of the two curves
while minimizing the effect of small-scale variations in the data. The cosine ap-
proaches unity when the shapes of the two curves differ only by a constant multiplicr.

e The projection coefficient provides a measure of the best possible fit of the two
curves, When the projection coefficient approaches unity, remaining differences
between the two curves is either due to random noise in the experimental measure-
ments or physical effects not included in the model.

Fig. 3 shows a second simple example of fictitious experimental data compared with
three model predictions. Model 1 is simply the experimental data multiplied by 0.9.
Model 2 has the same peak value as model 1, but with the peak shifted - 25 s. Model 3
has the same peak as Models 1 and 2, but with a 20 s plateau centered around the
peak of the experimental data. The comparison only of maxima would show that all
three models are identical with a relative difference of 0.1. Clearly this comparison fails
to capture the differences between the three models. Table 1 shows the relative differ-
ence, cosine, and projection coeflicient between the vectors of experimental data and
model predictions for the three models using other definitions for the inner product
and norm.

All of the geometries rank the models in the same order, with Model 1 closest to
the experimental data, followed by Models 3 and 2. The rank order matches a visual
interpretation of the comparisons. Model 1 is clearly the best, with the same func-
tional form (cosine = 1) and a projection coefficient close to one. The relative dif-
ference for Model 1 is the same for all of the gecometries as it should be. By choice,
the vector form of Model 1, m, is simply m = 0.9E. Thus, the relative diffcrence,
|E — mi|/IE|, regardless of the definition of the norm is just |E — 0.9E| /| E| or 0.1.
Similarly, the cosine of the angle between Model | and the experiment is 1.0 for all of
the comparisons. This is expected from axiom III for the inner product where one data
set 1s related to a second data set by a constant multiplier.
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Fig. 3. Three possible model predictions for a fictional example of experimental data.

Table 1

Comparison of fictional experimental data with three model predictions using several different inner
product definitions

Relative Projection

Model difference Cosine coefficient
Euclidean 1 0.10 1.00 1.11
2 0.40 0.92 1.02
3 0.20 0.98 1.05
Hellinger 1 0.10 1.00 1.11
2 0.94 0.58 0.56
3 0.74 0.77 0.67
Secant 1 0.10 1.00 1.11
2 0.92 0.58 0.57
3 0.66 0.83 0.71

Conversely, Model 2, with its peak offset from the experimental peak yields a Eu-
clidean projection coefficient close to one, but the difference in slope is clearly shown
in the cosine for the Hellinger and secant geometries. Although Model 3 does not have
the correct type of peak (an elongated plateau rather than a sharp peak), it does have
the right general form. These may be compared with the results of Model 2. The
projection coefficient is slightly larger for Model 3, but the value of the cosine moved
closer to one indicating that the shape of Model 3 is a better fit than Model 2.

The Euclidean model provides a straightforward means for measuring relative
difference that can be related to experimental and model uncertainties. The Euclidean
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cosine calculation is less useful since it is not based on the first derivative and therefore
does not provide a sensitive measure of curve shape. For example, two curves with the
same slope but offset by a constant amount compared to a third curve (Fig. 4) yield
different values for the cosine using the Euclidean geometry (0.36 and 0.55 for curves
1-2 and 1-3, respectively. The Hellinger and secant geometries yield the same cosine
values for curves 1-2 and 1-3(0.25 and 0.41 for the Hellinger and secant, respectively).

A norm calculated in the Hellinger geometry would be a norm for the first
derivatives of the curve and not for the curve. This would make using the norm
difficult to relate back to experimental uncertainty. A practical drawback to this
method is that for noisy data, the cosine representation would have a substantial
contribution from the shape of the noise and would not provide a good representation
for the overall curve shape. The secant geometry is a variation of the Hellinger
geometry that is designed to reduce or filter the noise contribution to the calculations.
This is accomplished by requiring that the derivative be taken over a number of data
points rather than adjacent points as in the Hellinger case. The difficulty of relating
the norm to data uncertainty has the same problems as the Hellinger method. The
choice of smoothing interval will effect the value of the cosine as the curve is effectively
being replaced by a series of chords.

Fig. 5 shows two curves compared to a straight line. For one of the curves, a dotted
line shows the curve witha + 5% random error. For the two experimental curves, the
Hellinger geometry yields cosine values of 0.90 and 0.87; the secant geometry values of
0.94 and 0.90. Introducing the 5% error to experiment | drops the Hellinger value to
0.81, but leaves the sccant value nearly unchanged.

For a comparison method to be useful, it should be sensitive, easily interpreted, and
measure the proper characteristics. For the comparisons given later in the paper, the
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Fig. 4. Comparison of curve magnitude.
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Fig. 5. Comparison of curve shape.

Euclidean geometry will be used to calculate the norms and the secant geometry will
be used to calculate the cosines. The Euclidean norm provides both a straightforward
interpretation and a measure of average curve separation that could be related to data
uncertainties. The secant inner product cosine was chosen based on its noise handling
ability and because it provides a measure of curve shapes which was based only on
first derivatives of the two curves. The resulting cosine would be relatively easy to
interpret compared with the other methods.

4. Quantifying the comparison of model predictions with experimental data

Most of the studies in the literature present a consistent set of variables of interest
to the model user: gas temperature, gas species concentrations, and layer interface
position. To assess the accuracy of the physical basis of the models, additional vari-
ables must be included. Pressure drives the movement of gases through openings. The
pyrolysis rate and heat release rate of the fire in turn produces the gases of interest to
be moved. Peacock et al. [16] compared the performance of the CFAST model with
experimental measurements for these variables. Using a range of laboratory tests, they
presented comparisons of peak values, average values, and overall curve shape for
anumber of variables of interest to model users. Details of the geometry, experimental
measurements, and model predictions are available [16].

A selection of data from one of these tests (a single-compartment test) will be used in
this paper to provide examples of comparisons quantified using the norm and inner
product. Table 2 presents the Euclidean relative difference, secant inner product
cosine, and Euclidean projection coefficient for a selection of the data from a single
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Table 2
Relative difference, cosine, and projection coefficient for a single room test

Relative Projection
difference Cosine coefficient
Upper layer temperature 0.18 0.99 1.08
0.26 0.97 1.01
Lower layer temperature 0.46 0.95 1.56
0.38 0.93 1.03
Interface position 1.40 —0.72 — 145
0.54 0.85 1.15
Heat release rate 0.10 1.00 1.03
Oxygen concentration 0.35 0.95 1.23
Carbon dioxide 0.64 0.97 2.54
Carbon monoxide 0.86 0.83 4.60
Vent flow 0.58 0.84 1.29
1000
Rel. Diff = 0.26
Coslne = 0.07 o Model
Projection = 1401'\ -~ — Experiment

> Rel.DIt=0.18

Cosine = 0.99
Projection = 1.08

Temperature (°C)

2000

Time (s)

Fig. 6. Comparison of upper layer temperature for a single-room test.

compartment test. To better understand these quantified comparisons, Figs. 6-8
present both the experimental data and model predictions for several of the variables
included in Table 2. All of the experimental data were collected at 10 s intervals. For
the secant inner product cosine, a value of s of 5 was used to provide appropriate noise
filtering for the experimental data.
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Iig. 7. Comparison of layer interface position for a single-room test.

Fig. 6 shows a comparison of upper layer temperatures for a single room test. In this
test, two measurement positions were available from the experimental data. The
predicted temperatures show obvious similarities to the measured values. Peak values
occur at similar times with comparable rise and fall for both measurement positions.
For both positions, the rise in upper layer temperatures is faster than the model
predictions. Both the relative difference and cosine reflect these trends. The norm
based upon relative difference is somewhat higher for one of the experimental posi-
tions (0.26 versus 0.18) reflecting the higher temperature at this measurement position.
With the shapes of all the curves similar, the cosine shows similar values for the two
comparisons (0.99 and 0.97). With both the magnitude and curve shape similar for the
two comparisons, the projection coefficient is close to unity for both curves.

The relative difference and cosine for the comparison of interface position and vent
flow for this same test also reflect trends in the data. Fig. 7 shows the interface position
calculated from experimental temperature profiles compared with that predicted by
the CFAST model. For one of the measurement positions, the dip in the layer height
from 2 to 1 m at about 500 s is evident in both the experimental measurements and in
the model prediction. The relative difference, cosine, and projection coefficient for this
comparison are 0.58, 0.85 and 1.15, respectively. For the other measurement position,
the interface height drops to about a 1 m height and remains there for the duration of
the test. A higher relative difference of 1.40 and negative values for the cosine and
projection coefficient of — 0.72 and — 1.45 reflect the larger differences at this
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Fig. 8. Comparison of vent flow for a single-room test.

measurement position. For both positions, the cosine values are lower than those of
the upper layer temperature comparisons due both to differences in the shapes of the
curves and to high noise in the experimentally determined interface position.

Fig. 8 shows the vent flow calculated from measured pressure profiles in the door-
way of the room compared with that predicted by the CFAST model. The relative
difference, cosine, and projection coefficient for this comparison are 0.58, 0.84 and 1.29,
respectively. The experiment and model prediction rising and falling over similar times
are reflected in the cosine value of 0.84. The relative difference and projection coefficient
values refiect the significantly lower model predictions in the latter part of the test.

5. Summary

In the past, the comparison of experimental measurements with model predictions
has been largely qualitative in nature. This paper has proposed techniques that allow
quantification of the differences between experimental measurements and model
predictions in the context of zone fire modeling. Several areas in need of further
examination are apparent:

e The techniques presented in this paper provide comparisons of magnitude and
functional form consistent with visual examination of the comparisons. However,
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these are based on a limited set of data. Additional comparisons are necessary to
build confidence that the techniques are chosen to best match visual perceptions of
model performance.

e In addition to comparison with experimental data, tests of the techniques with
simple examples would provide a better understanding of the limits of the compari-
sons.

e In addition to fire model comparisons, the techniques should also be applicable
to other areas of interest to researchers. Application to sensitivity analysis, time
shifting of data curves for optimal matching of ignition time and adaptive modeling
are similar to those presented in this paper.

Additional analysis and comparison with a wider range of applications is appropri-
ate to provide a better understanding of the use of functional analysis in fire safety
analyses.

Appendix A. Calculation of the norm and inner product

Detailed equations are presented in this appendix for the calculation of the norm
and the inner product in the Euclidean, Hellinger and secant vector spaces. The
Euclidean norm is calculated using

IE —m| /¥ (E~m)?
IE] Ny
while the inner product is given by
(E, m) N Z?ZIEimi
VEilml /STER im?

Here E; and m; represent the ith cxperimental and model data points in a set of
n points.
The Hellinger norm is calculated using

1E —ml] _ \/Z?:Z[(Ei — Ei_y) = (my — mp )P/t — 124)?
LEI VOdAlE — B )P — i)

while the inner product is given by

’
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The secant norm and inner product are similar to the Hellinger norm and inner
product with the exception that the sums are taken over an interval s which is
a method to smooth noisy data. If short period oscillations with a period equivalent to
a few data points are superimposed on a data signal, then by picking an interval
s which is larger than the oscillation interval provides a data smoothing effect and the
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impact of the short period oscillations on the data analysis will be lessened. The secant
norm and inner product are given by

1E —m|] _ \/"/Z?:Z[(Ei — Ei) — (my—my )% — 12 y))

IE] ot AE = E 2%t — )
and
(E, mp _ Z';: AE; — E; - Ymy —m Y/t — t;-4)
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