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1. Introduction: Overview Acoustic Gas Thermometry (AGT)  
 
This appendix has a high information density and includes 60+ references to the archival literature. 
Many of the details in this appendix and many references will not be helpful during a first reading about 
AGT.  We suggest that an overview of AGT can be found in four references: (1) Moldover et al. (1988) 
describe the theory and measurement of the acoustic resonances of a gas-filled spherical cavity.  (2) 
Benedetto et al. (2004) thoroughly discuss relative primary AGT and they include a compact list of the 
corrections to the acoustic resonance frequencies.  (3) Zhang et al. (2011) provide a similar list of 
acoustic corrections for a gas-filled cylindrical cavity.  (4) Pitre et al. (2011) explain clearly how they 
used microwave resonances to determine the volume of a quasi-spherical cavity. 
 
1.1.   Overview of Absolute Primary AGT 
 
Absolute primary AGT exploits the relationship between the speed of sound in a dilute gas u2 and the 
thermodynamic temperature T and pressure p of the gas 
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In Eq. (1), ρ is the mass density of the gas; S is the entropy; γ0 ≡ Cp
0/Cv

0 is the zero-density ratio of the 
constant-volume specific heat to the constant-pressure specific heat that is exactly 5/3 for the monatomic 
gases; kB is the Boltzmann constant, and m is the average mass of an atom or molecule in the gas. Exact 
thermodynamic relationships connect A1(T) and A2(T) to the density virial coefficients and their 
temperature derivatives. [Trusler (1991); Gillis and Moldover (1996)]  For AGT, the speed of sound in 
monatomic gases has been accurately determined by measuring the acoustic resonance frequencies of 
gas-filled cavities enclosed by heavy metal walls such as those shown in Fig. 1.  

The first equality in Eq. (1) was derived from the linearized Navier-Stokes equations which are 
themselves derived from the Boltzmann equation.  Corrections to this equality resulting from the non-
zero amplitude of sound [Hamilton et al. (2001); Coppens and Sanders (1968)] and the non-zero 
frequency of sound [Greenspan (1956)] are known; they are negligible at the acoustic amplitudes, gas 
densities, and acoustic frequencies used for AGT.  The second equality in Eq. (1) relies on exact 
thermodynamic relations between the derivative (∂p/∂ρ)S and the virial coefficients of the equation of 
state. 

Using Eq. (1), the thermodynamic temperature is deduced from measurements of the speed of sound 
on an isotherm that are traceable to the meter and the second.  For absolute primary AGT using argon, 
A1(T) and A2(T) are always fitted to measurements of u(p,T) and this is usually done for helium-based 
AGT.  An acceptable alternative to fitting helium isotherms is to rely on the values of A1(T) and A2(T) 
calculated from quantum mechanics and statistical mechanics. [Cencek et al. (2012); Garberoglio et al. 
(2010)]   Gavioso et al. (2010a) did this when they measured u2 in helium at 410 kPa to re-determine the 
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product kBTTPW with a relative standard uncertainty of 7.5×10−6.  In their realization of AGT, the 
uncertainties of A1(T) and A2(T) contributed less than 1×10−6 to the relative uncertainty of kBTTPW.  (In 
this Appendix, all uncertainties are standard uncertainties with coverage factor k = 1 corresponding to a 
68 % confidence interval.)  Because the calculated values of A1(T) and A2(T) for helium are functions of 
the thermodynamic temperature, they are part of the model for the realization of AGT.   

Since 1979, absolute primary AGT has been conducted only near TTPW and only using highly-refined 
cavity resonators with fixed dimensions to re-determine the product kBTTPW.  Several groups have 
measured the speed of sound in argon or helium near TTPW with relative uncertainties near 1×10−6 or less.  
[Moldover et al. (1988); Pitre et al. (2011); Zhang et al. (2011); Gavioso et al. (2011); de Podesta et al. 
(2011)] With one exception discussed below, these groups deduced the speed of sound from 
measurements of the resonance frequencies of the radially-symmetric oscillations of helium or argon 
contained within an approximately spherical cavity using the relationship:   
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Here fa is the measured resonance frequency of the gas oscillation in the mode designated by the 
subscript “a”, ∆fa is the sum of corrections to the unperturbed resonance frequency fa.0 (Section 3), V is 
the volume of the cavity, and za is a mode-dependent acoustic eigenvalue that was calculated from the 
shape of the cavity.  For the radially-symmetric acoustic modes of a nearly spherical cavity, the 
eigenvalues za are not sensitive to smooth, volume-preserving departures from a spherical shape in the 
first order of perturbation but are sensitive in higher orders of perturbation theory.  Thus, za can be 
calculated with a fractional uncertainty on the order of (5×10−4)2 for a cavity manufactured to the readily-
attainable tolerance 5×10−4.  [Mehl and Moldover (1986)] Then, u can be measured with an uncertainty 

Figure 1.  Two Acoustic Thermometers in their Pressure Vessels.  The thermometer on the left [Benedetto et al. 
(2004) had a cavity radius of 60 mm and it was used from 234 K to 380 K.  The thermometer on the right [Strouse et 
al. (2003)] had a cavity radius of 89 mm and it was used from 273 K to 505 K.  Later, two acoustic transducers were 
replaced with ducts and it was used up to 633 K.  [Ripple et. al. (2013)]  
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on the order of 10−6 if the frequency corrections ∆fa and the cavity’s volume V are known with similar 
uncertainties.   

The volume of nearly spherical cavities has been determined with fractional uncertainties of 
1×10−6 or less by weighing the quantity of mercury [Moldover et al. (1988)] or of water [Underwood et 
al. (2012)] that just filled the cavity and relying on literature measurements of the density of these well-
characterized liquids.  Alternatively, microwave resonances have been used to accurately determine the 
volume of finely-machined, nearly-spherical, copper-walled cavities with relative uncertainties on the 
order of 10−6 using the relationship:   
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Here, c is the defined speed of light in vacuum, fm is the measured microwave frequency, n is the 
refractive index of the gas in the cavity at the pressure p, zm is a mode-dependent microwave eigenvalue, 
and 〈fm − ∆fm〉p is the average of the corrected frequencies of the (2l + 1) microwave modes that would be 
degenerate in a perfect spherical cavity.  (l = 1, 2, 3, etc.)  Usually, only the triply-degenerate l = 1 
modes are used.  Equation (3) exploits the theorem that the average frequency of the (2l+1) modes is 
invariant in the first order of perturbation theory but sensitive to small, smooth departures from a 
spherical shape in higher orders. [Mehl and Moldover (1986)] In one remarkable example, the fractional 
difference between a microwave volume determination and a weighing volume determination was 
(0.46±1.81)×10−6.  [Underwood et al. (2012)]  

The microwave measurements are simplified if the cavity has a “quasi-spherical” shape, that is, 
a shape that differs from spherical by just enough to separate the degenerate microwave frequencies, but 
not so much that the accurate calculation of the microwave and acoustic eigenvalues requires detailed 
measurements of the shape.  [Mehl et al. (2004)] Typically, a quasi-spherical AGT cavity approximates 
a triaxial ellipsoid with axes in the ratios 1:(1 + e) : (1 − e) and with 0.0005 < e < 0.001.  For this family 
of shapes, the electromagnetic eigenvalues zm are known with extraordinarily small uncertainties.  [Mehl 
(2009); Edwards and Underwood (2011)] For absolute primary AGT with the lowest possible 
uncertainties, quasi-hemispherical copper cavities have been manufactured by diamond turning.  A pair 
of carefully-aligned, quasi-hemispheres bolted together creates a quasi-spherical cavity.  For relative 
primary AGT, quasi-hemispherical cavities have been machined out of cylindrical billets of stainless-
steel, aluminum, and copper using a numerically-controlled milling machine.  

The most attractive features of absolute primary AGT conducted with a noble-gas-filled, quasi-
spherical cavity resonator are evident when combining Eqs. (1) – (3): 
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In the lowest order, kBT is determined by the ratio (speed of sound)/(speed of light) which is proportional 
to ratios of measured frequencies.  The pressure and the dimensions of the cavity only appear in 
corrections to the lowest order.   

We emphasize that Eq. (4) is always applied to measurements made with several different 
microwave and acoustic modes at each temperature and pressure.  This redundancy facilitates very 
precise tests of the theories for the frequency corrections ∆fa, ∆fm and for the eigenvalues za and zm.  
Indeed, redundancy distinguishes AGT from other forms of gas thermometry.      

Because the leading term of Eq. (4) contains the ratio T/m where m is average atomic mass of the 
gas, the uncertainty of m contributes directly to the uncertainty of T.  Commercially prepared helium is 
predominantly the isotope 4He with a sub-part-per million concentration of the isotope 3He; therefore m 
is well known for chemically purified 4He.  [Mook (2000)] In contrast, commercially prepared argon has 
significant concentrations of several isotopes and the isotopic composition changes from bottle to bottle, 
even from a single supplier.  Therefore, it is difficult to determine m of an argon sample with a relative 
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uncertainty on the order of 10−6.  However, it has been accomplished using isotopic argon standards and 
analysis for chemical impurities, including other noble gases.  [Moldover et al, (1988); Zhang et al. 
(2011); Valkiers et al. (2010); Mark et al. (2011)] 
  Quasi-spherical cavities are not essential for accurate, absolute primary AGT.   Zhang et al. 
(2010, 2011) re-determined kBTTPW using the non-degenerate, longitudinal acoustic modes of an argon-
filled, fixed-path-length cavity.  The ends of their cavity were not exactly perpendicular to the cavity’s 
axis; however, this shape imperfection does not change the eigenvalues of the longitudinal modes in the 
first order of perturbation theory.  Thus, a measurement of the average length of the cavity was sufficient 
for accurate AGT and it was accomplished using two-color optical interferometry.  [Zhang et al. (2011)] 
If all the surfaces of the cavity were conducting, microwave modes could have been used for 
determining the average length. The non-degenerate radial modes of a cylindrical cavity could also be 
used for AGT if the average radius of the cylinder were determined from microwave resonances.    

 For completeness, we note that before 1979, absolute primary AGT was conducted using 
cylindrical, acoustic cavity resonators containing a moveable piston that varied the cavity’s length.  
Measurements in the range from 1.2 K to 423 K achieved standard uncertainties of 10−4 T to 5×10−4 T.  
[Plumb and Cataland (1966); Grimsrud and Werntz (1967); Gammon (1976)] In 1979, Colclough et al. 
used a variable-length cavity at TTPW and achieved the low standard uncertainty 8×10−6 kBTTPW.  
[Colclough et al. (1979)] During the past 30 years, the understanding of cavity resonators, together with 
their associated transducers and ducts that deliver and remove gas, has increased greatly.  In contrast, the 
mechanical problems of making and using a cylindrical cavity with a movable piston have not changed.  
Therefore, it is unlikely that variable-length cavities will be used for AGT in the future.   
 
1.2.  Overview of Relative Primary AGT 
 
Relative AGT determines the ratio of two (or more) thermodynamic temperatures from measurements of 
the ratios of speeds-of-sound conducted on the isotherms of interest.  (We identify one isotherm as the 
reference temperature Tref and a second isotherm by T.)  Relative AGT uses Eq. (1) at the unknown 
temperature T and the reference temperature Tref to form the ratio: 
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In contrast with absolute primary AGT, the ratio [u(T)/u(Tref)]2 in Eq. (5) can be accurately measured 
without realizing either the meter or the second.  The ratio measurement does require measuring ratios of 
lengths and times (or frequencies) with low uncertainties.   

The average molecular mass m of the thermometric gas does not appear in the leading term in 
Eq. (5) because of the implicit assumption that m is identical at T and Tref.  Thus, the thermometric gas 
for relative AGT could be a noble gas composed of several isotopes or a noble gas with a small 
concentration of noble gas impurities, provided the gas mixture does not fractionate in the acoustic 
thermometer.   

Since 1999, relative AGT has been conducted in the wide temperature range 7 K to 552 K.  
[Moldover et al. (1999); Ewing and Trusler (2000); Benedetto et al. (2004); Pitre et al. (2006); Ripple et 
al. (2007)] In the sub-range 234 K to 380 K, the results of Benedetto et al. (2004) overlap the results of 
either Moldover et al. (1999) or Ripple et al. (2007).  These independently realized versions of relative 
AGT had very different experimental details; however, their results agreed within 3×10−6 T. Results from 
four independent realizations of AGT at the gallium and mercury points agreed within 3×10−6 T.  [Pitre 
et al. (2006)]  All of these realizations of relative AGT since 1999 used gas-filled, metal-walled, 
spherical or quasi-spherical cavity resonators to measure speed-of-sound ratios.  In these realizations, the 
microwave and acoustic resonance frequencies of several cavity modes were measured near the 
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temperature of the triple point of water TTPW and the frequencies of the same modes were measured at 
the other temperatures of interest T.  The working equation has the form:  
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Equation (6) exploits the fact that the ratios (acoustic frequencies)/(microwave frequencies) depend upon 
the cavity’s volume but not upon details of the cavity’ shape.  Shape perturbations that might be 
unacceptably large for absolute primary AGT based on Eq. (4) may be acceptable for relative primary 
AGT because the calculated eigenvalues do not appear in Eq. (6).  Indeed, the cavity plays a limited role 
in measuring u/c.  The cavity is a temporary artifact that satisfies three conditions: (1) its dimensions are 
stable during the measurements of fa(p) and 〈fm(p)〉 at the temperature T, (2) the changes of its 
eigenvalues between T and TTPW are within the desired tolerance. (Small, smooth changes in the shape of 
the cavity, such as those caused by anisotropic thermal expansion [Moldover et al. (1999); Pitre et al. 
(2006)] affect the eigenvalues only in the second order and higher orders.), and (3) any difference 
between the cavity’s acoustic and microwave volumes (resulting, for example, from an oxide layer) are 
nearly constant between T and TTPW.  

Equation (6) may be used with sufficient accuracy within a degree or so of TTPW; it is not necessary 
to set a gas thermometer to exactly TTPW.  We expect that some AGTs will use Eq. (6) or its equivalent 
with reference temperatures Tref far from TTPW.  For example, one relative primary AGT might be used to 
accurately measure the thermodynamic temperature of the hydrogen point TH2 and a second AGT, 
specifically adapted to low temperature measurements, might be referenced to TH2.  

Many of the specialized, absolute primary AGTs that were developed to re-determine kBTTPW used 
circulating liquid baths for the outermost stage of their thermostats.  After comparatively minor 
modifications of their thermostats, these thermometers could be used for absolute primary AGT 
throughout a modest range of temperatures, both above and below TTPW.  It is unlikely that any of these 
instruments could function at temperatures well above TTPW, where the reliability of transducers and the 
stability and mutual compatibility of materials drives the design of all thermometers.  Instead, high-
temperature acoustic thermometers will use apparatus designed for the environment and will rely on 
speed-of-sound ratio measurements instead of more difficult absolute measurements. [Ripple (2003)]    
    
2. Measuring Resonance Frequencies.  
 
2.1. Acoustic and Microwave Transducers 
 
2.1.1. Acoustic Transducers 

 
Accurate AGT requires a sound generator and a sound detector that perturbs the cavity’s acoustic and 
microwave resonances in only small, predictable ways. The transducers should have a smooth frequency 
response; however, a flat response is not necessary.  If the transducers are mounted either in or on the 
cavity’s shell, they must not contaminate the thermometric gas and they should have a small moving 
mass to minimize the coupling between the transducers through motion of the shell.  These criteria have 
been satisfied by home-made electret microphones, small, commercially-manufactured, capacitive 
microphones, piezoelectric (PZT) “benders”, and remote transducers coupled to the cavity by ducts. 

If a capacitive microphone is directly exposed to the thermometric gas, it should be assembled 
from ceramic and metal parts but not from polymers to minimize the chances of contaminating the gas.  
The moving part of the capacitor is a thin (typically, 7×10−6 m thick), fragile, stretched, metal, membrane 
with a very low mass. For generating sound, the capacitor can be driven by an alternating voltage at the 
frequency f, either with or without a DC bias voltage.  With a DC bias, its diaphragm will oscillate at the 
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frequency f; without a bias, the oscillation will be at frequency 2f.  Operation in the 2f manner 
circumvents electrical cross-talk that might occur between the large driving voltage and the small 
voltage generated by the detector.  Capacitive microphones have been mounted with their membranes 
flush with the inside wall of a cavity resonator where they perturb the microwave resonance frequencies 
of the cavity slightly.  Because of their small size and small gas-filled volume, the microphones produce 
only small, predictable, (and experimentally-verified) perturbations to the acoustic resonance 
frequencies.  [Guianvarc’h et al. (2009)] When used as a detector, capacitive microphones require a 
large DC bias voltage and precautions to minimize the parasitic capacitance between the detector and a 
high-impedance preamplifier.  (Some have used a triaxial cable with a driven guard electrode leading 
from the detector to a high-impedance, remote preamplifier.)  At temperatures above approximately 550 
K, Ripple et al. (2007) observed unacceptably high noise that resulted from erratic electrical leakage 
through ceramic cable insulators subjected to a high-voltage bias.  The electrical dissipation within 
capacitive microphones is negligible. 

In contrast with capacitive microphones, ceramic piezoelectric transducers are rugged, massive, 
and low-impedance electrical sources.  Zhang et al (2011) mounted piezoelectric transducers on the 
outside of cavity resonators and coupled them to the gas inside the cavity through a 0.2 mm to 0.3 mm 
thick diaphragm machined into the wall of the cavity.  Thus, the transducers did not contact the gas 
inside the cavity and could not contaminate it.  The comparatively thick coupling diaphragm changed 
neither the shape nor the electrical conductivity of the interior surface of the cavity; therefore it would 
not perturb the microwave resonance frequencies of the cavity if they had been measured.  Piezoelectric 
transducers generate small predictable perturbations to the acoustic modes of the cavity.  [Lin et. al. 
(2010)]  Piezoelectric transducers do generate heat.  Zhang et al. did not report problems resulting from 
mechanical coupling of PZT transducers to the walls of the cavity. 

Ripple et al. (2013) used a duct to conduct sound from a remote piezoelectric sound generator at 
ambient temperature into a cavity resonator at 600 K and a second duct to conduct sound out of the 
cavity to a remote commercially-manufactured sound detector at ambient temperature.  This arrangement 
enabled AGT at high temperatures where commercially manufactured capacitive microphones and 
piezoelectric transducers will not function.  Theory is helpful for guiding the design of such ducts and 
for computing the small perturbations they generate to the acoustic resonance frequencies of the cavity.  
[Gillis et al. (2009)]  

Ewing and Trusler (2000) successfully used home-made electret transducers between 300 K and 
90 K.  Their transducers had thin polymer films in contact with the gas, which may be incompatible with 
maintaining gas purity at higher temperatures. 

At resonance, typical acoustic pressures ℘ in the cavity are in the range 0.1 Pa <  ℘ < 1 Pa.  
Hamilton et al. (2001) predict that the perturbation of the resonance frequencies by nonlinear effects will 
be (∆f/f)nonlinear ≈ [(γ −1)Ma/8]2, where Ma ≡ |℘|/(ρu2) is the acoustic Mach number.  This condition sets 
an upper bound to the sound pressure for accurate AGT.       
 
2.1.2. Coupling Microwaves to the Cavity  
 
All the measurements of microwave frequency resonances used in AGT have used one coaxial cable to 
conduct the microwave fields from the generator (preferably, a network analyzer) to the cavity and 
another cable to conduct the fields transmitted through the cavity back to the detector (the same vector 
analyzer).  Near the inner wall of the cavity, both cables are terminated by antennas.  The simplest 
antenna is a short, straight extension of the inner conductor.  The perturbations to the microwave 
frequencies produced by this kind of antenna have been modeled quantitatively and verified by 
measurements.  [Underwood et al. (2010)]  However, straight antennas only couple to the TM family of 
modes.  Alternatively the cables can be terminated with a wire loop that connects the center conductor of 
the cable to the outer conductor of the cable.  Such loops couple to all the modes of the cavity and Pitre 
et al. (2006, 2011) measured the frequency perturbations produced by the loops using a substitution 
method. 
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If no precautions are taken, the coupling wires or loops will perturb the acoustic resonance 
frequencies.  These perturbations have been drastically reduced by recessing the wires or loops in holes 
in the cavity’s wall and then filling the recesses with a material such as epoxy or vacuum grease which is 
transparent to the microwaves.  If the filling material has a high acoustic impedance and terminates at the 
surface of the cavity, its perturbations to the acoustic frequencies will be negligible.  The perturbations 
from imperfect terminations are discussed in detail by Pitre et al. (2011) in their Section 4.4.2.       
 
2.2. Acquiring and Fitting Frequency Data 

 
For accurate realizations of AGT, we recommend measuring the acoustic resonance frequencies and the 
microwave resonance frequencies at the same time, that is, while the thermometric gas is in the cavity.  
When this is done, the volume (and the average radius) of the cavity at the pressure under study is 
determined from the product n(fm − ∆fm) using Eq. (3) and no correction is needed for the deformation of 
the cavity under hydrostatic pressure. (See Section 8.1 for values of the refractive index.)   
  Approximate values of the acoustic resonance frequencies fN  and half-widths gN are obtained 
from either preliminary measurements or a model. Then, the sound generator driven by a frequency 
synthesizer is stepped through discrete frequencies and the in-phase u and quadrature v signals at the 
detector are measured using a lock-in amplifier.  (Before making a voltage measurement, it is necessary 
to wait at each frequency for a multiple of τslow, the slowest relaxation time needed to reach a steady 
state.  The value τslow could be either 1/gN or the post-detection time constant of the lock-in amplifier, or 
the settling time of the frequency tracking circuit in the lock-in amplifier.) A simple protocol uses 11 
frequencies starting at fN – gN and ending at fN + gN with steps of gN/5.  Then, the frequency sweep is 
reversed by starting at fN + gN and ending at fN −gN with steps of −gN/5.  Alternative protocols, such as 
using more frequencies, taking data over a range wider than fN ± gN, and spacing the points at selected, 
unequal frequency intervals, will reduce the uncertainty of the fitted parameters in many circumstances.  
The frequencies and complex voltages are fitted by the resonance function: 
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where, A, B, C and D are complex constants; FN = fN + igN is the complex resonance frequency of the 
mode N under study and the parameter f  is fixed at an arbitrary value near fN. The parameters C and D 
account for the effects of possible cross talk and the “tails” of the modes other than N. At high gas 
densities, the term 2( )D f f−   may not be significant.  At low densities, corrections to Eq. (7) may be 
needed.  (Section 3.1)   
 For AGT, the microwave resonance frequencies are determined by sweeping through triplets of 
microwave resonances.  Typically, data are acquired at 100 or more frequencies and they are fit to a 
generalization of Eq. (7) that contains a sum of three terms with resonance denominators.  Then, the 
fitting function has 3 complex values of A, 3 values of fN, and 3 values of gN in addition to the 
background terms.  For an ideal cavity, the 3 values of gN would vary as (fN)−1/2; in practice, the values of 
gN are larger for the modes that have currents crossing the joint between the quasi-hemispheres than for 
the modes with currents parallel to the joint.  (For particular diamond-turned copper spheres the “joint” 
effect on gN was only ∼2×10−7 fN

.)  Because the microwave Qs are a factor of 10 or more larger than the 
acoustic Qs, corrections to the microwave frequencies of order 1/Q2 have a negligible effect on kB. 
  The frequency references for the microwave vector analyzer and the frequency synthesizer that 
drives the sound generator may be locked together.  If this is done, errors that might arise from 
inaccuracies in either reference frequency cancel out of the ratios fa/fm which appear in Eqs. (4) and (6). 
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3. Theoretical Corrections to Acoustic Resonance Frequencies 
 
Here, we discuss corrections to the raw acoustic data that are based on reliable theories. [Benedetto et al. 
(2004) has a compact list of the corrections for a spherical cavity; Zhang et al. (2011) has a compact list 
of the corrections for a cylindrical cavity.]  The theory for the half-widths of the acoustic resonances 
requires accurate values of the viscosity and thermal conductivity of the thermometric gas.  (Section 3.4) 
However, the theory does not contain parameters that are determined from AGT.  Thus, a comparison of 
the theory of the half-widths obtained with a particular acoustic thermometer provides a parameter-free 
assessment of the understanding of that thermometer under the conditions of use.   

 
3.1 Thermal and Viscous Boundary Layers 
 
During each acoustic cycle, heat exchange between the gas and the shell surrounding the cavity results in 
a thermo-acoustic boundary layer in the gas that is characterized by an exponential decay length δT ≡ 
[λ/(ρCpπ f )]1/2.   Here λ is the thermal conductivity of the gas, ρ is its density, and Cp is the constant-
pressure heat capacity which is exactly 5R/2 for monatomic gases in the limit of zero density.)  For the 
radially-symmetric acoustic modes of a spherical or quasi-spherical cavity with radius a, the boundary 
layer contributions to the real and the imaginary (half-width) parts of the resonance frequencies are:  
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where fa,0 is the unperturbed resonance frequency.  Thus, ∆ftherm and gtherm are equal and both increase at 
low density as ρ−1/2.  For typical AGT, 50×10−6 < ∆ftherm /f < 200×10−6 and this is the largest correction to 
the raw data.  The corresponding fractional corrections to ∆T/T are 100×10−6 < ∆T/T < 400×10−6. 

The term in square brackets on the right hand side of Eq. (8) accounts for the penetration of the 
thermal oscillations into the shell. [Moldover et al. (1988)] This correction will be important when AGT 
is conducted in copper-walled cavities below 10 K.  Measurements at low densities have detected the 
term proportional to (δT/2a)2.  [Gillis (2012)]  Often, an equation similar to Eq. (8) is written where fa,0 is 
replaced by fa, the measured resonance frequency. In that case, the entire term proportional to (δT/2a)2 
should be multiplied by ½(3γ − 1)/(2γ − 1) ≈ 6/7.  

The term γ in Eq. (9) is the largest contributor to the half-widths of the acoustic resonances; thus, 
measurements of the half-widths are a critical test of the theory of the boundary layer correction.   The 
agreement between measurement and theory is remarkable.  In fact, Gillis (2012) was motivated to 
derive the correction of order (δT/a)2 by the observation that the sum (gtherm + gvol)/f obtained from 
Eqs. (8) and (11) was greater than the measured values gmeas/f by ∼2×10−6 at low densities.  

In a cylindrical cavity, momentum exchange between the oscillating gas and the nearly 
stationary walls of the cavity results in a viscous boundary layer in the gas that is characterized by an 
exponential decay length δv ≡ [η/(ρπ f )]1/2, where η is the viscosity.  Both the viscous boundary layer 
and the thermal boundary layer lead to mode-dependent perturbation to the frequencies and half-widths.  
For the longitudinal modes of a cylinder these are 
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where a and L are the radius and length of the cylinder, respectively.  [Zhang et al. (2011)] Because the 
energy losses from momentum exchange and heat exchange add, the Qs of the radially-symmetric modes 
of a spherical cavity are approximately five times larger than the Qs of the longitudinal acoustic modes 
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of a cylindrical cavity if both cavities have the same length and L ≈ 2a.  For the same reason, the 
frequency corrections are approximately five times larger (250×10−6 < ∆ftherm /f < 1000×10−6) at the same 
pressures.  To reduce these corrections, the optimum pressures for AGT conducted with a cylindrical 
cavity are probably higher than the optimum pressures for AGT conducted with a spherical cavity.  

For convenience, we define the surface contribution to the Q of a cavity by (Qsurf)−1 = 2(gtherm + 
gvisc)/f of a cavity  When raw acoustic data are acquired at low gas densities and fitted by the resonance 
function, Eq. (7), the values ffit and Qfit ≡ ffit/(2gfit) resulting from the fit should be corrected to account 
for the frequency dependence of g in the resonance formula.  Gillis et al. (2004) deduced the formulas 
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Smaller corrections of order 1/Q2 are generated by the 2nd order correction to the thermo-acoustic 
boundary layer, sound attenuation throughout the volume of the gas Qvol [Gillis et al. (2004)], and by the 
background terms 2( ) and ( )C f f D f f− −  in Eq. (7).  
 
3.2 Attenuation of Sound 
 
Under the conditions of AGT, the shift of the resonance frequency caused by the attenuation of sound 
throughout the volume of a resonant cavity is negligible; however, the attenuation adds a term to the 
half-widths of the acoustic modes given by:   
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3.3 Smaller acoustic perturbations 
 
The literature contains calculations of the perturbations to the complex acoustic resonance frequencies 
resulting from ducts that conduct gas (and sound) into and out of a cavity [Gillis et al. (2009); Mehl et 
al. (2004)], holes drilled through the shell (a short duct terminated by a large volume) [Moldover et al. 
(1986)], acoustic transducers [Guianvarc’h et al. (2009)], and slits that might surround a transducer or a 
cable. [Mehl et al. (2004)]  As discussed in Section 2.1.2 above, the acoustic effects of straight and 
looped microwave antennas at and below ambient temperature have been circumvented rather than 
modeled.  Perhaps this approach can be extended to high temperatures by replacing epoxy with an 
alternative, high-temperature material.  Otherwise, models must be developed for absolute primary AGT.  
For relative primary AGT, the geometry of ducts, ports, antennas, and other shape perturbations should 
be designed so that the perturbations largely cancel when measuring ratios of thermodynamic 
temperature. A well-designed AGT will ensure that the difficult-to-measure narrow dimension of any slit 
is much smaller than δv so that the perturbation from the slit is small.   
 
3.4 Thermophysical Properties of Helium and Argon 
 
Accurate values of the density ρ, thermal conductivity λ, and viscosity η of the thermometric gas are 
required to correct the measured acoustic frequencies for the thermo-viscous boundary layer and sound 
attenuation.  Accurate values of the density are needed to calculate the refractive index. 
 The density is calculated from the measured pressure and temperature using the virial equation 
of state.  For helium, accurate values of the second coefficients were calculated by Cencek et al. (2012) 
and accurate values of the third virial coefficient were calculated by Garberoglio et al. (2010) For argon, 
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multi-parameter empirical equations of state have been used [Tegeler et al. (1999)].  However, theory-
based correlations are under way and accurate ab initio calculations will be available within a few years.   

The most accurate, zero-pressure values of the thermal conductivity and viscosity of helium 
were calculated ab initio from quantum mechanics and statistical mechanics with a fractional uncertainty 
on the order of 10−5 near ambient temperature.  [Cencek et al. (2012)] Thus, the uncertainty of these 
transport properties makes a negligible contribution to the uncertainty of helium-based AGT. 

In the range 200 < T/K < 400, the most accurate values of the viscosity of argon can be obtained 
by combining calculated values of the viscosity of helium ηHe [Cencek et al. (2012)] with the 
measurements by May et al. (2007) of the ratio ηAr/ηHe ≡ (viscosity of argon)/(viscosity of helium).  In 
this temperature range the fractional uncertainty of ηAr is 0.00011.  In the same temperature range, the 
most accurate values of the thermal conductivity of argon have the fractional uncertainty 0.00012; they 
are obtained by combining ηAr with calculated values of the Prandtl number Pr ≡Cpη/λ.  [May et al. 
2007]  To estimate the thermal conductivity of argon above 400 K, Vogel et al. (2010) used an ab initio 
argon-argon interatomic potential.  The resulting values of the thermal conductivity and the viscosity 
have estimated fractional uncertainties of 0.0005 to 0.001.    

 
4. Theoretical Corrections to the Microwave Resonance Frequencies 
 

4.1 Microwave Boundary Layer 
 

The penetration of the microwave fields into the wall bounding the cavity contributes to the half-widths 
of the microwave resonances gm and reduces the resonance frequencies by the same amount.  For the 
TMlm modes in a quasi-spherical cavity these perturbations are: 
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In Eq. (12), δm is the microwave penetration length, νm is a microwave eigenvalue, and µ and σ are the 
magnetic permeability and conductivity of the shell, respectively.  (For the TElm modes, the term 2/νm

2 
in Eq. (12) is absent.)  For a non-magnetic stainless-steel wall near ambient temperatures, Moldover et 
al. (1999) assumed that µ is identical with the permeability of free space and σ is identical to the 
conductivity of the bulk metal measured near zero frequency.  The latter assumption fails for copper at 
low temperatures where σ in the thin penetration layer (δm ∼ 1 µm) is sensitive to impurities and strain 
that may remain after machining and/or polishing and to the anomalous skin effect (Section 4.3). 
However, the small value of δm implies that AGT is relatively insensitive to this assumption.  [Mehl et 
al. (2004)] Instead of estimating δm from external measurements, one can calculate δm from Eq. (12) and 
the measured values of the half-widths gm for those modes where the currents flow parallel to the seam 
where the quasi-hemispheres meet.  This calculation sets a lower bound to δm.  Measured values of gN 
can exceed theoretical values of gm because of losses associated with currents that cross the joint 
between the quasi-hemispheres.  This extra contribution to gm was only of order 2×10−7 fm in two 
diamond-turned, copper quasi-spheres, but larger in other cases.   
 
4.2 Antennas and instruments 
 
Underwood et al. (2010) made a thorough study of the small perturbations to the microwave resonance 
frequencies resulting from a cylindrical hole in the wall of a cavity, a junction between a coaxial cable 
and a cavity, and a straight antenna.  If the antenna is no longer than the radius of the cable rc or hole, all 
of these perturbations are on the order of (rc/a)3, which can be less than 1×10−6.  Furthermore, 
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Underwood et al. (2010) showed that the perturbations from the energy conducted out of a cavity by 
coaxial cables are even smaller.   
 The electrical conductivity of the membranes of the acoustic transducers may be lower than the 
conductivity of the wall bounding the cavity.  This will reduce the microwave frequencies and increase 
their half-widths by equal amounts.  This effect could be measured by substitution.   
 
4.3 Anomalous Skin Effect 
 
If AGT is conducted at low temperatures in a copper-walled cavity, the anomalous skin effect should be 
considered.  [Podobedov (2009)] If the copper is pure enough, the microwave penetration depth at a 
given frequency calculated from Eq. (12) may become smaller than the mean-free-path of the conduction 
electrons.  If so, only a small fraction of the conducting electrons spend enough time within the 
conducting layer to contribute to the conductivity at microwave frequencies.  Then, the microwave 
conductivity is less than that inferred from measurements made at DC or at lower frequencies and the 
frequency-dependence of the penetration depth is anomalous.   
 
5. Phenomenological Corrections to Acoustic Resonance Frequencies 
 
The corrections discussed in Sections 3 and 4 are based on reliable theories and, except for the electrical 
conductivity of the cavity’s walls, use parameters that are determined with sufficiently low uncertainties 
from the cited references that do not rely on AGT.  We now consider corrections resulting from two 
phenomena that limit the range of the measurements used for AGT.  At high densities, the limiting 
phenomenon is the elastic response of the resonator’s walls to the acoustic oscillations.  At low densities, 
the gas-shell interaction on the scale of the mean free path of the gas is limiting. The theories for these 
phenomena involve parameters that must be determined for each acoustic thermometer from 
measurements using that thermometer.   
 
5.1 Elastic Recoil of the Resonator’s Walls 

 
The effects of shell motion on the gas resonances in spherical [Mehl (1985)] and cylindrical [Zhang et 
al. 2010] shells have been calculated.  The theory predicts that, when a gas resonance is not too close to 
a shell resonance, the frequency of the gas resonance is shifted by  
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where the subscript l represents the indices of a gas mode, the subscript i represents the indices of a shell 
mode, and Gi,l is a compliance that depends upon the geometry of the shell, the gas mode l, and elastic 
properties of the resonator’s walls.  The perturbation (∆fl)shell,i is very nearly a linear function of the 
pressure on an isotherm because (ρu2)gas is nearly proportional to the pressure under conditions of AGT.  
Thus, a poor estimate of the compliance Gi,l will result in values of the acoustic slopes A1(T) that differ 
from mode to mode and are inconsistent with the thermodynamic values of A1(T). 

The radially-symmetric modes of a gas within a perfect, isotropic, spherical shell will be 
perturbed only by the isotropic “breathing” mode of the shell.  For this case, G0n,breathing = χs,int 
≡(3/a)(da/dpint) which is the shell’s compliance to internal pressure pint.  This isolated “breathing-mode” 
approximation accurately represented the behavior of the shell used by Moldover et al. (1999) for 
acoustic thermometry from 217 K to 303 K.  This claim of accuracy is supported by: (1) the measured 
value fbreathing = 13.2 kHz is only 3 % below the calculated value fbreathing = 13.6 kHz, (2) the agreement of 
the calculated acoustic slopes A1(T) with the values measured with five radial modes [after applying Eq. 
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(4)] over a range of temperatures, and (3) the agreement of the calculated value of the static compliance 
χs,int with two independent measurements of χs,int.  The isolated, breathing-mode approximation worked 
nearly as well for the much more compliant aluminum resonator studied by Moldover et al. (1986).  
 Gavioso et al. (2010b) measured the frequency perturbations (∆fl)shell,i caused by the recoil of the 
steel shell of a spherical cavity and of the copper shell of a quasi-spherical cavity.  For the steel 
resonator, (∆fl)shell,i had at least 4 wide peaks in the range 75 % to 100 % of the predicted fbreathing.  For the 
copper resonator, (∆fl)shell,i had 3 narrow peaks centered at 85 % of the predicted fbreathing.  Thus, the 
isolated breathing-mode approximation was a poor description of these two resonators.  Finite-element 
models of shells show that small departures from perfect radial symmetry (such as flanges at the 
equatorial joint between hemispheres or small bosses at the closed end of each hemisphere) lead to only 
small changes in fbreathing and only weak couplings between the radially symmetric acoustic modes and 
non-radial modes of the shell. 

The three shells mentioned above were assembled by bolting hemispheres together.  The 
breathing-mode model worked well for the only one of the three that had a thin, highly-compressed layer 
of wax sealing the hemispheres together. [Moldover et al. (1999)] Perhaps the poor agreement between 
the model and the data for the other shells resulted from the model’s neglect of the joint where the 
hemispheres meet.  For all three shells, the measured half-widths of the radial modes exceed the 
calculated half-widths by a constant times the pressure: ∆gN = gN,meas − gN,calc = ANp .  There are no 
accurate predictions for AN.  However, ∆gN does approach zero with decreasing pressure; therefore, the 
elastic recoil contributions to AN are unlikely to cause errors in AGT.  
 Zhang et al. (2010, 2011) modeled several elastic modes of an ideal cylindrical shell that could 
be excited by longitudinal gas modes.  These included longitudinal stretching, bending of the endplates, 
and center-of-mass motion.  (They also modeled radial stretching.)  The values of A1(T) that they 
measured for several longitudinal modes were inconsistent with the thermodynamic value of A1(T) after 
correcting for the calculated elastic recoil. 

In summary, the elastic recoil of a cavity’s shell cannot be predicted reliably from first 
principles, although a simple model has worked well in one case. In all cases, the inconsistences among 
the acoustic modes approach zero linearly with decreasing pressure.  We take these inconsistencies as a 
measure of the uncertainty of the temperature arising from the elastic recoil of the cavity’s walls.  An 
independent measure of the uncertainty of the temperature is the spread among the values of ∆gN, 
although this spread can arise from phenomena other than the recoil of the cavity’s walls.         

Acoustic thermometers operating at high temperatures will encounter larger values of the 
perturbations (∆fl)shell,i because they will operate at higher pressures.  (Section 6)  Thus, they should be 
designed to reduce the compliances Gi,l by making the cavity’s walls of a stiff material, making the joints 
as stiff as possible, and making the cavity’s wall as thick as practical.  Several spherical acoustic 
thermometers have operated with the ratio (cavity radius)/(wall thickness) ≈ 5.  If the ratio had been 2.5, 
the elastic corrections would have been half as large. 

When a gas mode and a shell mode have nearly identical frequencies, they couple strongly and 
the frequencies are very sensitive to the shell’s properties.  The frequencies exhibit an “avoided 
crossing” and Eq. (4) is no longer applicable.  Acoustic thermometry should not be conducted in this 
regime.  Near-crossings can be identified easily by analyzing the data from multiple acoustic modes at 
the same temperature and pressure.   

 
5.2 Effects of Non-zero Mean Free Path 
 
Ewing et al. (1986) discussed the acoustic consequences of the kinetic theory prediction that a 
temperature jump occurs at a gas-solid interface when heat is transferred across the interface.  They 
concluded that the temperature jump increases the resonance frequencies and leaves the half-widths 
unchanged.  For a monatomic gas, the frequency increase is  
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where la is the thermal accommodation length.  In Eq. (14), λ is the thermal conductivity, m is the mass 
of an atom, and h is the thermal accommodation coefficient.  (If h = 1, la equals 1.8 times the mean free 
path.  For argon at TTPW, 100 kPa, and h = 1, la = 118 nm.) The coefficient h accounts for the fraction of 
the gas molecules incident on the solid that are reflected or re-emitted from the solid with the kinetic 
energy expected from the solid’s temperature.  Thus h might depend upon the gas, the temperature, and 
the microscopic conditions of the surface (such as oxidation or the presence of an oil film).  The 
temperature jump adds the term A−1p−1 to the polynomial expansion Eq. (1).  Ewing et al. included this 
term in a fit to their measurements using an argon-filled, aluminum-walled cavity and found h = (0.84 ± 
0.05).  For an argon-filled, steel-walled cavity, Moldover et al. (1988) found h = (0.93 ± 0.07) at TTPW.  
Ripple et al. (2007) found the average value h = (1.02 ± 0.15) over the temperature range 271 < T/K < 
552, with no obvious temperature dependence.  Benedetto et al. (2004) and Pitre et al. (2006) assumed 
that h = 1 over wide temperature ranges.  Gavioso (2011) determined h = 0.378 ± 0.010 for the thermal 
accommodation coefficient of helium on a diamond-turned copper-walled cavity.  Using this experience 
as a guide, Moldover (2011) assumed that the uncertainty of h was 0.05 and used this value to estimate a 
value of the gas density below which acoustic measurements would not reduce the uncertainty of the 
thermodynamic temperature at TTPW.  (See Section 6.) In contrast with these observations, Song and 
Yovanovich (1987) reported values of h ranging from 0.4 to 0.1 for helium interacting with “engineering 
surfaces” over the temperature range 273 K to 1250 K. 
  The velocity of a gas oscillating in longitudinal acoustic modes of a cylindrical cavity is 
transverse to the solid wall bounding the cavity.  In this situation, the same kinetic theory considerations 
which predict a temperature jump at the gas-solid interface also predict a momentum jump.  [Trusler, 
(1991)] The momentum jump increases the resonance frequencies and leaves the half-widths unchanged. 
During the calibration of many spinning-rotor vacuum gauges, accurate values of the momentum 
accommodation coefficient were measured.  In many cases the results were unequal to 1, but within a 
few percent of 1.  [Chang and Abbott (2007)]   
 
6. Optimizing the Range of Data Acquisition 
 
For a given cavity resonator, there is a range of molar gas densities ρ/M that is most useful for 
conducting low-uncertainty AGT.  (M is the average molar mass of the gas.)  Moldover (2009) estimated 
this range for a quasi-spherical, steel-walled cavity with an inside radius of 5 cm and an outside radius of 
8 cm.  When filled with argon, the optimum range is 40 mol•m−3 < ρ/M < 200 mol•m−3 (corresponding to 
the pressure range 100  < p /kPa < 500 at TTPW).  When filled with helium, the optimum range is 
130 mol•m−3 < ρ /M < 400 mol•m−3 (corresponding to the pressure range 300 < p/kPa < 900 at TTPW).  
Although these estimates are very approximate, we will use them to discuss aspects of AGT.  

Below the optimum density, the Qs of the acoustic modes decrease approximately as p−1/2 and 
the signal-to-noise ratio of the frequency measurements decreases as p−2, assuming the sound generator 
produces an acoustic pressure that is proportional to the static pressure.  Also, as the density decreases, 
the mean free path grows as ρ−1.   Therefore, as the density is lowered, the uncertainty of the measured 
acoustic frequencies grows rapidly and the measured frequencies become increasingly sensitive to the 
parameter A−1 (Section 5.2).  As the density is increased above the optimum range, the measured acoustic 
resonance frequencies become increasingly sensitive to the recoil of the cavity’s wall (Section 5.1) and 
to the pressure-coefficients A3(T) and A4(T) that must be added to Eqs. (1) and (2).  Thus, at higher than 
optimum density, one learns more about the complicated vibrations of the walls and supports of the 
cavity and more about the higher virial coefficients of the gas; however, this information has only a 
small effect on the uncertainty of the thermodynamic temperature. 
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 The lower bound to the optimum density is, like the mean free path, approximately independent 
of the temperature, provided that the sensitivity of the detector of the acoustic pressure (at the wall of the 
cavity resonator) can be increased as T −1.  The upper density bound decreases with temperature because 
the magnitude of A3(T), A4(T), etc. increase at low temperatures. 

At temperatures above approximately 90 K, both helium and argon can be used for AGT.  When 
compared at the same temperature and pressure, argon has three advantages: (1) the corrections from 
A−1(T) are larger in helium than argon because the mean free path in helium is 1.5 times longer than in 
argon. (2) the Qs of the acoustic resonances are 1.7 times larger in argon than in helium leading to better 
signal-to-noise ratios, and (3), the speed of sound in argon is less sensitive to common impurities  
(Section 9). However, acoustic measurements made near the liquid-vapor coexistence curve of argon 
may be subject to bias from pre-condensation.  [Mehl and Moldover, (1982)] 

For argon in the range of optimum densities mentioned above, δT increases only 19 % as the 
temperature is increased from 273 K to 1200 K and the Prandtl number changes less than 1 %.  Thus, it 
is possible to conduct AGT in a temperature-independent range of δT and δv simultaneously instead of a 
temperature-independent range of molar densities.  (A temperature-independent range of δT and δv is 
approximately equivalent to a temperature-independent range of Q.) This alternative is advantageous 
because difficult-to-model acoustic perturbations that depend upon δT and δv cancel out of the ratio 
Eq. (6).  For example, a coupling loop that extends from the end of a coaxial cable into (or nearly into) a 
cavity resonator will generate acoustic perturbations that are difficult to model because they depend 
upon the ratios of δt and δv to many lengths.  A high-temperature coaxial cable will generate difficult-to-
model perturbations if insulation between the center conductor and the sheath is not sealed at the cavity’s 
wall.  This would occur if, for example, the insulator were quartz tubes or sapphire beads.  To the extent 
that differential thermal expansion can be ignored, such complex perturbations will be temperature-
independent for measurements conducted at constant values of δt and δv  
 
7. Uncertainties from Pressure Measurements  

 
In the AGT working equations [(3) and (6)], the pressure is used in 4 ways: 1), explicitly in calculating 
or fitting the terms A1p + A2p2 that represent the pressure-dependence of u2, 2), implicitly, when 
calculating the density-dependent corrections to the acoustic frequencies such as ∆ftherm, 3), implicitly, 
when calculating the refractive index n, and implicitly when fitting the thermal accommodation 
coefficient h in Eq. (14). Here, we consider how accurately the pressure must be measured so that each 
of these uses contributes no more than 10−6 to the fractional uncertainty of T.   

If T > 8 K, u2 in helium varies by less than 1 % in the density range recommended in Section 6.  
(130 mol•m−3 < ρ /M < 400 mol•m−3)  If T > 170 K, u2 in argon varies by less than 1 % in the density 
range recommend in Section 6. (40 mol•m−3 < ρ/M < 200 mol•m−3)  For these “high” temperatures, a 
relative pressure uncertainty of 10−4 at pmax is adequate for determining u2(p,T), and therefore T with a 
relative uncertainty on the order of 10−6.  (Here pmax is the maximum pressure on the isotherm of 
interest.)  If a relative pressure uncertainty of 2×10−5 pmax is achieved, the low-temperature bounds 
become T > 3 K in helium and T > 91 K in argon.  If A1 and A2 are fitted on each isotherm and their 
values are not checked against theoretical values, the required pressure uncertainty can be reduced to a 
required pressure linearity and an accurate pressure zero.   

As the pressure is reduced towards the minimum pressure on each isotherm pmin, the fractional 
correction to the thermodynamic temperature from the thermo-acoustic boundary layer (2∆ftherm)/fa 
increases as p−1/2 and reaches, approximately, 4×10−4 at pmin for the (0,2) radial acoustic mode.   If the 
fractional uncertainty of pmin is 2.5×10−3, its contribution to the fractional uncertainty of T will be 1×10−6.   
 The refractive index is calculated from the density using the Lorentz-Lorenz relation: 
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The density is usually calculated from the measured temperature and pressure and an equation of state 
from the literature.  At the maximum densities mentioned in Section 6 (400 mol•m−3 for helium and 
200 mol•m−3 for argon), n2

argon = 1.0025 and n2
helium = 1.00062.  If these values of n2 are measured with 

an uncertainty of approximately10−6, they will contribute a fractional uncertainty of approximately 10−6 
to the fractional uncertainty of T.  The pressure is nearly proportional to n2 − 1; therefore, the required 
pressure uncertainties are, fractionally, 1.6×10−3 for helium and 4×10−4 for argon.  At the densities used 
for AGT, the uncertainty of T from the uncertainty of the equation of state is negligible, except for argon 
at low temperatures 

On each isotherm, the thermal accommodation coefficient h, or equivalently, the thermal 
accommodation length la must be fitted, together with T, A1, and A2.  We estimate the mean-free-path 
correction to the acoustic frequencies ∆fl /fl = (γ − 1)la/a by assuming h = 1 and a = 50 mm.  As the argon 
pressure is decreased in the range recommended in Section 6, this estimate increases as p−1 from 
0.5×10−6 to 2.4×10−6 and the corresponding correction to T increases, fractionally, from 1×10−6 to 
4.8×10−6.  This p−1 term is easily distinguished from the p0 ∝ T term, provided that the pressure 
measurements are a linear function of the true pressure and the zero of the pressure transducer is accurate 
to within a few percent of pmin.       

The pressure uncertainties required for all 4 uses of the pressure are easily attained except when   
conducting AGT in helium at very low temperatures and (correspondingly low pressures) where the 
uncertainty of the thermo-molecular pressure gradient contributes to the pressure uncertainty. 

As discussed in Section 9 below, it may be advantageous to conduct AGT while gas flows 
continuously from a manifold through narrow ducts to and from the cavity.  If this is done, a separate 
duct leading from the cavity to the pressure-measurement system is desirable to make accurate pressure 
measurements without accounting for flow-generated pressure drops.      
 
8. The Refractive Index and the Density 
 
In Section 8.1, we recommend refractive index data for determining the radius of a gas-filled cavity from 
microwave frequency measurements.  In Section 8.2, we suggest that replacing the pressure in Eqs. (4) 
and (6) with the density, as determined from microwave frequency measurements, might be useful for 
low-temperature AGT.     

 
8.1 Data for the refractive index 
    
For helium, the leading terms Aε and Aµ in Eq. (15) are independent of the temperature and are accurately 
known from theory.  (See Table 1.)  Rizzo et al. (2002) calculated bε(T) using a fully quantum statistical 
approach.  Their tabulated values vary from −0.0031 cm3•mol−1 at 3.8 K to −0.126 cm3•mol−1 at 408 K.  
[See Cencek et al. (2011) for classical values of bε(T) and their uncertainty between 77 K and 322 K.]  

 
 

Table 1.  Constants for estimating the refractive index from the density 
Property 

cm3•mol−1 Helium Helium Reference Argon Argon Reference 

Aε   0.517 254 19(10) Lach et al. (2004)   4.142 03(19) Schmidt and Moldover (2003) 
Aµ −0.000 007 91(01) Bruch and Weinhold (2000) −0.000 080 9(6)a Barter et al. (1960) 

bε(298 K) −0.1035 Rizzo et al. (2011)   0.36 Rizzo et al. (2002) 
aAverage of three measurements from the literature 
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The value of Aε for argon in Table 1 was measured by Schmidt and Moldover in an apparatus 
that had been calibrated using the theoretical values ε(p,T) of helium.  Because the apparatus was 
calibrated and used at the same pressures and temperatures (near 0 °C and 30 °C), the imperfections of 
the pressure measurements and the thermometry had a small effect on the uncertainty of Aε.  For argon, 
Rizzo et al. (2002) calculated bε(T); it varies from 0.52 cm3•mol−1 at 100 K to 0.31 cm3•mol−1 at 408 K.   

 
8.2 Relating the microwave frequencies to the density 
 
The measured frequencies of a microwave multiplet are related to the refractive index by 
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  . (16) 

 
In Eq. (16), R is the universal gas constant and the subscripts “p” and “vac” denote measurements made 
at the pressure p and under vacuum, respectively.  Also, BT  ≡ −V/(∂p/∂V)T is the isothermal bulk 
modulus of the cavity and it accounts for the shrinkage of the cavity’s volume under the hydrostatic 
pressure of the gas.  Because the volume of the cavity is defined by an assembly of metal parts, the value 
of BT of the cavity is assumed to be identical to BT of the cavity’s wall. A typical value for copper and 
some steels is BT ≈ 1.4×1011 Pa near TTPW.  

In Eq. (16), the second approximate equality is obtained from Eq. (15) by making the 
approximations (n2 +2) ≈ 3, Aµ ≈ 0 and bε ≈ 0.  This equality shows that the gas density is determined by 
Aε and the ratio of measured frequencies, corrected by the fraction F ≡ 2RT/(9AεBT)  We estimate 
FHe ≈ 0.007 and FAr ≈ 0.00087 near TTPW.  To deduce the density of helium with a fractional uncertainty 
of 10−4 near TTPW, the relative uncertainty of FHe must be less than 10−4 / FHe ≈ 0.014.  It might be 
difficult to know BT with this low uncertainty for a cavity assembled out of copper parts.  At a lower 
temperature, for example, 30 K, the required relative uncertainty of FHe (and BT) is 0.17, an easily 
attained value.  Thus, it is feasible to conduct helium-based AGT below 30 K by replacing the pressure 
in Eqs. (3) and (6) with the density deduced from Eqs. (15) and (16).  Because FAr = 8.007×FHe, argon-
based AGT using the density is feasible at and below ambient temperature. 

Equation (16) requires an accurate value of 〈fm − ∆fm〉vac at each temperature.  Measuring 
〈fm − ∆fm〉vac may be time consuming because evacuating a cavity through a small duct is slow.   

 
9. Chemical Impurities and Gas Handling 
 
A careful accounting for impurities in the thermometric gas is essential for accurate AGT.  The 
normalized derivative D ≡ (1/u2)(du2/dx) of the square of speed of sound u2 with respect to the mole 
fraction x of an impurity measures the influence of impurities on AGT.  See Table 2. 

Except for hydrogen, |D| is at least 8 times larger for helium than for argon.  Argon’s reduced 
sensitivity to impurities is one reason that argon is preferred to helium for AGT near ambient 
temperature.  For argon, the values of D are of order 1; therefore, the mole fractions of common 
impurities must be near or below 10−6 to realize absolute AGT with uncertainties on the order of 10−6.  
For relative AGT, any changes in the mole fractions of common impurities between T and Tref must be 
consistent with the desired uncertainty.  At high temperatures, hydrogen from outgassing is the most 
common impurity and must receive special attention.  (See below.) 

Highly-purified, commercially-supplied gas is the starting point for conducting accurate, relative 
AGT.  The manifold that transports the gas from the supplier’s cylinder to the cavity and regulates the 
gas’ flow and pressure should be constructed using high-vacuum techniques.  These include using tubing 
and fittings with electro-polished interiors and all-metal, bakeable components, (including meters and 
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Table 2. Sensitivity of u2 to impurities.  [Moldover et al (1988)]   
Impurity M γ0 Da Da 

 gm/mol  in He in Ar 
H2 2 1.4a     0.23   0.68 
He 4 5/3  0.9 

H2O 18 1.32 a   −3.93   0.12 
Ne 20 5/3 −4.0  0.5 
N2 28 1.4 a   −6.27   0.03 
O2 32 1.4 a  −7.3 −0.07 
Ar 40 5/3  −9.0  

CO2 44 1.4 a −10.3 −0.37 
Kr 84 5/3 −20.0 −1.1 
Xe 131 5/3 −31.8 −2.3 

aValues at 273 K.  For polyatomic gases, D and γ0 are temperature-dependent.  
 

regulators).  Virtual leaks must be minimized and joints should be welded or compression-sealed with 
metal gaskets.  The manifold should include a heated, reactive metal (getter) to remove chemically 
reactive impurities from the supplier’s gas.  These precautions should reduce the problem caused by 
outgassing of water from the ambient-temperature parts of the manifold noted by de Podesta et al. 
(2011).   

When a well-designed manifold supplies pure gas to an acoustic thermometer, the outgassing of 
an impurity within the thermometer itself can contaminate the gas.  Ripple et al. (2003) reported 
outgassing of hydrogen, probably from the stainless steel resonator itself.  They used a residual gas 
analyzer to quantify the rate of hydrogen outgassing and reduced the outgassing by baking the apparatus 
for weeks.   Such contamination can be detected and accounted for by monitoring an acoustic resonance 
frequency while the thermometric gas continuously flows through the cavity.  If the outgassing rate is 
independent of the presence of the flowing gas, there will be a range of flows such that the frequency is a 
linear function of the flow rate with a coefficient that varies inversely as the pressure.  In this situation, 
the measured frequency can be extrapolated to zero flow.  Alternatively, one can stop the flow and 
measure the rate of frequency changes df/dtime from which an outgassing rate can be determined.  Then, 
all the measurements can be corrected using that outgassing rate.   

Several phenomena should be considered when designing a flow system.  Purge paths should be 
designed so that any outgassing sources (e.g., commercial transducers, mass flow controllers) are 
downstream of the cavity.  Heat exchange between the incoming gas and the thermostat must be 
sufficient to prevent flow-induced thermal gradients forming in the cavity’s walls.  Except at very low 
flow rates, gas entering the cavity from a duct will flow in a jet across the cavity, “splash” off the wall 
opposite the entrance, and then mix with the gas already in the cavity.  [Pitre et al. (2011)] To achieve 
good mixing, the outlet duct should not be opposite the entrance duct 

The jet entering the cavity will dissipate its kinetic energy as it mixes with the gas already in the 
cavity.  If the diameter of the inlet duct is too small, the kinetic energy in the jet may be large enough to 
generate temperature gradients within the gas inside the cavity.  This phenomenon may have been 
observed by Pitre et al. (2011).  Flow-generated fluctuations of the pressure in the cavity will generate 
corresponding temperature fluctuations in the gas on time scales of milliseconds to many seconds.  The 
temperature fluctuations will modulate the acoustic resonance frequencies and can easily be mistaken for 
excess electronic noise during frequency measurements.  To eliminate this phenomenon, Ripple et al. 
(2003) devised a simple, non-contaminating, rapidly-responding flow regulator. 

During AGT, noble gas impurities in helium or argon are unlikely to be detected by flow-
dependent frequency shifts.  For example, a duct transporting helium from ambient temperature to a cold 
cavity can act as a cold trap that collects the argon impurity over a wide range of flow rates.  Then, the 
composition of the helium in the cavity would be independent of flow, but dependent on the duct’s and 
cavity’s temperature causing an error in the AGT that depended on the mole fractions of the impurities.  
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The error could be detected by comparing the speed of sound in the helium before and after it passed 
through the cryostat.  Argon and neon in the supplied helium gas can be detected by using sensitive gas 
chromatography to compare the sample gas with gravimetrically-prepared standards.  A liquid-helium-
cooled trap will remove argon impurities from helium.      

 
10. Linking the Thermodynamic Temperature to T90 
 
The acoustic thermometers described above cannot be inserted into fixed-point cells, cryostats, or ovens 
to measure the temperature of these environments.  Instead, all these AGTs have design features that 
facilitate linking the average thermodynamic temperature of the gas in the AGT’s cavity to the ITS-90.  
At near-ambient and at cryogenic temperatures, the linkage has been made by installing several, 
redundant capsule-type rhodium-iron thermometers or capsule-type standard platinum resistance 
thermometers (SPRTs) in the shell surrounding the cavity.  At higher temperatures, frequently-
calibrated, long-stemmed SPRTs must be used to realize the ITS-90 with small uncertainties. Therefore, 
high-temperature acoustic thermometers should contain thermally-anchored thermometer wells to 
facilitate satisfactory immersion of long-stemmed thermometers and their frequent removal for 
recalibration.  [Ripple et al. (2003)]   
 If the temperature of the shell surrounding the cavity is not uniform, the average gas temperature 
may differ from the temperature(s) indicated by the SPRTs.  The use of multiple SPRTs may detect 
temperature non-uniformities such as a vertical gradient resulting from imperfections of the thermostat.  
To estimate the effect of a temperature drift rate (dT/dtime), it is convenient to define two time constants: 
(1) τshell which is the relaxation time for decay of thermal gradients in the shell, and (2) τgas which is the 
relaxation time for gas injected into the cavity to come to equilibrium with the shell.  The drift generates 
a temperature gradient in the shell on the order of (dT/dtime)τshell and a temperature gradient in the gas 
on the order of (dT/dtime)τgas.  If a gas flows into the cavity with the volume rate V’ and with the 
temperature difference ∆T from the cavity’s temperature, the flow may generate a temperature non-
uniformity as large as ∆T V’τgas/V, where V is the volume of the cavity.    
 
11. Expected Uncertainties in AGT 
 
Acoustic thermometers provide redundant data that are used to test the raw data and the corrections that 
are applied to the raw acoustic data.  Routinely, the resonance frequencies and the resonance half-widths 
of several acoustic and several microwave modes are measured at each temperature and pressure. The 
frequencies of the several modes are tested for mutual consistency and the values of the half-widths are 
tested by comparisons with theory.  This redundancy can detect many Type B uncertainties.   

Up to this point, we discussed single isotherms and pairs of isotherms.  In fact, the parameters 
that are fitted on each isotherm (A1, A2, A−1, and T) discussed in Sections 1 and 5.2 account for physical 
phenomena that are smooth functions of the thermodynamic temperature T.  All 4 parameters are also 
smooth functions of T90, except for the discontinuity in the derivative d(T − T90)/dT at TTPW.   Therefore 
uncertainties can be reduced and errors can be detected if the data on many, closely-spaced isotherms are 
simultaneously fitted by physically-motivated functions of T90 that have fewer parameters.  For example, 
Moldover et al. (1999) fitted 6 isotherms in the temperature range 217 K ≤ T ≤ 303 K independently 
with 24 parameters and then fitted the same data with a surfaces that had either 11 or 12 parameters.  
With fewer parameters, the uncertainties of T − T90 decreased.  Smooth, physically-based  
functions with few parameters can be generated by adding a simple analytic function (such as a 
polynomial function of log(T/K)) to a theoretically-based function (such as the second acoustic 
coefficient generated by Vogel et. al (2010) using an ab initio argon-argon potential).   

Table 3 is adapted from Table 9 of Pitre et al. and Table 2 of Ripple et al. to display the most 
important uncertainty components in these realizations of AGT.  The tabulated values are the k = 1 
components and their quadrature sum, expressed in parts per million of T.   
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 Table 3 summarizes two realizations of AGT; each was the first to reach the listed highest or the 

lowest temperature.  From the experience of these pioneering measurements, lower uncertainties may be 
possible in the future.  For example, the helium used by Pitre et al. might have contained either 2.5 ppm 
of neon or 1.1 ppm of argon (or some combination of neon and argon) that led to uncertainty 
contributions listed under “Gas purity”.  In future work, this contribution could be reduced by improved 
gas analysis and/or purification.  In the work of Ripple et al., the uncertainty contributions listed under 
“Microwave measurements" might be reduced by using a quasi-spherical cavity instead of a spherical 
cavity with incompletely resolved microwave triplets.   

The uncertainties from “Acoustic measurements” in Table 3 resulted from inconsistencies in the 
values of T − T90 obtained with different acoustic modes. At many temperatures, only a few acoustic 
modes could be used to determine (T − T90) because the frequencies of the gas modes and shell modes 
were close together.  This explains the somewhat surprising difference in the uncertainty of the 77.857 K 
and 77.657 K isotherms in Table 3. In future thermometers, this uncertainty component might be 
reduced by increasing the ratio (shell thickness)/(cavity radius).  At the lowest temperatures listed in 
Table 3, the largest uncertainty contribution comes from the realization of T90.  In this range AGT is 
more accurate than realizations of the internationally accepted temperature scale.  

Table 3.  Contributions to the k = 1 relative uncertainty of 106×(T−T90)/T, determined by AGT, as 
implemented by Ripple et al (2007) and Pitre et al. (2006). 

T / K 
Microwave 

measurementsa 
 

Thermostat and 
ITS-90 

thermometryb 

Acoustic 
measurementsc Gas purity Gas 

propertiesd 
 Root sum 
 of squares  

Argon [Ripple et al. (2007)] 
552 1.7 0.8 3.1 0.7 0.5 3.8 
550 1.7 0.8 3.0 0.7 0.5 3.6 
470 1.3 1.1 1.6 0.4 0.4 2.3 
466 1.3 1.1 1.4 0.4 0.4 2.4 
394 1.2 0.9 1.3 0.5 0.3 2.0 
367 1.1 1.0 1.1 0.5 0.3 1.9 
364 1.1 1.0 1.1 0.5 0.3 1.9 
333 1.0 1.1 0.8 0.0 0.3 1.8 

Helium [Pitre et al. (2006)] 
234.31 0.9 0.6 1.3 1.5 0.0 2.2 
192.08 0.8 0.8 2.1 1.5 0.0 2.9 
161.39 0.9 1.1 1.9 1.5 0.0 2.7 
127.55 0.9 1.4 6.0 1.5 0.0 6.4 
 96.41 1.1 1.2 1.5 1.5 0.0 2.7 

  83.801 1.2 1.1 6.4 1.4 0.0 6.8 
  77.857 0.9 1.2 3.6 1.4 0.0 4.1 
  77.657 0.9 1.2 2.2 1.4 0.0 3.0 
 24.551 3.7 7.7 2.0 1.4 7.7 11.8 
 19.679 2.5 8.1 4.1 1.4 9.6 13.7 
 13.837 4.3 10.1 2.9 1.4 10.1 15.2 
 10.293 5.8 11.7 1.0 1.4 7.7 15.5 

   7.0055 4.3 14.3 5.7 1.4 0.0 15.7 
aIncludes effects of:  inconsistencies among modes, skin depth, antennas and transducers, and, only for 
argon, imperfect resolution of microwave triplets. 

bIncludes determination of T90 and temperature gradients 
cIncludes inconsistencies among modes and uncertainty of thermal accommodation coefficient h  
dthermal conductivity of argon and 3rd acoustic virial coefficient of helium 
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