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Hyperfine and vibrational structure of weakly bound levels of the lowest 1g state of molecular 87Rb2
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Photoassociation resonances in the 87Rb2 1g state dissociating to 5 2S + 52P1/2 were produced by the excitation
of colliding 87Rb atoms in a far-off resonance trap. Levels down to 31 cm−1 below the dissociation limit were
measured with resonance linewidths of 15 to 20 MHz, and have been located to a one-sigma combined systematic
and statistical uncertainty of 50 MHz relative to the 5 2S + 52P1/2 limit. Electron and nuclear spins were fixed to
a space-fixed axis by circularly polarized optical pumping, so that only states with total nuclear spin I = 3 were
excited, thereby greatly simplifying the spectrum. The analysis of the data yielded hyperfine coupling parameters
A(v), vibrational G(v), and rotational B(v) parameters. The G(v) parameters could be fit to an rms accuracy of
about 0.01 cm−1 to a potential constructed from current C3 and C6 long-range dispersion parameters plus an ab
initio potential that was adjusted in depth and with quadratic terms in the internuclear distance added to the inner
wall.
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I. INTRODUCTION

In many cases, the most feasible pathway for the production
of cold molecules from cold atoms is via molecular states
tending to the lowest excited atomic states [1–4]. This is
especially the case for alkali-metal-atom diatomics, presently
still the most widely used species for the production of cold
molecules. In most instances to date, the states employed
for this purpose have been � = 0 states, where � is the
projection of spin and orbital angular momentum along the
internuclear axis. Although the � = 0 states are typically
free of hyperfine structure, other possible pathways involve
|�| = 1 states which typically have complicated hyperfine
structure. It is difficult to model the vibrational structure and
to calculate Franck-Condon factors if the hyperfine structure
is not analyzed.

The hyperfine structure in the photoassociation of alkali-
metal dimer molecules has been noted and studied for many
years, from earlier work on Na2 [5], K2 [6], Rb2 [7,8], and
Cs2 [9]. Multiple potential curves for hyperfine components
were displayed in Refs. [5,7,9], for example. Photoassociation
to |�| = 1 states near the lowest 2S + 2P atomic asymptotes
has also been observed in KRb [10] and RbCs [11] but remains
to be analyzed quantitatively. For the Rb2 (1)3�+

g (52P1/2)
state, hyperfine structure in the lowest vibrational levels has
been observed and analyzed [12]. An extensive series of
photoassociation resonances to levels of both the 1g and
0−

g components of this state were observed by Miller et al.
[13], and five levels of the 0−

g component were observed
by Gardner et al. [14]. Higher levels, near the dissociation
limit, of the 1g(P1/2) state are the subject of the present

work, but there are considerable gaps between the various
data sets.

There are useful results from ab initio calculations by
various theoretical groups [15,16]. Figure 1 shows potentials
calculated by the authors of Ref. [16] in the Rb2 energy region
of interest in what follows. Typically, small adjustments in
these ab initio potentials are needed to model experimental
data to the limit of the experimental accuracy, and therefore
there are continuing efforts to analyze data from the laboratory.
New excitation and decay pathways are continually being
found to be useful, in particular for Rb2 [2,17–22].

A complication when studying hyperfine structure (hfs) in
molecular excited states can occur when several rotation-hfs
levels of the cold atom dimer ground state are populated,
with undetermined population ratios. For example, the 85Rb2

photoassociation observations reported in Refs. [23,24] con-
sisted of data for the 0+

u and 1g states. The former had no
hfs and thus could easily be rotationally analyzed, while the
latter exhibited complicated hfs from multiple ground-state
levels, and this impeded rotational analysis. This difficulty
was circumvented in experiments reported in the present
work, performed several years ago at the University of Texas
(Austin), when a completely polarized atomic sample was
produced in an optical dipole trap. As described below, this
circumstance severely limited the range of diatomic ground
states present, and hence simplified the excitation spectrum.

After a discussion of the experimental methods (Sec. II),
we present well-resolved hyperfine structure for 33 vibrational
bands of the Rb2 1g(P1/2) state. From such data, we produce
fits to the vibrational energies G(v), the hyperfine interaction
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FIG. 1. Rb2 gerade potentials converging to the 5 2S + 5 2P fine
structure limits, from calculations by Aubert-Frécon [16]. The vertical
scale is relative to the minimum of the X1�+

g ground state. The data
in this study are associated with the lowest potential curve shown,
which has a minimum at approximately 9360 cm−1 on the scale of
this figure. The inset shows that the splitting between the 0−

g and
1g states converging to the 2P1/2 limit is calculated to be more than
1 cm−1 out to 45 Å.

parameters A(v), and the rotational parameters B(v), for each
vibrational level. The hyperfine Hamiltonian and the quality
of the fit to hyperfine structure are shown in Sec. III. Two
approaches are used to fit potential parameters to the G(v)
data. As discussed in Sec. V, our first approaches, since the
data are from the long range regime in the internuclear distance
R, are various “near-dissociation expansion” (NDE) methods
developed by the authors of Ref. [25] and refined in Ref. [26].
The NDE fit results, however, do not model the data as accu-
rately as a fit to a numerically computed potential, our second
approach. For this approach, the potential is adapted from an
ab initio calculation [16], modified by a long-range part based
on couplings between the three gerade states converging to
5 2S + 52P atoms, using accepted dispersion coefficients, and
small harmonic corrections to obtain an improved fit to the
present data and also to the data of the authors of Ref. [12].
Because data are very sparse for vibrational levels between
v = 16 [12] and our own data beginning at approximately
v = 180, there is no hope that this potential yields energy levels
of spectroscopic accuracy over this intermediate region. We do
obtain respectable agreement with our data near the dissocia-
tion limit, and find that the dissociation limit fitted with this
model is close to the weighted average over atomic hyperfine
levels.

II. EXPERIMENT

The experiment is similar to that of Ref. [14]. The data
were obtained with a far-off resonance trap (FORT) employing
one fixed frequency laser, plus a second laser with a 1-MHz
bandwidth, to scan over the photoassociation resonances. Each
cycle of photoassociation consists of trapping, loading of
atoms, photoassociation, and probing the atoms remaining in
the trap. To load the 87Rb atoms, a magnetooptical trap (MOT)
was turned on for 400 ms to grab atoms from background
vapor inside an ultrahigh vacuum chamber, then the MOT
and FORT laser beams were chopped at 200 kHz to further

load the atoms into the FORT. The FORT laser beam was a
linear polarized, Gaussian beam of about 1.5 W, focused to
a waist of about 11 μm. About 104 atoms were loaded into
the FORT. During the photoassociation period, the FORT and
photoassociation laser beams were alternated at 200 kHz for
200 ms. The FORT laser was turned on for 2.5 μs in each period
to keep atoms trapped. The photoassociation experiment was
performed in the following 2.5 μs (FORT off) to eliminate the
power broadening and frequency shifts due to the intense field
of the FORT laser. During the photoassociation period, two
optical pumping beams, linear polarized 5 2S1/2(F = 1) →
5 2P3/2(F = 2) and circular polarized σ+5 2S1/2(F = 2) →
5 2P3/2(F = 2) were turned on for 0.6 μs to maintain the atoms
in their doubly spin-polarized 87Rb 5 2S1/2(F = 2,MF = 2)
sublevel, followed by a photoassociation laser beam for 1.9 μs.
At the end of each 200-ms photoassociation time, a probe
laser was on for 1 ms to measure the atoms remaining in
the trap by laser-induced fluorescence. To obtain a spectrum
as shown in Fig. 2, the cycle of loading, photoassociation,
and probe are repeated for a succession of photoassociation
laser frequencies (1 MHz/step). Resonances were detected
by reductions in the atomic fluorescence (trap loss) when

FIG. 2. Examples of photoassociation spectra, to levels of the
Rb2 1g state below the 5 2S + 5 2P1/2 limit. Depending on the relative
magnitudes of �G(v), A(v), and B(v), there can be overlap between
transitions to different ι states as in (a), or to different vibrational
levels, as in (c), or no overlap, as in (b). Within each ι manifold,
the F values are denoted by the length of the vertical lines beneath
the spectra. In (c), the numbers below the thick horizontal solid lines
denote the ι values.
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photoassociation occurred. A transmission signal of the
photoassociation laser beam through a thermally stabilized
300 MHz free spectral range etalon was used to correct
nonlinearities of the laser frequency scan. The absolute
frequency of the photoassociation laser was calibrated with
a scanning Michelson interferometer wavemeter with an
accuracy of ±50 MHz, with the help of a frequency-stabilized
HeNe laser.

A notable feature of these particular experiments was that
the 5 2S 87Rb atoms were doubly polarized: the electron and
nuclear spins are fixed to a space-fixed axis. The binary
collisions therefore produced a total nuclear spin I equal
to 3/2 + 3/2 = 3. The nuclear spin cannot change during
the absorption, and hence only I = 31g

2S + 2P atoms are
formed. The atoms have a well-defined projection of I in the
space-fixed coordinate system. Nevertheless all projections ι

on the body-fixed internuclear axis are observable.

III. THEORY

A. Relevant electronic structure

The structure of electronic states associated with 2S + 2P

alkali-metal atoms was formulated in general many years ago
by Movre and Pichler (MP) [27]. In this (MP) model, there is an
adiabatic recoupling of electronic degrees of freedom from a
molecular coupling scheme at small internuclear separation
R to an atomic one at large internuclear separation. The
multichannel Hamiltonian in the MP [27] model is composed
of the atomic spin-orbit Hamiltonian of the 2P atom, which
dominates at large R, and the 1/R3 resonant-dipole interaction,
which dominates at smaller R. The resonant dipole interaction
is diagonal in the molecular basis |�,S,�〉σ while the spin-
orbit interaction is diagonal in the atomic basis |(ja,jb)j�〉σ .
Here �L = ��a + ��b is the total electronic angular momentum,
and � is its projection on the internuclear axis. Similarly,
�S = �sa + �sb s the total spin angular momentum, and � its
projection on the internuclear axis; �J = �ja + �jb is the total
electronic angular momentum and � = � + � its projection
on the internuclear axis. �jα = ��α + �sα is the total electronic
angular momentum of one of the atoms. For a 2P + 2S dimer,
�a = 1,�b = 0, sa = sb = 1/2, where the subscript a(b) labels
the P (S) atom, respectively. Finally, the label σ = g,u =
gerade,ungerade describes the symmetry of the electronic
wave function under inversion of the electrons through the
center of charge [28], which is basically due to the degeneracy
of the states P + S and S + P for homonuclear dimers.

For homonuclear species, there are singlet and triplet 


and � states of g and u parity. For excitations from the
X1�+

g ground state the most accessible states are the A1�+
u

and B1
u states, and also levels of b3
u that are intermixed
with A1�+

u levels by spin-orbit effects. For Rb2, these states
have been studied up to certain energy levels [22,29]. But
possible excitations from cold atoms and from Feshbach
resonance states that include components of the a3�+

u state
offer pathways to excited g states, such as those of interest
in this study. From ab initio calculations, Fig. 1 gives a view
of the g states close to the dissociation limit for which data
are presented here. These potentials come primarily from
electron-electron Coulomb and exchange interactions, while

spin-orbit effects account for the fine-structure splitting. At
large R, when spin-orbit effects become large compared to
other potential terms, the Hund’s case (c) notation, �±

σ is more
useful than the S��,σ notation useful for smaller R. And to
denote vibrational levels, the symbol v is added in this work.

For � = 1g symmetry which is of interest here, the
adiabatic electronic eigenstates become an R-dependent linear
combination of the |�S�〉g or alternatively |(jajb)j�〉g states.
The R-dependent eigenstates are composed of three atomic
basis states

|1g,i; R〉 = aig(R)|(1/2,1/2)11〉g + big(R)|(3/2,1/2)11〉g
+ cig(R)|(3/2,1/2)21〉g, (1)

where the label i = 1, 2, or 3 is an energy-ordered index
to the adiabats and a2

ig + b2
ig + c2

ig = 1. Figure 1 shows the
three long-range adiabatic potentials for 87Rb 1g symmetry as
well as other g states dissociating to 5 2S + 5 2P atoms. The
electronic eigenfunction of the lowest adiabat of Fig. 1 reduces
to |1g,1; R〉 = |(1/2,1/2)11〉g in the limit that the binding
energy is small compared to the 5 2P spin-orbit splitting of
237.6 cm−1 [30], and at short distances turns into the 3�g

adiabatic Born-Oppenheimer state.

B. Hyperfine and rotational interactions

The molecular hyperfine features of the long-range
molecules are due to atomic hyperfine interactions. The
hyperfine Hamiltonian is the sum of the Fermi-contact term
ahf,S�sb · �ib for the 2S and the weaker dipolar hyperfine in-
teractions included via the effective Hamiltonian ahf,Pja

�ja · �ia
[31], for the 2P atom. The 2P atom has a different hyperfine
constant for 2P3/2 and 2P1/2 states. For 87Rb, the nuclear spin
is ia = ib = 3/2. The extremely weak hyperfine quadrupole
interactions that are also present in a 2P3/2 atom play no role.

The hyperfine Hamiltonian is most conveniently evaluated
in the body-fixed basis |�g,iv〉|(iaib)I ι〉, where i is as in
Eq. (1) and ι is the projection of the total nuclear spin I along
the internuclear axis. The only relevant matrix elements of
the hyperfine Hamiltonian in this basis are those that satisfy
�I = 0 and �ι = 0. Other matrix elements, such as those
with �I = 1 are zero since only odd or even values of I mix
for homonuclear dimers, or yield small corrections that mix
different Hund’s case (c) symmetries. For example, �ι =1
matrix elements mix the 1g symmetry with the 0+

u . With this
in mind, it turns out that the hyperfine Hamiltonian is diagonal
in the above basis and is given by

〈�g,iv|〈(iaib)I ι|Hhf |�g,iv〉|iaib)I ι〉 = A(v)�ι, (2)

where A(v) is the molecular hyperfine constant which for
�σ = 1g is given by

A(v) = 1

2
〈1g,iv|Hhf |1g,iv〉

= 〈v|
[

1

4
a2

i,g(R) − 1

8
b2

i,g(R) −
√

3

4
bi,g(R)ci,g(R)

+ 1

8
c2
i,g(R)

]
ahf,S + 1

4
a2

i,g(R)ahf,P 1/2
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+
[

1

8
b2

i,σ (R) +
√

3

4
bi,g(R)ci,g(R) + 3

8
c2
i,g(R)

]

× ahf,P 3/2|v〉. (3)

For the vibrational levels of the 1g adiabat near the 2P1/2 +
2S asymptote this expression reduces to (ahf,S + ahf,P 1/2)/4
independent of v. For 87Rb this constant is 0.03180 cm−1.

The rotation of the atoms around their center of mass
introduces the mechanical nuclear angular momentum �,
which points perpendicular to the internuclear axis. The vector
sum of all spins, the total spin, �F = �� + �j + �I , is conserved
in a space-fixed or laboratory coordinate system with what
we will denote quantum numbers F and projection M . On
the other hand, for the electronic and hyperfine interactions,
the projections of total electronic spin � and the total nuclear
spin ι with respect to the internuclear axis are good quantum
numbers. This also implies that the projection of F on the
internuclear axis φ = � + ι is conserved for the electronic and
hyperfine terms of the Hamiltonian. The basis that captures
both aspects uses solutions of the rigid rotor problem, i.e.,
the Wigner rotation matrices DF

Mφ(α,β,γ ) where F,M, and φ

label the basis elements and α,β, and γ are the Euler angles.
Wigner rotation matrices have been used to discuss atomic
photoassociation and photodissociation in Refs. [32–34].

Thus the basis in which the rotation is evaluated is

|�g,ivI ιFMφ〉 ≡
√

2F + 1

8π2
DF∗

Mφ(α,β,γ )|�g,iv〉|(iaib)I ι〉.
(4)

The rotational Hamiltonian, which is given by h̄2 ��2/2μR2 =
h̄2( �F − �j − �I )2/2μR2, is not diagonal. It is given by

〈�g,ivI ′ι′FMφ′| h̄2 ��2

2μR2
|�g,ivI ιFMφ〉

= εj 2

vg + [F (F + 1) + I (I + 1) − φ2 − �2 − ι2]Bv (5)

for the diagonal matrix elements ι = ι′,I = I ′, and√
F (F + 1) − φφ′

√
I (I + 1) − ιι′Bv (6)

for the off-diagonal matrix elements ι′ = ι + 1,φ′ = φ + 1 or
ι′ = ι − 1,φ′ = φ − 1,I ′ = I , where Bv = 〈v|h̄2/2μR2|v〉 is
the rotational constant, and

εj 2

vg = 〈�g,iv| h̄2 �j 2

2μR2
|�g,iv〉. (7)

The terms in ( �F − �j − �I )2 that lead to nonzero off-diagonal
matrix elements F+ · I− and F− · I+ mix different ι’s (or φ’s)
for a given nuclear spin I and vibrational level of a Hund’s
case (c) symmetry, have been neglected. The F± are raising
and lowering operators. In evaluating Eq. (6) in a body-fixed
frame, the raising and lowering operators of �F have anomalous
commutation relations [34]. In fitting the data, we include the
term εj 2

with | �j | = 2. The rotational coupling between Hund’s
case (c) symmetries, that arises from cross terms like F+ · j−
and j+ · I−, has also been neglected.

IV. RESULTS

A. Hyperfine and rotational structure

Figure 2 gives examples of scans over individual or
overlapping vibrational levels. Resonance positions were
extracted from the data scans by fitting each resonance peak
to a Gaussian function. We begin our analysis by assigning
rotational and hyperfine structure transitions within a given
vibrational level. These transitions are fit by optimizing values
of G(v),A(v), and B(v). Often an additional nonlinear term,
η(v)(ι + 3)2 was included in the parameter set to minimize
slight distortions in the scan. In this part of the analysis, the rms
deviation of observed minus fitted line positions was 4 MHz in
the best cases, and as much as 20 MHz or even 60 MHz in less
favorable cases, with overlapping resonances or vibrational
levels that span more than one individual laser scan.

The vertical lines below the data in Fig. 2 are at energies
corresponding to the results of fitting the resonances in each
band to the Hamiltonian expressions given above. Within each
cluster for a given value of ι, of three to six lines, the line length
is proportional to the value of the total angular momentum
F . By comparison to the data, the vertical lines show the
quality of the fit to the G(v),A(v), and B(v) parameters for
each vibrational level. The middle scan in Fig. 2 shows a case
in which the ι clusters are separated; in the top scan they
overlap. The bottom scan shows an example in which several
bands partially overlap. Beyond the level we have designated
v′ = 50, the component lines are too dense to assign reliably.

Estimates of the absolute vibrational numbering, discussed
below, indicate that v′ = 0 corresponds to v = 176 to 180. The
uncertainty arises from the large gap between our data and that
of Ref. [12], which extends only to v = 15. The experimental
scans happened to skip over certain wavelength regions, hence
the v′ numbers are not continuous.

A complete tabulation of the observed and fitted lines is
given in Ref. [35], and the resulting best fit G(v′), B(v′),A(v′),
and η(v′) parameters are displayed in Table I. The error
limits in parentheses are conservatively given as three standard
deviations for each fitted parameter. The absolute accuracy
of the G(v) values is ±50 MHz, as determined by the
laser frequency measurement uncertainty. while for many
cases, the quoted 3σ uncertainty is only 3 MHz. A plot
of the fitted hyperfine parameters A(v), shown in Fig. 3,
displays an evolution toward the value calculated from the
atomic hyperfine parameters, as given below Eq. (3). The
rotational parameters B(v) are plotted in Fig. 4. Scatter in
the A(v) and B(v) values, beyond the three σ uncertainties,
reflects the effects of perturbations by states of various other
symmetries, which presently are not accurately characterized
in this energy region. Fragmentary observations, such as three
extra lines in the data for v′ = 30 (shown in Ref. [35]), are
clearly inadequate to characterize the perturbing states. These
undetermined, fluctuating, perturbation effects induce us to
quote 3σ uncertainties, rather than 1σ or 2σ values in Table I
and Figs. 3 and 4.

B. Vibrational structure of the 1g(2P1/2) State

For molecular vibrational energy levels near a dissocia-
tion limit, near dissociation expansion (NDE) semiclassical
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TABLE I. Results from the least-squares fits to individual bands, and results of various fits to the vibrational structure. All data are in
cm−1. Here E0 = 12 500 cm−1, and energies are relative to the 5 2S,F = 2 + 5 2S,F = 2 diatomic hyperfine level, as in the experiments.
The v′ = 0 in the first column corresponds approximately to v = 176–180, as discussed in the text. The second column gives the number
of hfs peaks in the fit, and the third column gives the rms residual in MHz. Numbers in parentheses for G(v), B(v), and A(v) give three
times the standard deviation from the fitting program. The column labeled “δpf ” shows deviations (calculated minus observed) from a fit to a
numerically computed potential, as discussed in the text. The columns labeled δa and δb show the results of a NDE fit with C3 only, and with
C6 also, respectively (see text). For δb, the residuals are calculated from deviations in the fit to v − vD and the calculated value of dE/dv.
Deviations marked with an asterisk (in δa) were not included in the fit, but are presented to show the quality of the fit for lower-energy G(v′)
values.

v′ np rms G(v′)−E0 δpf 104B(v′) 102A(v′) 104η δa δb

0 28 5.6 47.1804(1) 0.0001 20.11(4) 3.010(7) 0.3(1) −2.1527* −0.1278
1 30 6.2 48.8917(1) 0.0013 19.34(4) 2.940(7) 1.0(1) −1.9531* −0.0843
5 30 5.2 54.9990(1) 0.0011 16.86(4) 2.983(6) 0.2(1) −1.2867* 0.0453
6 31 5.1 56.3530(1) 0.0004 16.30(3) 2.970(6) 0.7(1) −1.1510* 0.0667
14 31 12.0 65.0357(2) 0.0036 12.34(8) 3.002(12) 0.2(2) −0.4010* 0.1362
15 30 5.5 65.8848(1) 0.0054 12.09(4) 2.992(6) 1.1(1) −0.3422* 0.1343
19 34 6.7 68.9040(1) −0.0444 10.47(4) 3.030(7) 1.4(1) −0.2417* 0.0315
20 30 63.5 69.5016(12) 0.0011 9.09(39) 3.135(65) −2.8(8) −0.1413* 0.0943
26 26 21.4 72.6530(4) 0.0063 7.40(14) 2.992(23) 0.5(3) −0.0209 0.0364
27 34 7.5 73.0739(1) 0.0088 7.54(4) 3.014(7) 1.8(1) −0.0032 0.0339
28 34 5.1 73.4693(1) 0.0113 7.25(3) 3.002(5) 2.1(1) 0.0052 0.0241
29 33 21.9 73.8451(1) 0.0092 6.42(13) 3.045(21) −0.5(3) 0.0131 0.0159
30 35 3.5 74.1997(1) 0.0053 6.47(2) 2.970(3) 1.0(1) 0.0072 −0.0040
31 34 5.9 74.5302(1) 0.0037 6.21(3) 3.006(5) 0.7(1) 0.0060 −0.0172
32 35 5.0 74.8420(1) 0.0002 6.07(3) 3.090(5) 0.5(1) −0.0033 −0.0365
33 35 4.9 75.1291(1) 0.0019 5.82(3) 3.046(4) 1.5(1) 0.0044 −0.0370
34 26 6.6 75.4008(1) 0.0004 5.62(4) 3.115(9) 0.6(1) −0.0009 −0.0487
35 35 3.9 75.6529(1) 0.0012 5.33(2) 3.078(4) 1.1(1) 0.0026 −0.0498
36 35 6.0 75.8890(1) 0.0014 5.13(3) 3.112(5) 0.9(1) 0.0037 −0.0517
37 35 6.7 76.1099(1) 0.0012 4.92(4) 3.128(6) 1.2(1) 0.0041 −0.0527
38 33 8.4 76.3155(1) 0.0016 4.63(5) 3.065(8) 1.4(1) 0.0052 −0.0513
39 35 8.6 76.5103(1) −0.0010 4.43(5) 3.154(8) 0.4(1) −0.0083 −0.0628
40 33 18.1 76.6882(1) 0.0002 4.18(4) 3.039(6) 2.6(1) 0.0075 −0.0436
41 31 17.8 76.8561(3) −0.0009 4.28(11) 3.159(18) 0.2(3) −0.0112 −0.0570
42 35 8.3 77.0091(1) 0.0013 3.79(4) 3.022(7) 2.8(1) 0.0099 −0.0292
43 35 13.8 77.1564(2) −0.0017 3.64(8) 3.095(13) 1.2(2) −0.0090 −0.0394
44 27 17.7 77.2901(3) −0.0014 3.35(11) 3.050(19) 0.9(2) −0.0037 −0.0238
45 29 20.0 77.4185(4) −0.0053 3.12(12) 3.207(19) −1.1(2) −0.0321 −0.0397
46 31 4.1 77.5296(1) −0.0011 3.09(2) 3.017(4) 2.6(1) 0.0079 0.0139
47 35 20.6 77.6393(3) −0.0039 2.73(12) 3.186(19) −0.1(2) −0.0127 0.0098
48 35 17.4 77.7350(3) −0.0007 3.04(9) 3.096(14) 1.1(2) 0.0269 0.0670
49 35 17.5 77.8296(3) −0.0038 2.57(8) 3.077(14) 2.0(2) −0.0117 0.0498
50 35 15.5 77.9131(3) −0.0029 2.47(9) 3.060(14) 0.6(2) 0.0133 0.0974

methods are often used. Since the original proposal (LB) by
Le Roy and Bernstein [25], this general approach has been
used in numerous contexts, including a determination of the
asymptotic limit of the B1�+

u state of H2 [36], recent fits
to data on the Rb2 0+

u (5 2P1/2) [37], and 0−
g (5 2P1/2) [38]

states, as well as an analysis of the pure long range Cs2

0−
g (6 2P3/2) state [26]. It appears logical to consider such

approaches here. However, the results are not completely satis-
factory when compared to the eigenvalue calculation discussed
below.

A reduction of the NDE problem to one channel in a
low-order approximation makes use of an analytic expansion
of the potential V (R). Low-order expansions for various
electronic states below a 2S + 2P limit are given analytically
in Table V of Ref. [26]. The first such term in R−3 for the

Rb2
3�1g(2P1/2)/(1)1g state is

V (1)[1g] = DL − 2
C3

R3
+ · · · , C3 = 〈5s|r|5p〉(1 + ε), (8)

where DL is the dissociation limit, and ε is a relativistic
correction in the order of 3 × 10−4 [39] that will generally be
ignored here. In the following, the terms following −2C3/R

3

also will be small enough to be ignored.
The original LB model [25] for a potential of the form

V (R) = D − C3,eff/R
3, yields the following expression for

vibronic energies E(v):

vD − v = 4a3

h

√
2μC

1/3
3,eff[D − E(v)]1/6 = K[D − E(v)]1/6;

a3 =
√

π�(5/6)

2�(4/3)
= 1.1202513, (9)
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FIG. 3. A plot of the fitted molecular hyperfine parameters A(v)
(times 100, in cm−1), vs. vibrational energy. The error bars denote
three standard deviations of the fitted parameters.

where μ is the molecular reduced mass, the �’s are Gamma
functions, and vD is the asymptotic vibrational quantum
number. If D and E(v) are in cm−1 and C3,eff is in atomic units,
then for 87Rb2, K (in [cm−1]−1/6 = 35.7093 C

1/3
3 ), where C3 is

in atomic units. For Cn, the atomic unit is EH an
0 , where EH =

4.3597442 × 10−18 J, and a0 = 5.29177211 × 10−11m.
When the 25 highest G(v) values in Table I were used in a fit

to the above expression to obtain values for the parameters vD ,
DL, and K , the resulting value for C3 was 12.1% less than the
accurate value obtained from lifetime measurements, as given
in Ref. [39]. In view of this discrepancy, we then considered
the improved Le Roy-Bernstein models of Comparat [26].
The first such improvement involved simply adding a term
γ (E(v) − DL) to the above expression for vD − v, where γ is
a small parameter to be fitted from the data. With this model, a
fit to the top 25 G(v) values, using the C3 value from Ref. [39],
was much improved over the results cited previously. The
residuals from this fit are shown in Table I, column δa . Large
deviations for levels below v′ = 26 indicate that higher-order
dispersion terms might be useful. We also note that the fitted
value for vD , the effective vibrational quantum number at the

FIG. 4. A plot of the fitted molecular rotational parameters B(v)
times 104, in cm−1, vs. vibrational energy. Error bars denote 3σ

uncertainties.

asymptotic limit, was unreasonably large (v′ = 114.5) as is
said to be typical of NDE approaches [26].

Th extension of the LB model to include the C6 as well as
C3 coefficient was considered by Le Roy [40]. However, the
required integrals for the case of n,m = 3,6 diverged. More
recently, Comparat [26] has presented another approach to this
problem. His expression can be written

vD − v = W = K[D − E(v)]1/6 + γ [D − E(v)]

+ 5K

42

C6

C3
[D − E(v)]7/6, (10)

where as given above, K includes a factor C
1/3
3,eff. One problem

with this formulation is that it is difficult to invert Eq. (10) to
obtain values for E(v) for direct comparison with observations.
To make such comparisons, we have calculated dE(v)/dv for
each observed level (using the numerical potential fit), and
then multiplied this quantity by vD − v − W to obtain values
for the effective residual δb as given in Table I. In this case,
all observed levels were included in the fit. The results are
useful, but, again, not on a par with the numerical eigenvalue
results discussed below. It may be that the semiclassical
approximation itself, which is necessarily employed in NDE
methods, limits the accuracy.

For a numerical approach employing a fitted potential,
we consider that the 1g(P1/2) state is coupled by spin-orbit
interactions to the 1
g(P3/2) and 3
g(P3/2) states, both of
which evolve to 1g states in the large R limit, as shown in
Fig. 1. The Hamiltonian matrix for the long range potential
functions for these three � = 1g states, relative to the center
of gravity of the 5 2S + 5 2P manifold, is

3�1g
1
1g
3
1g

⎛
⎜⎝

V (3�1g) � �

� V (1
1g) −�

� −� V (3
1g)

⎞
⎟⎠ , (11)

where � = 79.200 cm−1 [30] is the spin-orbit parameter (one-
third the 5 2P atomic fine structure splitting). The potentials in
Eq. (11) are [41,42]

V (3�1g) = −f � 2C3

R3
− C�

6

R6
− C8(3�+

g )

R8
, (12)

V (1
1g) = −f 
 C3

R3
− C


6

R6
− C8(1
g)

R8
, (13)

V (3
1g) = f 
 C3

R3
− C


6

R6
− C8(3
g)

R8
. (14)

In the above, the small retardation corrections [43] are [ 
 λ =
(1/2π ) times the 5 2S → 5 2P1/2 excitation wavelength]

f � = cos

(
R


 λ
)

+
(

R


 λ
)

sin

(
R


 λ
)

; 
 λ = λres

2π
; (15)

f 
 = cos

(
R


 λ
)

+
(

R


 λ
)

sin

(
R


 λ
)

−
(

R


 λ
)2

cos

(
R


 λ
)

,

(16)

where λres is the wavelength on resonance for the 25S → 5 2P

transition, averaged over the fine structure components.
Our numerical potential model employs the ab initio

potential from [16], (two) harmonic correction terms for
R < Re and R ∼ Re, where Re is the internuclear distance
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TABLE II. Parameters from fits to the experimental data, and
from previous work. Rx and Vx refer to the transition point between
the adjusted ab initio potential and the long-range potential, in the
potential fit. The Cn coefficients are all in atomic units. Pot. fit =
potential fit in this work. W.M. = weighted mean of four atomic hfs
limits, as discussed in the text.

Parameter Value Source

Rx 16.0 Å Pot. Fit
Vx 12501.0 cm−1 Pot. Fit
Vdis 12578.782 cm−1 Pot. Fit
Vdis 12578.790 cm−1 W.M. [30]
C3 9.202 Th. [41]
C3 8.784(6) Exp. [23]
C3 8.905(26) Exp. [39]
C3 8.903 Exp. [24]
C�

6 1.205 × 104 Th. [41]

at the potential minimum, and a long-range part, for R > Rx .
The long-range part employed the lowest eigenvalue, E1(R),
from the above matrix, Eq. (11). Rx was eventually chosen to
be 16 Å to optimize the fit to all the G(v) data, after numerous
trials. Because the ab initio potential varied with R nearly
as E1(R), it was sufficient to shift the ab initio potential for
all R � Rx by a constant �V . The C3 and C6 parameters
were taken at their accepted values from Refs. [39,41], as
given in Table II. This potential was optimized to reproduce
the G(v′) data of Table I and to the extent possible, the data of
Ref. [12] for 1g levels for v = 0 � 16. Data exist also for some
intermediate levels shown in Refs. [13,44]. However, the gap
of 1500 cm−1 between the data of [12,13,44], and the absence
of B(v) information from these data sets made it problematic
to obtain an overall 1g potential that could simulate all the
available data. Nonetheless, G(v) values for the 33 levels listed
in Table I could be reproduced to better accuracy than obtained
with the NDE expansions. The residuals obtained in such a fit
are given in Table I in the column labeled “δpf .” With one
exception, they are less than 0.012 cm−1. We have not been
able to identify the reason for this one exception, although one
expects perturbations from states of other symmetry (0−

g ,0+
u ,

etc.).
The dissociation limit was a fitted parameter here. The

result, given in Table IV B, 12578.782 cm−1, may be compared
to the difference between 87Rb 5 2P1/2(F = 1) and 87Rb
5 2S1/2(F = 2), namely 12578.8485 cm−1, from Ref. [30].
However, as the molecule approaches the dissociation limit, the
representation in terms of a Hund’s case (c) molecular potential
must be transformed to the various possible combinations of
free atom hyperfine states for 2S + 2P1/2

87Rb atoms. Since
J = 1/2 and I = 3/2 in each case, one has F = 1 and 2 states
for both 2S and 2P1/2 atoms, and thus four possibilities. Figure 5
displays the highest observed G(v) values and the fit results
up to the dissociation limit together with horizontal lines
that denote the four possible free atom states, relative to the
initial 2S1/2(F = 2) + 2S1/2(F = 2) atomic energy. The fitted
effective dissociation limit lies in between the four possible
free atom limits. An average of these four limits, each weighted
by (2F ′′ + 1)(2F ′ + 1), is found to be 12578.7900 cm−1,

FIG. 5. This plot shows the highest observed G(v) values (circles)
together with the fitted energies (solid dots, thicker solid line),
together with the calculated F ′′,F ′ energies or dissociation limits
relative to the 5 2S1/2(F ′′ = 2) + 5 2S1/2(F ′′ = 2) initial state. The
inset shows the molecular potentials converging also to the 5 2S1/2 +
5 2P1/2 limit, in accord with the Movre-Pichler [27] model.

which differs by only 0.008 cm−1 from the fitted dissociation
limit parameter.

Also shown in an inset in this figure are all the Hund’s case
(c) molecular states that dissociate to this limit according to
the classic Movre-Pichler (MP) model [27]. One can calculate
a transformation between the atomic limit with hyperfine
structure and the molecular MP potentials, and it appears that
the 1g molecular state would be distributed over all four atomic
hyperfine states. Since g/u parity does not apply in the atomic
limit, this transformation effectively couples g and u states, and
singlet and triplet states, as in the case of the X1�+

g and a3�+
u

states of Cs2 in Ref. [45]. A discussion of the details is beyond
the scope of this work since the analysis of the experimental
data could not be extended into the highly congested spectral
region near the dissociation limit. The fitted potential is given
numerically in the supplementary data file [35]. The T (0) value
is within 1 cm−1 of the observed G(0) value from Ref. [12].

In conclusion, we state again that a judicious selection of
laser polarizations applied to cold atoms in a FORT has been
used to simplify molecular hyperfine structure. Together with
high resolution data collection, this has facilitated analysis
of rotational, vibrational, and hyperfine structure in levels of
the Rb2 1g(P1/2) near the dissociation limit. Transitions are
observed for only one value of the total nuclear spin I , and
also only one value of the rotational angular momentum �.
The vibrational energies, applied to a numerical eigenvalue
calculation for a potential based on a shifted ab initio potential
[16] spliced on to the long-range part, in turn confirm previous
determinations of the C3 and C6 dispersion coefficients as they
apply to this particular state. To obtain this agreement, it was
essential to consider couplings at large internuclear distance
between the three 1g states dissociating to Rb5 2S + Rb5 2P .
Application of NDE expansion methods yields useful results,
but not of the quality of the numerical eigenvalue calculation.
It remains to better bridge the gap between the data presented
here and the published data on low-lying levels of this
state [12].
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The emphasis in this study has been on the hyperfine
and vibrational structure of the Rb21g(5P1/2) levels near the
dissociation limit because the experimental approach provided
such clearly resolved data. We have made only an approximate
fit to data on lower levels of the 1g state. In the future, we hope
to carefully compile all available data on the Rb2

3�+
g (5P1/2)

state and produce an empirical potential that better reproduces
the available data from more deeply bound states. Perhaps it
would be possible also to identify the perturbing states that
displace the A(v) values shown in Fig. 3, and then model the
perturbation effects quantitatively.
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