
An Efficient Approach to Assessing the Risk of Zero-Day Vulnerabilities∗

Massimiliano Albanese1, Sushil Jajodia1,2, Anoop Singhal3, and Lingyu Wang4

1Center for Secure Information Systems, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA

2The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA

3Computer Security Division, NIST, 100 Bureau Dr, Gaithersburg, MD 20899, USA

4Concordia Institute for Information Systems Engineering, Concordia University, 1515 Sainte-Catherine St W, Montreal,

QC H3G 2W1, Canada

{malbanes, jajodia}@gmu.edu, anoop.singhal@nist.gov, wang@ciise.concordia.ca

Keywords:	 Zero-Day Vulnerabilities, Vulnerability Analysis, Attack Graphs

Abstract:	 Computer systems are vulnerable to both known and zero-day attacks. Although known attack patterns can
be easily modeled, thus enabling the development of suitable hardening strategies, handling zero-day vulner
abilities is inherently difficult due to their unpredictable nature. Previous research has attempted to assess the
risk associated with unknown attack patterns, and a suitable metric to quantify such risk, the k-zero-day safety
metric, has been defined. However, existing algorithms for computing this metric are not scalable, and as
sume that complete zero-day attack graphs have been generated, which may be unfeasible in practice for large
networks. In this paper, we propose a set of polynomial algorithms for estimating the k-zero-day safety of
possibly large networks efficiently, without pre-computing the entire attack graph. We validate our approach
through experiments, and show that the proposed algorithms are computationally efficient and accurate.

1 INTRODUCTION

In today’s networked systems, attackers can lever
age complex interdependencies among network con
figurations and vulnerabilities to penetrate seemingly
well-guarded networks. Besides well-known weak
nesses, attackers may leverage unknown (zero-day)
vulnerabilities, which even developers are not aware
of. In-depth analysis of network vulnerabilities must
consider attacker exploits not merely in isolation, but
in combination. Attack graphs reveal such threats by
enumerating potential paths that attackers can take to
penetrate networks (Sheyner et al., 2002; Ammann
et al., 2002). This helps determine whether a given
set of network hardening measures provides safety
of given critical assets. However, attack graphs can
only provide qualitative results (i.e., secure or inse
cure), and this renders resulting hardening recommen
dations ineffective or far from optimal, as illustrated
by the example discussed in Section 3.1.

∗The work presented in this paper is supported in part
by the National Institutes of Standard and Technology un
der grant number 70NANB12H236, by the Army Research
Office under MURI award number W911NF-09-1-0525,
and by the Office of Naval Research under award number
N000141210461.

To address these limitations, traditional efforts
on network security metrics typically assign numeric
scores to vulnerabilities as their relative exploitabil
ity or likelihood, based on known facts about each
vulnerability. However, this approach is clearly not
applicable to zero-day vulnerabilities due to the lack
of prior knowledge or experience. In fact, a major
criticism of existing efforts on security metrics is that
zero-day vulnerabilities are unmeasurable due to the
less predictable nature of both the process of introduc
ing software flaws and that of discovering and exploit
ing vulnerabilities (McHugh, 2006). Recent work ad
dresses the above limitations by proposing a security
metric for zero-day vulnerabilities, namely, k-zero
day safety (Wang et al., 2010). Intuitively, the metric
is based on the number of distinct zero-day vulner
abilities that are needed to compromise a given net
work asset. A larger such number indicates relatively
more security, because it will be less likely to have
a larger number of different unknown vulnerabilities
all available at the same time, applicable to the same
network, and exploitable by the same attacker. How
ever, as shown in (Wang et al., 2010), the problem of
computing the exact value of k is intractable. More
over, (Wang et al., 2010) assumes the existence of a
complete attack graph, but, unfortunately, generating

mailto:wang@ciise.concordia.ca
mailto:anoop.singhal@nist.gov
mailto:jajodia}@gmu.edu

attack graphs for large networks is usually infeasible
in practice (Noel and Jajodia, 2004). These facts com
prise a major limitation in applying this metric or any
other similar metric based on attack graphs.

In this paper, we propose a set of efficient solu
tions to address this limitation and thus enable zero-
day analysis of practical importance to be applied to
networks of realistic sizes. Therefore, the major con
tribution of this work is to provide a practical solution
to a problem which was previously considered impos
sible. We start from the problem of deciding whether
a given network asset is at least k-zero-day safe for a
given value of k (Wang et al., 2010), but then we go
beyond this basic problem and provide a more com
plete analysis. First, we drop the assumption that the
zero-day vulnerability graph has been precomputed,
and combine on-demand attack graph generation with
the evaluation of k-zero-day safety. Second, we iden
tify an upper bound on the value of k using a heuristic
algorithm that integrates attack graph generation and
zero-day analysis. Third, when the upper bound on
k is below an admissible threshold, we compute the
exact value of k by reusing the computed partial at
tack graph. Section 4 formally states the three related
problems we are addressing in this paper, and shows
their role in the overall process of assessing the risk
of zero-day vulnerabilities. To the best of our knowl
edge, this is the first attempt to define a comprehen
sive and efficient approach to zero-day analysis.

The paper is organized as follows. Section 2 dis
cusses related work. Section 3 recalls some prelim
inary definitions and provides a motivating example.
Then Section 4 discusses the limitations of previous
approaches and provides a formal statement of the
problems addressed in our work. Section 5 describes
in detail our approach to efficient evaluation of k zero-
day safety. Finally, Section 6 reports experimental re
sults, and Section 7 gives some concluding remarks
and indicates further research directions.

2 RELATED WORK

Existing standardization efforts, such as the Com
mon Vulnerability Scoring System (CVSS) (Mell
et al., 2006) and the Common Weakness Scoring Sys
tem (CWSS) (The MITRE Corporation, 2011), pro
vide standard ways for security analysts and ven
dors to rank known vulnerabilities or software weak
nesses using numerical scores. These efforts provide
a practical foundation for research on security met
rics, but are designed for individual vulnerabilities
and do not address the combined effect of multiple
vulnerabilities. Early work on security metrics in

clude a Markov model-based metric for estimating
the time and efforts required by adversaries (Dacier,
1994), and a metric based on lengths of shortest at
tack paths (Phillips and Swiler, 1998). The main lim
itation of these approaches is that they do not consider
the relative severity or likelihood of different vulner
abilities. Anther line of work adapts the PageRank al
gorithm to rank states in an attack graph based on the
relative likelihood of attackers’ reaching these states
when they progress along different paths in a random
fashion (Mehta et al., 2006). Other recent work uses
specially marked attack trees (Balzarotti et al., 2005)
or more expressive attack graphs (Pamula et al., 2006)
in order to find the easiest attack paths. A Mean
Time-to-Compromise metric based on the predator
state-space model (SSM) captures the average time
required to compromise network assets (Leversage
and Byres, 2008). A probabilistic approach defines
a network security metric as attack probabilities and
derives such probabilities from CVSS scores (Wang
et al., 2008). Several important issues in calculating
probabilistic security metrics, such as dependencies
between attack sequences and cyclic structures, are
addressed in (Homer et al., 2009).

Most existing work on network security met
rics has focused on previously known vulnerabilities
(McHugh, 2006). A few exceptions include an em
pirical study on the total number of zero-day vulner
abilities available on a single day (McQueen et al.,
2009), a study on the popularity of zero-day vulnera
bilities (Greenberg, 2012), and an empirical study on
software vulnerabilities’ life cycles (Shahzad et al.,
2012). Another recent effort ranks different applica
tions by the relative severity of having one zero-day
vulnerability in each application (Ingols et al., 2009),
which has a different focus than our work. Closest
to our work, recent work on k-zero-day safety defines
a metric based on the number of potential unknown
vulnerabilities in a network (Wang et al., 2010).

In this paper, we address the complexity issues
associated with the metric proposed in (Wang et al.,
2010), and propose a set of polynomial algorithms for
estimating the k-zero-day safety of possibly large net
works efficiently. The proposed zero-day attack graph
model borrows the compact model given in (Ammann
et al., 2002) – based on the monotonicity assumption
– while incorporating zero-day vulnerabilities.

3 PRELIMINARIES

Attack graphs represent prior knowledge about
vulnerabilities, their dependencies, and network con
nectivity. With a monotonicity assumption, an attack

graph can record the dependencies among vulnerabil
ities and keep attack paths implicitly without losing
any information. The resulting attack graph has no
duplicate vertices and hence has a polynomial size in
the number of vulnerabilities multiplied by the num
ber of connected pairs of hosts.
Definition 1 (Attack graph). Given a set of exploits E ,
a set of security conditions C, a require relation Rr ⊆
C × E , and an imply relation Ri ⊆ E × C, an attack
graph G is the directed graph G = (E ∪ C,Rr ∪ Ri),
where E ∪C is the vertex set and Rr ∪ Ri the edge set.
For an exploit e, we call the conditions related to e
by Rr and Ri as its pre- and post-conditions, denoted
using functions pre : E → 2C and post : E → 2C, re
spectively.

We denote an exploit as a triple (v, hs,hd), indi
cating an exploitation of vulnerability v on the desti
nation host hd , initiated from the source host hs. A
security condition is a pair (c,hd) – that indicates a
satisfied security-related condition c on host hd , such
as the existence of a vulnerability – or a pair (hs,hd)
– that indicates connectivity between hosts hs and hd .
Initial conditions are a special subset of security con
ditions that are initially satisfied, whereas intermedi
ate conditions are those that can only be satisfied as
post-conditions of some exploits.
Definition 2 (Initial conditions). Given an attack
graph G = (E ∪ C,Rr ∪ Ri), initial conditions refer
to the subset of conditions Ci = {c ∈ C|�e ∈ E s.t.
(e, c) ∈ Ri}, whereas intermediate conditions refer to
the subset C \Ci.

3.1 Zero-Day Attack Model

The very notion of unknown zero-day vulnerability
means we cannot assume any vulnerability-specific
property, such as the likelihood or severity. There
fore, our zero-day vulnerability model is based on fol
lowing generic properties that are common to most
vulnerabilities. Specifically, a zero-day vulnerability
is a vulnerability whose details are unknown except
that its exploitation requires a network connection be
tween the source and destination hosts, a remotely ac
cessible service on the destination host, and that the
attacker already has a privilege on the source host.
In addition, we assume that the exploitation can po
tentially yield any privilege on the destination host.
These assumptions intend to depict a worst-case sce
nario about the pre- and post-conditions of a zero-day
exploit, and are formalized as the first type of zero-
day exploit in Definition 3, whereas the second type
represents subsequent privilege escalation.
Definition 3 (Zero-Day Exploit). We define two types
of zero-day exploits,

•	 for each remote service s, we define a zero-day
vulnerability vs such that the zero-day exploit
(vs,h, h') has three pre-conditions, (s,h') (exis
tence of service), (h, h') (connectivity), and (p,h)
(attacker’s existing privilege); this zero-day ex
ploit has one post-condition (p',h') where p' is
the privilege of service s on h'.
•	 for each privilege p, we define a zero-day vulner

ability v p such that the zero-day exploit (vp,h,h)
has its pre-conditions to include all privileges of
remote services on h, and its post-condition to be
p on h.

We use E0 and C0 to denote the set of all zero-day ex
ploits and the set of all their pre- and post-conditions
respectively, and we extend the functions pre() and
post () accordingly.

We are now ready to assemble all known and
zero-day exploits via their common pre- and post-
conditions into a zero-day attack graph.

Definition 4 (Zero-Day Attack graph). Given an at
tack graph G = (E ∪C,Rr ∪ Ri), a set E0 of zero-day
exploits, a set C0 of pre and post-conditions of ex
ploits in E0, a zero-day attack graph G∗ is the directed
graph G∗ = (E∗ ∪ C∗ ,R∗ ∪ Ri

∗), where E ∗ = E ∪ E0,r
C∗ = C ∪C0, R∗ = Rr ∪ {(c,e) | e ∈ E0 ∧ c ∈ pre(e)},r
and R∗ = Ri ∪ {(e, c) | e ∈ E0 ∧ c ∈ post (e)}.i

Figure 1 shows a simple network configuration in
cluding three hosts. Host 0 is the user’s machine used
to launch attacks, whereas host 1 and host 2 are ma
chines within the perimeter of the enterprise network
we are seeking to protect. Host 1 provides an HTTP
service (http) and a secure shell service (ssh), whereas
host 2 provides only ssh. The firewall allows traffic to
and from host 1, but only connections originated from
host 2. In this example, we assume the main security
concern is over the root privilege on host 2. Clearly,
if all the services are free of known vulnerabilities,
a vulnerability scanner or attack graph will both lead
to the same conclusion, that is, the network is secure
(an attacker on host 0 can never obtain the root privi
lege on host 2), and no additional network hardening
effort is necessary. However, we may reach a differ
ent conclusion by hypothesizing the presence of zero-
day vulnerabilities and considering how many distinct
zero-day exploits the network can resist.

Specifically, the zero-day attack graph of this ex
ample is depicted in Figure 2, where each triple in
side an oval denotes a zero-day exploit and a pair de
notes a condition. In this attack graph, we can ob
serve three sequences of zero-day exploits leading to
root (2). First, an attacker on host 0 can exploit a zero-
day vulnerability in the firewall (e.g., a weak pass
word in its Web-base remote administration interface)

host 0

host 1
http
ssh

host 2
ssh

Figure 1: Example of network configuration

<user,0>

<v_firewall,0,F> <v_http,0,1> <v_ssh,0,1>

<v_ssh,0,2>

<firewall,F> <0,F> <0,1> <ssh,1>

<user,1>

<v_root,1,1><v_ssh,1,2>

<root,1>

<root,F> <0,2>

<http,1>

<ssh,2> <1,2>

<user,2>

<v_root,2,2>

<root,2>

Figure 2: Example of zero-day attack graph

to re-establish the blocked connection to host 2 and
then exploit ssh on host 2, or the attacker can exploit
a zero-day vulnerability in either http or ssh on host 1
to obtain the user privilege and then, using host 1 as a
stepping stone, the attacker can further exploit a zero-
day vulnerability in ssh on host 2 to reach root (2).
Since this last sequence (ssh on host 1 and then ssh on
host 2) involves one zero-day vulnerability in the ssh
service on both hosts, this network can resist at most
one zero-day attack. Contrary to the previous belief
that further hardening this network is not necessary,
this zero-day attack graph shows that further harden
ing may indeed improve the security. For example,
suppose we limit accesses to the ssh service on host 1
using a personal firewall or iptables rules, such that an
arbitrary host 0 cannot reach this service from the In
ternet. We can then imagine that the new attack graph
will only include sequences of at least two different
zero-day vulnerabilities (e.g., the attacker must first
exploit the personal firewall or iptables rules before
exploiting ssh on host 1). This seemingly unneces
sary hardening effort thus can help the network resist
one more zero-day attack.

4 PROBLEM STATEMENT

The exact algorithm for computing the k-zero-day
safety metric presented in (Wang et al., 2010) first de
rives a logic proposition of each asset in terms of ex
ploits by traversing the attack graph backwards. Each
conjunctive clause in the disjunctive normal form
(DNF) of the derived proposition corresponds to a
minimal set of exploits that jointly compromise the

asset. The value of k can then be decided by apply
ing the metric k0d() – which counts the number of
distinct zero-day vulnerabilities – to each such con
junctive clause. Although the logic proposition can
be derived efficiently, converting it to its DNF may
incur an exponential explosion. In fact, the authors of
(Wang et al., 2010) show that the problem of comput
ing the k-zero day safety metrics is NP-hard in gen
eral, and then focus on the solution of a more prac
tical problem. They claim that, for many practical
purposes, it may suffice to know that every asset in a
network is k-zero-day safe for a given value of k, even
though the network may in reality be k'-zero-day safe
for some unknown k' > k (note that determining k'

is intractable). Then, they describe a solution whose
complexity is polynomial in the size of a zero-day at
tack graph if k is a constant compared to this size.
However, there are cases in which it is not satisfac
tory to just know k' > k, but more accurate estima
tions or exact calculation of the value of k is desired.
Moreover, those analyses are all based on complete
zero-day attack graphs, but for really large networks,
it may even be infeasible to generate the zero-day at
tack graph in the first place. The metric then becomes
impractical in such cases since there is little we can
say about the value of k.

The aforementioned intractability result means no
polynomial algorithm will likely exist for computing
the exact value of k. However, in this section we
show that a decision process may still allow secu
rity administrators to obtain good estimations about
k, and to calculate the exact value of k when it is
practically feasible. Our main objectives are three
fold. First, all the algorithms involved in the decision
process will be efficient and have polynomial com
plexity. Second, all the algorithms will adopt an on-
demand approach to attack graph generation, which
will only generate partial attack graphs necessary for
the analysis. Third, subsequent algorithms will reuse
the partial attack graph already generated earlier in
the decision process, thus further improving the over
all efficiency. With those optimizations, we can pro
vide a better understanding of zero-day vulnerabili
ties even for relatively large networks. Specifically, in
most practical scenarios, security administrators may
simply want to assess whether the network or specific
assets are secure enough. In such cases, knowing that
k is larger than or equal to a given lower bound l may
be sufficient. However, once it has been confirmed
that k > l, a security administrator may want to know
whether it is possible to compute the exact value of k.
Since the problem of computing the exact value of k
is intractable, this may only be possible for relatively
small values of k. Therefore, we need to estimate

𝑘 ≥ 𝑙 Insufficient Security
Harden Network

𝑘 ≤ 𝑢 ≤ 𝑢∗

Yes

yes

Find exact 𝑘

No
Start

End

Figure 3: Flowchart of the decision process

whether k is less than a practical upper bound that
represents available computational power. Finally, if
this is true, then we can proceed to calculate the ac
tual value of k in an efficient way. In the following,
we formalize the three related problems that form the
basis of the above decision process. We describe a
solution to each of these problem in the next section.
Problem 1 (Lower bound). Given a network N , a
goal condition cg, and a small integer l, determine
whether k ≥ l is true for N with respect to cg.

Our goal is to identify a lower bound on the value
of k. This problem is analogous to the practical prob
lem addressed in (Wang et al., 2010), but we do not
assume the entire attack graph is available. We simply
assume that the network is defined in terms of initial
conditions Ci and known and unknown exploits E∗ .
Problem 2 (Upper bound). Given a network N , a
goal condition cg, and an integer u, find an upper
bound u on the value of k with respect to cg.

Our goal is to identify an upper bound on the value
of k. We show that, using a heuristic approach, it is
feasible to compute a good upper bound in polyno
mial time. If the value of u is below a threshold u ∗, it
may then be feasible to compute the exact value of k.
Problem 3 (Exact value). Given a network N , and a
goal condition cg such that l ≤ k ≤ u ≤ u ∗ is true for
N with respect to cg, find the exact value of k.

In other words, when the value of k is known to
be bounded and the upper bound is small enough, we
will compute the exact value of k, leveraging the up
per bound u for pruning, and reusing the partial attack
graph generated during previous steps of the decision
process. Figure 3 shows the role of these three prob
lems in the overall decision process.

5 PROPOSED SOLUTION

5.1 Solution for Problem 1

The existing solution for this problem assumes that
the entire zero-day attack graph is available (Wang

et al., 2010), which is impractical since generating
such an attack graph may be infeasible for large net
works. The idea behind our solution is to combine an
exhaustive forward search of limited depth with par
tial attack graph generation, so that only attack paths
with up to l zero-day vulnerabilities are generated and
evaluated using the metric. We use connectivity infor
mation to hypothesize zero-day exploits (see Defini
tion 3) and guide the generation of the graph.

Algorithm k0dLowerBound (Algorithm 1) takes
as input a set Ci of initial conditions on hosts, the set
E∗ of known and zero-day exploits, an integer l ∈ N
representing the desired lower bound on the value of
k, and a goal condition cg ∈ C∗ . It returns a partial
zero-day attack graph G = (E ∪C,Rr ∪Ri), and a truth
value indicating whether k ≥ l.

For ease of presentation, we consider problems
with a single goal condition. The generalization to
the case where multiple target conditions need to be
considered at the same time is straightforward and is
discussed below. Given a set Cg of goal conditions,
we can add a dummy exploit eg, such that eg has each
ci ∈ Cg as a precondition. Then, we can add a dummy
goal condition cg as the only postcondition of eg. It is
clear that the minimum number of zero-day exploits
needed to reach all the conditions in Cg corresponds
to the minimum number of zero-day exploits needed
to reach the dummy goal condition cg. In fact, as cg
is reachable only from the dummy exploit eg, all the
preconditions of eg must be satisfied, therefore all the
actual goal conditions in Cg must be reached.

Lines 1-6 of algorithm k0dLowerBound simply
initialize the sets of conditions and exploits in the
partial attack graph, the set Cnew of newly satisfied
conditions, and the mapping π : E ∪ C → 22E

which
associates each exploit or condition with a set of at
tack paths leading to it, where an attack path is a set
of exploits. By default, π(c) = 0/ for all c ∈ Ci. The
set Cnew will initially contain all the initial conditions,
whereas in each subsequent iteration of the algorithm
it will contain the conditions implied by exploit vis
ited in that iteration. The main loop at Lines 7-30
iterates until the goal condition is reached (Lines 22
24) or the set of newly satisfied conditions becomes
empty – which means that no path with fewer than
l distinct zero-day vulnerabilities can reach the goal
condition. In the first case the algorithm returns f al se
(i.e., k < l), otherwise it returns t rue (i.e., k ≥ l).

Line 8 defines the set Enew of unvisited exploits
reachable from C. An exploit is unvisited if at least
one of its preconditions is in Cnew . For each e ∈ Enew ,
Lines 10-12 add edges from all preconditions of e to
e itself, and Lines 13-14 compute partial attack paths
leading to and including e. Finally, Line 15 prunes

Algorithm 1 k0d LowerBound(Ci,E∗ , l,cg)
Input: Set Ci of initial conditions, set E∗ of known and zero-day exploits, integer l ∈ N representing the desired lower bound on k, and goal condition cg ∈ C∗ .
Output: Partial zero-day attack graph G = (E ∪C, Rr ∪ Ri), and a truth value indicating whether k ≥ l.
1: C ← Ci

2: E ← 0/

3: Cnew ← Ci

4: for all c ∈ Ci do
5: π(c) ← 0/

6: end for
7: while Cnew = 0/ do
8: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew = 0/} // Unvisited exploits reachable from C
9: for all e ∈ Enew do
10: for all c ∈ pre(e) do
11: Rr ← Rr ∪ {(c,e)} // Add an edge from c to e
12: end for
13: {c1 , . . . , cm} ← {c ∈ C | (c, e) ∈ Rr }
14: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}
15: π(e) ← {P ∈ π(e) | k0d(P) < l) // Prune paths with l or more zero-day vulnerabilities
16: end for
17: Cnew ← 0/

18: for all e ∈ Enew s.t. π(e) = 0/ do
19: for all c ∈ post (e) do
20: Ri ← Ri ∪ {(e,c)} // Add an edge from e to c
21: Cnew ← Cnew ∪ {c}
22: if c ≡ cg then
23: return G, f alse
24: end if �25: π(c) ← e∈E|(e,c)∈Ri

π(e)
26: end for
27: end for
28: C ← C ∪Cnew

29: E ← E ∪ Enew

30: end while
31: return G, t rue

all attack paths with l or more distinct zero-day vul
nerabilities. As an exploit needs all the preconditions
to be satisfied, an attack path for e is constructed by
combining an attack path to each precondition.

Once all the newly visited exploits have been pro
cessed and added to the attack graph, the algorithm
considers the new conditions that are implied by such
exploits. For each e ∈ Enew such that at least one par
tial path reaching e has k0d(P) < l, and each condi
tion c in post (e), Lines 20-21 add an edge from e to
c to the graph and update Cnew (which was reset on
Line 17), and Line 25 computes the set π(c) of attack
paths leading to c as the union of the sets of attack
paths leading to each of the exploit implying c, unless
c is the goal condition, in which case the algorithm
terminates.

Example 1. When applied to the example shown in
Figure 2, Algorithm k0dLowerBound (Algorithm 1)
will basically proceed by each horizontal level of
conditions and exploits, from top to bottom, until it
reaches the second level of exploits (i.e., (vssh,0, 2),
(vssh,1,2), and (vroot , 1,1)). Suppose l is given to

be 2, then obviously all the paths up to now will be
pruned by Line 15 (since each of them includes two
distinct zero-day vulnerabilities, failing the condition
k0d(P) < l), except the path (vssh,0,1), (vssh,1,2)
(which includes only one vulnerability vssh). There
fore, the next loop on Lines 18-27 will be skipped for
exploit (vssh,0,2) and (vroot ,1,1) (meaning the par
tial attack graph generation stops at those exploits),
but it continues from exploit (vssh,1,2) (the final result
will depend on whether we assume (vssh,1,2) directly
yields (root ,2)).

The complexity of Algorithm k0dLowerBound
(Algorithm 1) is clearly dominated by the steps for
extending the paths on Lines 13-15. Specifically, the
loop at Line 7 will run at most | C | times; the nested
loop at Line 9 will run | E | times; steps 13-15 will in
volve at most | E |l paths each of which has maximum
possible length of | E |. Therefore, the overall com
plexity is O(| C | · | E | · | E |l · | E |) = O(| C | · | E |l),
which is polynomial when l is given as a constant
(compared to attack graph size).

5.2 Solution for Problem 2

In this section, we propose a solution to Problem 2.
As we did for the previous algorithm, instead of build
ing the entire attack graph, we only build the portions
of the attack graph that are most promising for find
ing an upper bound on the value of k. In order to
avoid the exponential explosion of the search space –
which includes all the sets of exploits leading to the
goal condition – we design an heuristic algorithm that
maintains only the best partial paths with respect to
the k0d metric.

Algorithm k0dU p perBound (Algorithm 2) builds
the attack graph forward, starting from initial con
ditions. A key advantage of building the attack
graph forward is that intermediate solutions are in
deed estimates of the upper bound on k for interme
diate conditions. In fact, in a single pass, algorithm
k0dU p perBound can estimate an upper bound on k
with respect to any condition in C. To limit the ex
ponential explosion of the search space, intermedi
ate solutions can be pruned – based on some pruning
strategy – whereas this would not be possible for an
algorithm building the attack graph backwards.

The algorithm takes as input the set Ci of initial
conditions on hosts, the set E∗ of known and zero-
day exploits, and a goal condition cg ∈ C∗ . The al
gorithm returns an upper bound u on the value of
k, and also computes a partial zero-day attack graph
G = (E ∪C,Rr ∪Ri), a mapping π : C∪E → 22E

which
associates each node in the partial attack graph with
attack paths leading to it, and a mapping zd u : C → N
which associates each node in the partial attack graph
with an estimate of the upper bound on k. In this sec
tion, we assume that Algorithm 2 starts from initial
conditions, but modifying the algorithm to reuse par
tial attack graphs generated by previous execution of
Algorithm 1 is straightforward, and can be done as
shown for algorithm k0dValue (Algorithm 5).

Lines 1-8 simply initialize all the components of
the partial attack graph. Line 1 adds the initial condi
tions to the set C of security conditions in the partial
attack graph. As the algorithm builds the attack graph,
new conditions will be added to C. Lines 2-3 initial
ize the require and imply relationships as empty sets.
For each c ∈ Ci, Lines 5-6 set π(c) to 0/ – meaning
that no exploit is needed to reach initial conditions,
as they are satisfied by default – and zd u(c) to 0 –
meaning that no zero-day exploit is needed to reach
initial conditions. Finally, Line 8 sets E to the set of
exploits reachable from conditions in C. For each ex
ploit e ∈ E, Lines 10-12 add edges to e from each of
its preconditions, Line 13 associates e with the only
set of exploits leading to it, that is {e}, and Line 14

computes zdu(e) as the number of distinct zero-day
vulnerabilities in {e}, that is k0d({e})2 .

Line 16-21 try to find an attack path reaching
the goal condition with the lowest possible number
of distinct zero-day vulnerabilities. Since we use an
heuristic approach to prune the search space, the num
ber of distinct zero-day vulnerabilities in such path
is naturally an upper bound on the minimum num
ber k of zero-day vulnerabilities needed to reach the
goal. Line 16 uses Algorithm rankedPart it ion (Algo
rithm 3) to rank exploits in E by increasing value of
zdu(e) and partition the set into ranked subsets. Then,
Lines 18-21 iteratively explore the partial attack graph
in a depth-first manner, by using the recursive algo
rithm DF S (Algorithm 4), starting from the set of ex
ploits E1 with the smallest values of zdu().

Algorithm ranked Part it ion (Algorithm 3) takes as
input a set of exploits E ' and returns a partition PE
of E. Line 1 sorts exploits in E by increasing value
of zd u(e). Then, Line 2 partitions E into an ordered
set of sets E1, . . . , En, such that for each i ≤ j ≤ n all
exploits in Ei have smaller values of zd u() than any
exploit in E j.

Algorithm DF S (Algorithm 4) takes as input a set
Est art of exploits and a goal condition cg ∈ C∗, and re
turns an upper bound u on the value of k. We assume
that the partial attack graph and the two mappings π()
and zd u() are global variables.

For each e ∈ Est art and each c ∈ post (e), (i)
Lines 4-5 add an edge from e to c, and update the
set Cnew of newly reached conditions, (ii) Line 6 com
putes the set π(c) of attack paths leading to c as the
union of the sets of attack paths leading to each ex
ploit implying it, and (iii) Line 7 computes an esti
mate zdu(c) of the upper bound on k with respect to c
as the smallest zdu(P) over all paths P in π(c). If c is
the goal condition, then the algorithm returns zdu(c).

If none of the conditions in Cnew is the goal condi
tion, then Line 14 defines a new set Enew of unvisited
exploits reachable from C, which has been updated to
include all conditions reached from Est art . An exploit
is unvisited if at least one of its preconditions is in
Cnew . If no new exploit is enabled, then the algorithm
return +∞ (Line 16), meaning that the goal condition
cannot be reached from the branch of the attack graph
explored in the current iteration of the algorithm. Oth
erwise, for each e ∈ Enew , (i) Lines 19-22 add e and
edges to e from each of its preconditions to the partial
attack graph, (ii) Lines 23-24 compute the set π(e) of
partial attack paths ending with e in the same way we
have described for algorithm k0d LowerBound, (iii)
Line 25 prunes π(e) by maintaining only the top b

2For exploits directly reachable from initial conditions,
zdu(e) is either 1, if e is a zero-day exploit, or 0, otherwise.

Algorithm 2 k0dU p perBound(Ci,E∗ , cg)

Input: Set Ci of initial conditions, set E∗ of known and zero-day exploits, and goal condition cg ∈ C∗ .

Output: Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), mapping π : C ∪ E → 22E

, mapping zdu : C → N, and upper bound u on the value of k.

1: C ← Ci

2: Rr ← 0/

3: Ri ← 0/

4: for all c ∈ Ci do
5: π(c) ← 0/

6: zdu(c) ← 0
7: end for
8: E ← {e ∈ E∗ | pre(e) ⊆ C}
9: for all e ∈ E do

10: for all c ∈ pre(e) do
11: Rr ← Rr ∪ {(c, e)}
12: end for
13: π(e) ← {{e}}
14: zdu(e) ← k0d({e})
15: end for
16: (E1, . . . , En) ← rankedPart it ion(E)
17: i ← 0
18: while cg ∈/ C ∧ i ≤ n do
19: i ← i + 1
20: u ← DF S(Ei)

21: end while

22: return G,π(),zdu(),u

Algorithm 3 rankedPart it ion(E ')
Input: Set E ' of exploits.
Output: Partition PE of E

1: Er ← (e1, . . . , e|E' |) s.t. (∀i, j ∈ [1, |E ' |])(i ≤ j ⇒ zdu(ei) ≤ zdu(e j))
2: PE ← (E1, . . . , En) s.t. (∀i, j ∈ [1, n])(i ≤ j ⇒ (∀e ' ∈ Ei, e '' ∈ E j)(zdu(e ') ≤ zd u(e '')))

3: return PE

partial attack paths with respect to the k0d() metric,
and (iv) Line 26 computes an estimate zd u(e) of the
upper bound on k with respect to e as the smallest
zdu(P) over all paths P in π(e).

Finally, Line 28 uses algorithm ranked Part it ion
(Algorithm 3) to rank exploits in E by increasing
value of zdu(e) and partition the set. Then, Lines 30
33 iteratively explore the partial attack graph in a
depth-first manner, by recursively calling algorithm
DF S, starting from the set of exploits E1 with the
smallest values of zdu().

Example 2. When applied to the example shown in
Figure 2, algorithm k0dU p perBound (Algorithm 2)
will first consider exploits E reachable from the ini
tial conditions (i.e., the first level of exploits, namely
(v f irewall ,0,F), (vhtt p ,0,1), (vssh,0,1)), and will rank
them by increasing value of zdu(). Then, assume
that algorithm ranked Part it ion (Algorithm 3) parti
tions the set of exploits into subsets of size 1. As
each exploit e on the first level has zdu(e) = 1, al
gorithm k0dU p perBound will continue building the
graph starting from any such exploit. If we assume it

will start from (v f irewall ,0, F), then its post-condition
(0,2) will be added to the graph. Subsequent re
cursive calls of algorithm DF S will add (vssh, 0,1),
(user,2), (vroot ,2,2), and (root ,2), thus reaching the
goal condition and returning u = 2. As seen in the
previous example, the actual value of k in this sce
nario is 1, so u = 2 is a reasonable upper bound,
which we were able to compute efficiently by build
ing only a partial attack graph.

The complexity of Algorithm k0dU p perBound
(Algorithm 2) is clearly dominated by the recursive
execution of algorithm DF S (Algorithm 4), which in
the worst case – due to the adopted pruning strategy
– has to process t partial attack paths for each node in
the partial attack graph. Therefore, the complexity is
O(t · (| C | + | E |)), which is linear in the size of the
graph when t is constant.

5.3 Solution for Problem 3

When the upper bound on the value of k is below
a practical threshold u ∗, we would like to compute

Algorithm 4 DF S(Est art , cg)

Input: Set Est art of exploits and goal condition cg ∈ C∗

Output: Upper bound u on the value of k.
1: Cnew ← 0/

2: for all e ∈ Est art do
3: for all c ∈ post (e) do
4: Ri ← Ri ∪ {(e,c)}
5: Cnew ← Cnew ∪ {c}�6: π(c) ← e∈E|(e,c)∈Ri

π(e)
7: zdu(c) ← minP∈π(c) k0d(P)
8: if c = cg then
9: return zdu(c)

10: end if
11: end for
12: end for
13: C ← C ∪Cnew

14: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew = 0/ }
15: if Enew = 0/ then
16: return +∞

17: end if
18: for all e ∈ Enew do
19: E ← E ∪ {e}
20: for all c ∈ pre(e) do
21: Rr ← Rr ∪ {(c, e)}
22: end for
23: {c1, . . . , cm} ← {c ∈ C | (c,e) ∈ Rr }
24: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}
25: π(e) ← t o p(π(e), t)
26: zdu(e) ← minP∈π(e) k0d(P)
27: end for
28: (E1, . . . , En) ← rankedPart it ion(Enew)

29: i ← 0
30: while cg ∈/ C ∧ i ≤ n do
31: i ← i + 1
32: u ← DF S(Ei)

33: end while

34: return u

the exact value of k, which is intractable in general.
Our solution consists in performing a forward search,
similarly to algorithm k0dLowerBound, starting from
the partial attack graphs computed in previous steps
of the decision process discussed in Section 4. To
limit the search space, compared to a traditional for
ward search, and avoid the generation of the entire at
tack graph, we leverage the upper bound computed by
algorithm k0dU p perBound to prune paths not lead
ing to the solution. In fact, although the value of k
is known to be no larger than u, there still may be
many paths with more the u distinct zero-day vulner
abilities, and we want to avoid adding such paths to
the attack graph. Algorithm k0dVal ue (Algorithm 5)
is indeed very similar to algorithm k0d LowerBound.
Therefore, for reasons of space, we only highlight the
main differences in our discussion. First, the algo
rithm takes as input partial attack graphs, instead of
starting from initial conditions. Thus, Line 1 com

putes Cnew as the set of pre-conditions of unvisited ex
ploits (i.e., exploits not added yet to the attack graph).
Second, Line 10 prunes all attack paths with more
than u distinct zero-day vulnerabilities. Finally, when
the goal condition is reached, the algorithm computes
the exact value of k as the smallest k0d(P) over all
paths P in π(cg).

6 EXPERIMENTAL RESULTS

In this section, we present the results of experi
ments we conducted to validate our approach. Specif
ically, our objective is three-fold. First, we evaluated
the performance of the proposed algorithms in terms
of processing time in order to confirm that they are
efficient enough to be practical. Second, we evalu
ated the percentage of nodes included in the generated
partial attack graph compared to the full attack graph,

Algorithm 5 k0dValue(G,E∗ ,u,cg)

Input: Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), set E∗ of known and zero-day exploits, integer u ∈ N representing the upper bound on the value of k
computed by algorithm k0dU p perBound, and goal condition cg ∈ C∗ .

Output: Updated Partial zero-day attack graph G = (E ∪C,Rr ∪ Ri), and the exact value of k.
1: Cnew ← {c ∈ C | $e ∈ E,(c, e) ∈ Rr }
2: while Cnew = 0/ do
3: Enew ← {e ∈ E | pre(e) ⊆ C ∧ pre(e) ∩Cnew = 0/ } // Unvisited exploits reachable from C
4: for all e ∈ Enew do
5: for all c ∈ pre(e) do
6: Rr ← Rr ∪ {(c, e)} // Add an edge from c to e
7: end for
8: {c1, . . . , cm} ← {c ∈ C | (c,e) ∈ Rr }
9: π(e) ← {P1 ∪ . . . ∪ Pm ∪ {e} | Pi ∈ π(ci)}

10: π(e) ← {P ∈ π(e) | k0d(P) ≤ u) // Prune paths with more than u zero-day vulnerabilities
11: end for
12: Cnew ← 0/

13: for all e ∈ Enew s.t. π(e) = 0/ do
14: for all c ∈ post (e) do
15: Ri ← Ri ∪ {(e,c)} // Add an edge from e to c
16: Cnew ← Cnew ∪ {c}�17: π(c) ← e∈E|(e,c)∈Ri

π(e)
18: if c ≡ cg then
19: return G,minP∈π(c)k0d(P)
20: end if
21: end for
22: end for
23: C ← C ∪Cnew

24: E ← E ∪ Enew

25: end while

which shows the degree of savings, in terms of both
time and storage, that may be achieved through our
on-demand generation of attack graphs. Third, we
also evaluated the accuracy of estimations made us
ing algorithm k0dU p perBound compared to the real
results obtained using a brute force approach.

First, we show that, as expected, algorithm
k0d LowerBound is polynomial for given small val
ues of l. Specifically, Figure 4 (a) shows that the
running time of algorithm k0d LowerBound grows al
most quadratically in the size of attack graphs. It is
also clear that the actual running time is quite rea
sonable even for relatively large graphs (e.g., it only
takes about 20 seconds to determine k > 3 for a graph
with 80,000 nodes). We can also observe that, al
though the value of l affects the average running time
of the algorithm, such effect is not dramatic for such
small values of l (which may be sufficient in most
practical cases). This experiment confirms that algo
rithm k0dLowerBound is efficient enough for realis
tic applications. Next, we show how generating par
tial attack graphs may lead to savings in both time
and storage cost. Specifically, Figure 4 (b) shows
the percentage of nodes that are generated by algo
rithm k0dLowerBound in performing the analysis.
We can see that such a percentage will decrease while

the size of attack graphs increases, which is desirable
since this reflects higher amount of savings for larger
graphs. It is also clear that although a higher value
of l will imply less savings (more nodes need to be
generated), in most cases the savings are significant
(e.g., less than half of the nodes are generated in most
cases). This experiment confirms the effectiveness of
our on-demand approach to generating attack graphs.

Similarly, we now show that algorithm
k0dU p perBound is polynomial for given small
parameters. Specifically, Figure 5 (a) shows that the
running time of algorithm k0dU p perBound grows
linearly in the size of attack graphs. The value of t
represents the number of partial solutions maintained
at each step (i.e., the degree of approximation). It is
clear that the actual running time is very reasonable
even for large graphs (e.g., it only takes less than
20 seconds for a graph with almost 90,000 nodes).
However, we can also observe that the degree of
approximation (the value of t) will significantly
affect the growth of the average running time of
the algorithm, which shows a natural trade-off
between accuracy and cost. Next, we also show
how generating partial attack graphs may lead to
savings for this algorithm. Specifically, Figure 5 (b)
shows the percentage of nodes that are generated

R² = 0.9999

0

2

4

6

8

10

12

14

16

18

20

 - 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Number of nodes

l = 1 l = 2 l = 3 Quadratic regression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 - 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Pe
rc

en
ta

ge
 o

f v
is

ite
d

no
de

s

Number of nodes

l = 1 l = 2 l = 3

(a) Processing time (b) Percentage of nodes in the partial attack graph
Figure 4: Processing time and percentage of nodes for algorithm k0dLowerBound vs. number of nodes in the full attack graph
for different values of l

by algorithm k0dU p perBound in performing the
analysis. We can see that such a percentage remains
relatively stable across different graph sizes. That
is, although the absolute number of generated nodes
increases for larger graphs, the ratio remains almost
constant, which partially justifies the linear running
time of the algorithm. It is also clear that in most
cases the savings are significant (less than half of the
nodes are generated in most cases). This experiment
again confirms the effectiveness of our on-demand
attack graph generation.

Finally, we show the accuracy of algorithm
k0dU p perBound. Specifically, Figure 6 shows the
approximation ratio (i.e., the result u obtained using
the algorithm divided by the real value of k obtained
using a brute force method) in the approximation pa
rameter t. We can see that, as expected, such a ratio
decreases when more partial results are kept at each
step, resulting in higher accuracy (and higher cost as
well). Overall, the approximation ratio is acceptably
low even for a small t (e.g., the result is only about
1.4 times the real value of k when t = 1). We can
also observe that larger graphs tend to have more ac
curate results, which is desirable since the analysis
actually becomes relevant for larger graphs. Since
algorithm k0dVal ue(G,E∗ ,u,cg) is similar to algo
rithm k0d LowerBound except that it reuses, instead of
generating, attack graphs, we expect its running time
to be similar to (lower than) that of the latter and thus
experiments are omitted here for reasons of space.

7 CONCLUSIONS

In this paper, we have studied the problem of
efficiently estimating and calculating the k-zero-day
safety of networks. We presented a decision process
consisting of three polynomial algorithms for estab-

0.9

1

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12

Ap
pr

ox
im

at
io

n
ra

tio

t

7 nodes 21 nodes 121 nodes 341 nodes

Figure 6: Approximation ratio of k0dU p perBound vs. t

lishing lower and upper bounds of k and for calculat
ing the actual value of k, while generating only partial
attack graphs in an on-demand manner. Experimental
results confirm the efficiency and effectiveness of our
algorithms. Although we have focused on the k-zero
day safety metric in this paper, we believe our tech
niques can be easily extended to other useful analyses
related to attack graphs. Other future work include
fine-tuning the approximation algorithm through var
ious ways for ranking the partial solutions and evalu
ating the solution on diverse network scenarios.

REFERENCES

Ammann, P., Wijesekera, D., and Kaushik, S. (2002).
Scalable, graph-based network vulnerability analy
sis. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS 2002),
pages 217–224, Washington, DC, USA.

Balzarotti, D., Monga, M., and Sicari, S. (2005). Assessing
the risk of using vulnerable components. In Proceed
ings of the 1st ACM Workshop on Quality of Protec

0

20

40

60

80

100

120

140

160

180

200

 - 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Number of nodes

t = 1 t = 2 t = 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 - 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Pe
rc

en
ta

ge
 o

f v
is

ite
d

no
de

s

Number of nodes

t = 1 t = 2 t = 3

(a) Processing time	 (b) Percentage of nodes in the partial attack graph
Figure 5: Processing time and percentage of nodes for algorithm k0dU p perBound vs. number of nodes in the full attack
graph for different values of t

tion (QoP 2005), volume 23 of Advances in Informa
tion Security, pages 65–77. Springer.

Dacier, M. (1994). Towards quantitative evaluation of com
puter security. PhD thesis, Institut National Polytech
nique de Toulouse.

Greenberg, A. (2012). Shopping for zero-days: A price list
for hackers’ secret software exploits. Forbes.

Homer, J., Ou, X., and Schmidt, D. (2009). A sound and
practical approach to quantifying security risk in en
terprise networks. Technical report, Kansas State Uni
versity.

Ingols, K., Chu, M., Lippmann, R., Webster, S., and Boyer,
S. (2009). Modeling modern network attacks and
countermeasures using attack graphs. In Proceedings
of the Annual Computer Security Applications Con
ference (ACSAC 2009), pages 117–126, Honolulu, HI,
USA.

Leversage, D. J. and Byres, E. J. (2008). Estimating a sys
tem’s mean time-to-compromise. IEEE Security &
Privacy, 6(1):52–60.

McHugh, J. (2006). Quality of protection: Measuring the
unmeasurable? In Proceedings of the 2nd ACM Work
shop on Quality of Protection (QoP 2006), pages 1–2,
Alexandria, VA, USA. ACM.

McQueen, M. A., McQueen, T. A., Boyer, W. F., and Chaf
fin, M. R. (2009). Empirical estimates and observa
tions of 0day vulnerabilities. In Proceedings of the
42nd Hawaii International Conference on System Sci
ences (HICSS 2009), Waikoloa, Big Island, HI, USA.

Mehta, V., Bartzis, C., Zhu, H., Clarke, E., and Wing, J.
(2006). Ranking attack graphs. In Proceedings of
the 9th International Symposium On Recent Advances
In Intrusion Detection (RAID 2006), volume 4219 of
Lecture Notes in Computer Science, pages 127–144,
Hamburg, Germany.

Mell, P., Scarfone, K., and Romanosky, S. (2006). Com
mon vulnerability scoring system. IEEE Security &
Privacy, 4(6):85–89.

Noel, S. and Jajodia, S. (2004).	 Managing attack graph
complexity through visual hierarchical aggregation.
In Proceedings of the ACM CCS Workshop on Vi
sualization and Data Mining for Computer Security

(VizSEC/DMSEC 2004), pages 109–118, Fairfax, VA,
USA. ACM.

Pamula, J., Jajodia, S., Ammann, P., and Swarup, V. (2006).
A weakest-adversary security metric for network con
figuration security analysis. In Proceedings of the 2nd
ACM Workshop on Quality of Protection (QoP 2006),
volume 23 of Advances in Information Security, pages
31–68, Alexandria, VA, USA. Springer.

Phillips, C. and Swiler, L. P. (1998). A graph-based system
for network-vulnerability analysis. In Proceedings of
the New Security Paradigms Workshop (NSPW 1998),
pages 71–79, Charlottesville, VA, USA.

Shahzad, M., Shafiq, M. Z., and Liu, A. X. (2012). A
large scale exploratory analysis of software vulnera
bility life cycles. In Proceedings of the 34th Inter
national Conference on Software Engineering (ICSE
2012), pages 771–781, Zurich, Switzerland.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing,
J. M. (2002). Automated generation and analysis of
attack graphs. In Proceedings of the 2002 IEEE Sym
posium on Security and Privacy (S&P 2002), pages
273–284, Berkeley, CA, USA.

The MITRE Corporation (2011). Common Weakness Scor
ing System (CWSSTM). http://cwe.mitre.org/cwss/.
Version 0.8.

Wang, L., Islam, T., Long, T., Singhal, A., and Jajodia, S.
(2008). An attack graph-based probabilistic security
metric. In Atluri, V., editor, Proceedings of the 22nd
Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, volume 5094 of Lecture
Notes in Computer Science, pages 283–296, London,
United Kingdom. Springer.

Wang, L., Jajodia, S., Singhal, A., and Noel, S. (2010). k-
zero day safety: Measuring the security risk of net
works against unknown attacks. In Gritzalis, D.,
Preneel, B., and Theoharidou, M., editors, Proceed
ings of the 15th European Symposium on Research in
Computer Security (ESORICS 2011), volume 6345 of
Lecture Notes in Computer Science, pages 573–587,
Athens, Greece. Springer.

http://cwe.mitre.org/cwss

