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Abstract Recently, an atomic force microscopy (AFM)-
based approach for quantifying the number of biological
molecules conjugated to a nanoparticle surface at low num-
ber densities was reported. The number of target molecules
conjugated to the analyte nanoparticle can be determined
with single nanoparticle fidelity using antibody-mediated
self-assembly to decorate the analyte nanoparticles with
probe nanoparticles (i.e., quantitative immunostaining). This
work refines the statistical models used to quantitatively
interpret the observations when AFM is used to image the
resulting structures. The refinements add terms to the previ-
ous statistical models to account for the physical sizes of the
analyte nanoparticles, conjugated molecules, antibodies, and
probe nanoparticles. Thus, a more physically realistic statis-
tical computation can be implemented for a given sample of
known qualitative composition, using the software scripts
provided. Example AFM data sets, using horseradish perox-
idase conjugated to gold nanoparticles, are presented to
illustrate how to implement this method successfully.
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Introduction

Surface-functionalized nanoparticles (NPs) have seen in-
creasing applications in recent years, for example, as multi-
functional nanomedicine platforms with both targeting and
therapeutic conjugates [1–3]. However, to both successfully
commercialize these materials and perform robust structure–
property studies, quantifying the number of ligands per NP is
critical [4, 5]. This is especially true in regulated fields such
as nanomedicine clinical trials [6, 7]. Many integrative tech-
niques (i.e., all NPs are measured and average values report-
ed) are currently employed, such as digestion coupled with
chemical analysis [7–12], X-ray photoelectron spectroscopy
[13], dynamic light scattering (DLS) plus infrared spectros-
copy [14], or advanced nuclear magnetic resonance spectros-
copy [15, 16]. Combinations of physical size measurements
can inform on the average degree of surface molecule ad-
sorption as well as conformation [17]. However, integrative
techniques by definition cannot inform on whether there is a
heterogeneous distribution of coating densities on the col-
lection of NPs assayed. It has been reported that attempts to
stoichiometrically control the surface-functionalization of
NPs leads to heterogeneous distributions [18]. Fluorescence
techniques could use either direct labeling of proteins with
fluorescent molecules onto reactive sites on the proteins or
fluorescently tagged antibodies. However, such fluorescence
techniques only provide an integrative measurement of the
average number of target proteins bound per nanoparticle, by
measuring the fluorescence increase after tagging all proteins
in the solution. The ability to measure whether a distribution
of stoichiometries result in NP surface functionalization
remains a challenge for integrative techniques.
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Microscopy techniques, such as transmission electron
microscopy (TEM) and atomic force microscopy (AFM),
are capable of imaging single NPs and thus can overcome
the limitations of integrative techniques. Within microscopy
communities, immunostaining approaches have been used
for decades to qualitatively identify the presence and loca-
tion of biomolecules (often within cells) and to semi-
quantitatively assay for the concentration of their expression
in cellular systems. Historically, immunostaining has been
dominated by fluorescently tagged antibodies combined
with light microscopy [19, 20], and gold nanoparticle
(AuNP) tagged antibodies combined with TEM [21–23].
Extending immunostaining into semi-quantitative or quanti-
tative measurements has also been reported [24, 25]. Recent-
ly, probe antibody-NPs were demonstrated to be quantitative
in measuring the number of biomolecules conjugated to the
surfaces of analyte NPs, with single NP resolution when
combined with AFM imaging [26]. Previously described as
self-limiting self-assembly, this work will henceforth be
referred to as quantitative immunostaining by AFM.

Quantitative interpretation of immunostaining AFM im-
ages is a recent development [26]. Figure 1 illustrates the
overall scheme for implementation of quantitative immuno-
staining. In quantitative immunostaining by AFM, small-
diameter “probe” nanoparticles tagged with antibodies are
used to decorate the surface of a protein-functionalized
larger-diameter “analyte” nanoparticle. The antibodies on
the probe nanoparticles are able to specifically recognize
the proteins on the analyte nanoparticle and thus self-
assemble into a raspberry-like structure, where each small
probe nanoparticle that binds aids in visualizing one of the
proteins bound to the surface of the analyte nanoparticle.
AFM provides the opportunity to automate much of the data
collection process at lower initial instrument infrastructure
costs when compared with TEM [27, 28]. Additionally,
recent advances have demonstrated how to analyze AFM
data in an automated fashion [29]. However, quantitatively
interpreting an AFM topography image of a biomolecule-
conjugated AuNP is challenging due to topographic mea-
surements only imaging the “top half” of the structures.
Additionally, because of steric considerations, the number
of probe NPs assembled onto the analyte NP is often less
than the number of biomolecules conjugated to the surface of
the analyte NP. A statistical model must be used to relate the
observed data back to probabilities of physically possible
combinations. A previously reported model [26] was a good
first approximation of the statistical probabilities involved
for topographic images, with numerous assumptions that
made calculating results easily tractable. This work aims to
refine that existing model by explicitly analyzing every
physically possible geometric combination, including terms
to account for the physical sizes of each NP (analyte and
probe), conjugated biomolecule, and probe antibody.

Software routines are presented that enable this more phys-
ically realistic interpretation of the data. Additionally, this
work will also provide examples of how to successfully
implement the model when interpreting example data sets.

Experimental1

Figure 1 illustrates the overall scheme for implementation of
quantitative immunostaining. A simplified protocol can be
found at the end of the experimental section.

Synthesis of functionalized AuNPs

Synthesis followed previously reported procedures [26], using
nominally 10-, 30-, and 60-nm diameter AuNPs (Part num-
bers 15703–1, 15706–1, 15708–6, respectively, Ted Pella,
Redding,CA), horseradish peroxidase (HRP) (#01-2001, Life
Technologies, Grand Island, NY), and anti-HRP antibody
(#ab34580, AbCam, Cambridge, MA), and are detailed in
the Electronic supplementary material. NLig will describe the
stoichiometry of the number of ligands per analyte NP, i.e., the
number of HRP molecules per AuNP. Fig. S1 (Electronic
supplementary material) illustrates the synthesis approach.
Fig. S2 (Electronic supplementary material) shows typical
characterization data for reaction products.

Sample prep and AFM imaging

A tenfold molar excess of probe NPs (10 nm AuNPs func-
tionalized with a single anti-HRP antibody, sometimes called
Ab-AuNPs) were added to the analyte NPs (30 or 60 nm
AuNPs functionalized with multiple HRP molecules) and
allowed to react for 1 h. A 20 μL droplet of the solution
was then placed over an amine-functionalized Si chip (pre-
pared as described by NIST-NCL PCC-7) for either 10 min
for 30 nm AuNPs, or 30 min for 60 nm AuNPs, then rinsed
with deionized water and dried with short blasts of filtered
compressed air. No less than 20 locations around a substrate were
imaged using a Bruker Dimension 3100 AFM (Santa Barbara,
CA). A programmed move was used to collect up to 100 images
in one session. AFM tips (Tap150Al-G, NanoAndMore, Lady
Island, SC) were discarded after each session.

1 Certain trade names and company products are mentioned in the text
or identified in illustrations in order to specify adequately the experi-
mental procedure and equipment used. In no case does such identifica-
tion imply recommendation or endorsement by National Institute of
Standards and Technology, nor does it imply that the products are
necessarily the best available for the purpose.
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AFM data analysis

For each 5×5-μm AFM image, probe NP+analyte NP as-
semblies were visually identified. Examples of images
obtained can be found in Fig. S3 (Electronic supplementary
material). Only assemblies with appropriately sized smaller
probe NPs and one large analyte NP were included for
analysis. When analyzing the data, a 20 nm distance cutoff
was considered. This upper bound summed the size of the
HRP molecule (approximately 4.5 nm in diameter [30]), the
IgG antibody molecule (approximately 14 nm in diameter
[31]), and an additional 1.5 nm to approximate an extended
conformation of the molecules linking the HRP or IgG
antibody biomolecules to their respective NPs, such as the
assemblies illustrated in Figs. 1 and 2. It was assumed all
probe NPs had one antibody per NP, thereby preventing
formation of massive networks such as those seen with
peptide nanotube biosensors [32]. Thus, infrequently occur-
ring agglomerates of large analyte NPs were not counted due
to this ambiguity in quantitative interpretation. Analysis of a

greater number of assemblies will lead to a greater degree of
confidence in the data analysis; just as when collecting
diameter measurements of nanoparticles, N>100 is an abso-
lute minimum, with N>300 preferred when possible.

Statistical model for quantitative interpretation of AFM data

The predictions of the number of probe NPs per analyte NPwere
calculated explicitly for each possible combination of ligand
positions using a MATLAB code “ReferenceCodeGenerator.m”
(see Electronic supplementary material). First, a reference curve
with a mean of NLig HRP molecules per analyte NP and a
standard deviation of 0 was calculated. The total number of
possible ligand binding sites on the analyte NP, NBS, is deter-
mined by dividing the surface area of the analyteNP by the cross-
sectional area of the ligand and rounding to the nearest integer,

NBS ¼ 4πranalyteNP2

πrLig2
ð1Þ

where ranalyteNP is the radius of the analyte NP and rLig is the

Fig. 1 Representation of quantitative immunostaining procedure
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radius of the ligand molecule. For simplicity, binding
sites were assigned sequential integers as “position co-
ordinates.” Next, a so-called position matrix was built
such that there were NLig columns and one row for each
possible combination of binding site locations; for ex-
ample, a position matrix with NLig=3 and 100 possible
binding sites would have 100×99×98, or 970,200 rows.
Each row contained a unique combination of position
coordinates representing where each of the NLig ligands
attached (i.e., where each HRP molecule attached onto
the analyte NP surface). Next, a so-called binding ma-
trix was built, with an identical number of rows and
columns as the position matrix. The binding matrix was
used to analyze how many probe NPs would be able to
bind the surface of the hypothetical analyte NP’s pre-
scribed geometry. Initially, the binding matrix was
completely populated with zeros, to represent the state
before the probe NPs were mixed with the analyte NPs.
The binding matrix was analyzed one row at a time, for
each ligand position. As each row was analyzed, the
first ligand position would always have an antibody
attached. For each subsequent position, the algorithm
would look backwards and calculate the distance be-
tween the current ligand position and the previous li-
gand positions in the binding matrix. To account for the
antibody’s larger size physically blocking ligands locat-
ed nearby each other on the surface, the number of
blocked binding sites, q, was calculated by dividing

the cross-sectional area of the antibody by the cross-
sectional area of the ligand and rounding up to the next
integer,

q ¼ πrAntibody2

πrLig2
ð2Þ

where rAntibody is the radius of the antibody. If the
distance between ligands was less than q, a probe NP
was allowed to bind to the current position, p, in the
binding matrix only if no probe NP was bound in the
previous position(s); if probe NP was already bound to
a position within q binding sites of p, the binding
matrix value remained zero to represent the case of
being sterically blocked.

After completing the binding matrix, the number of probe
NPs that would be visualized by AFM was determined. For a
given row of the binding matrix, only the values for positions
that correspond to the first half of possible binding sites (i.e., if
p≤NBS/2 in the binding matrix) were counted; the results were
then normalized to be a set of probabilities. The probabilities
represent the number of probeNPs predicted to be visualized by
a topographic measurement, such as AFM, for the given geo-
metric configuration of ligand attachment to the analyte NP,
assuming all analyte NPs contained exactly NLig molecules.

To incorporate a standard deviation about the mean of
NLig, the nomenclature for monomodal fits will follow a
Nmodel=X±Y format, where X represents the mean number
of HRP ligands per analyte NP and Y represents the number
of standard deviations about the mean, and thus the width of
the distribution. A table was developed to add the fractional
contribution of each mean curve with a standard deviation of
0 to the final Nmodel=X±Y reference curve. See Table S1,
Electronic supplementary material for additional details.

Fits to the data can be performed empirically in a spread-
sheet, or by using the software scripts “FitQIdata3.m” to
analyze a single dataset or “FitLotsOData.m” to analyze
multiple datasets. To compare how close various model fits
are, the term “residual” is defined in this work as the sum of
the absolute values of differences between the model and
data overall histogram points. Due to the fact all model and
data histograms were normalized to integrate to 1, the max-
imum possible residual value is 2.

For bimodal distributions, the percent weighting given to
each component will be listed in the format Q % Nmodel=-
X1±Y1, R % Nmodel=X2±Y2. The “fit mean” term is used for
the overall weighted average, while the “standard deviation”
is the square root of the weighted sum of the squares of the
differences between the components of the model and the
mean of the model.

The overall procedure can be summarized in the simpli-
fied protocol presented below and illustrated in the scheme in
Fig. 1.

Fig. 2 Illustration of challenges for successful execution of quantita-
tive AFM immunostaining, to scale for 30 nm core AuNP, 4.5 nm HRP
enzyme, 10 nm probe AuNP, and 11 nm IgG antibody. Clockwise from
upper right, (1) polyclonal antibodies (represented by different colors)
reduce false-negatives from HRP orientation distributions; (2) IgG
molecules can potentially bind two HRP molecules; the physical size
of the Ab-AuNP can sterically block HRP molecules, either (3) by one
Ab-AuNP or (4) by multiple Ab-AuNPs in close proximity. Finally, it
must be assumed that only those antibody-AuNPs on the top half of the
figure (above the green dashed line) will be imaged by a topographic
technique such as AFM
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Simplified protocol

1. Fabricate probe NPs (covalently attach antibodies to
small (e.g., 10 nm) NPs).

2. Add a tenfold excess number of probe NPs to the
analyte NPs.

3. Incubate at room temperature for 1 h, or at 4 °C for 24 h.
4. Place a 20 μL droplet onto an aminosilane-functionalized

silicon wafer chip (e.g., 5 by 5 mm) at room temperature
for 10 to 30 min.

5. Rinse wafer chip with filtered DI water; dry with com-
pressed filtered air.

6. Collect AFM images from multiple locations on chip.
7. Identify the probe/analyte NP ratio for each assembly

imaged.
8. Create a histogram from N>100 assemblies.
9. Generate SD=0 reference curve data using MATLAB

script “ReferenceCurveGenerator.m,” entering in pa-
rameters for diameters of antibodies and ligand proteins
and number of ligands in lines of code 6–10 and
commenting out ‘for’ loops appropriately in lines 29–
49 and 59–81 (see Electronic supplementary material).

10. Generate SD=X (X=1, 2, etc.) reference curve data
using the Excel spreadsheet approach identified in the
Electronic supplementary material.

11. Fit reference curves to data using MATLAB script
“FitQIdata3.m” for a single column of data, or
“FitLostOData.m” for many data sets (see Electronic
supplementary material).

Results and discussion

Figure 2 illustrates some of the challenges to quantitative
interpretation of AFM immunostaining results and how they
can be overcome. Specifically: (1) epitope orientation with
respect to the surface is likely a distribution, thereby reduc-
ing the number of times monoclonal antibodies would rec-
ognize the analyte biomolecules; (2) IgG molecules can bind
up to two analyte molecules; (3) the IgG molecule is often
much larger than the analyte molecule, thereby potentially
physically or sterically blocking other HRP molecules from
binding antibodies; and (4) when several target molecules
are in close physical proximity to one another on the analyte
NP surface, the first probe NP in close proximity could
potentially sterically hinder a precise 1:1 binding of subse-
quent probe NPs to analyte molecules.

The model in this work overcomes these challenges by
making three previously reported assumptions [26] (1–3),
and two new ones (4–5): (1) an HRP analyte molecule will
attach with a random distribution of locations on the analyte

NP surface, (2) the self-assembled probe NP+analyte NP
structures deposit onto the AFM substrates with random
orientations, (3) only half of the bound probe NPs will be
imaged as AFM is a topographic technique, (4) at least one
epitope is always oriented away from the analyte NP surface
and thus available for antibody binding by the probe NP, and
(5) the physically larger size of an antibody could sterically
block multiple ligand molecules in close proximity on the
analyte NP surface from each being recognized by one
antibody each.

The two new assumptions, (4) and (5), are added to address
the previously ignored challenges. Assumption (4) addresses
challenge (1) through the use of polyclonal antibodies. A random
molecular orientation of HRP molecules relative to the analyte
NP surface can be accommodated by using polyclonal antibodies
since it is more likely an antibody will find an epitope on the
HRPmolecule that is “face up” if there are multiple epitopes that
can be recognized. Assumption (5) addresses challenges 2–4,
because each of these mechanisms can be treated identically
mathematically. Each HRP molecule is assigned a position co-
ordinate on the surface of the analyte AuNP. As the antibody
binding matrix is analyzed, the position coordinates of the pre-
vious q spaces are examined, where q represents the number of
binding sites sterically blocked by challenges 2–4. Only if all q
neighboring spaces are “empty” (i.e., 0) will the HRP molecule
position be populated in the bindingmatrix as having a probe NP
bound (i.e., 1). By explicitly solving for all possible combinations
of position coordinates, a series of reference probability curves
was created.

Example reference curves are provided in Fig. 3a for
30 nm analyte NPs for Nmodel ranging from (2±1) to (8±1)
HRP ligands per analyte NP. It is interesting to note that the
average value for the new models increase less rapidly than a
Pascal’s triangle model does (Fig. 3b). This is increasing
deviation between the naive statistics ,and the more physi-
cally realistic models is due to the increasing probability that
one or more HRP molecules will not be recognized by a
probe NP, for all of the challenges identified previously. It is
speculated that the slope of such plots could be used in the
future to determine the suitability of detection response for a
given combination of analyte NP, ligand molecule, and probe
NP sizes and perhaps predict the upper bound for measuring
NLig by quantitative immunostaining.

The role of the ligand size to the nanoparticle size is exam-
ined in Fig. 3c. Reference distribution curves for a range of
analyte NP diameters from 15 to 60 nm were calculated for
Nmodel=5±0 HRP ligands per analyte NP. As the analyte NP
diameter increases, so does the likely space between the ligands
on the surface. This space in turn leads to a greater likelihood
that all ligands on the surface will be recognized by one probe
NP, as evidenced by the reference curve for a 60 nm analyte NP
approaching the Pascal’s triangle probability. Recognizing the
challenges of intercomparing sizing results of NPs [33, 34] and
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Fig. 3 a Model distributions for
30 nm analyte NP for NLig=2±1
to NLig=8±1 ligands 4.5 nm
diameter, and IgG molecules
were assumed to be 14 nm
diameter. b Integrated average
from 2-D coarse-grained model
of HRP ligands on a 30 nm
analyte NP, compared with the
Pascal’s triangle average
probability. c Role of physical
size ratio of analyte NPs and
ligands. Distributions for analyte
NPs of varying diameters with
NLig=5±0 for ligands 6 nm in
diameter
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the propensity of NPs to agglomerate in biological media
[35–37], the authors recommend using a measured diameter
of the analyte NPs for AuNPs based upon the metallic Au core
diameter (such as from AFM, TEM, or small-angle X-ray
scattering), as opposed to a hydrodynamic diameter (such as
from DLS or nanoparticle tracking analysis), when inputting
the analyte NP diameter into the statistics calculations.

Having now gained an understanding that it is best to
calculate the reference curves for the given analyte NP, ligand,
and probe NP diameters in the system being analyzed, a few
brief examples will be provided on how to interpret actual
results. First, previously reported data [26] is re-analyzed, and
a comparison of the old and new models for data on 60 nm Au
analyte NPs with NLig=10 is shown in Fig. 4a. By combining a
weighted average of two reference curves (80 % Nmodel=8±2,
20 % Nmodel=2±1), the residual drops from 0.52 for the old
monomodal model to 0.07 for the new bimodal model. The fit
mean value of ligands bound per analyte NP predicted by the
new model also increases to 6.8, from 6.0 using the old model,
in closer agreement with the theoretical yield of this reaction’s
stoichiometry.

New datasets were also collected as examples. Here,
analyte NPs were fabricated by conjugating HRP to either
30 nm (Fig. 4b–c) or 60 nm (Fig. 5) diameter AuNPs (HRP-
AuNPs) in a variety of solution stoichiometries. Figures 4b–
c analyze the products from two separate synthesis batches of
30 nm HRP-AuNPs with NLig=10. In the first batch
(Fig. 4b), Nmodel=7±2 fits the data well with a residual of
0.13. However, in the second batch (Fig. 4c), a weighted
average of two models fits the data better, 30 % Nmodel=7±1,
70 % Nmodel=9±1, with a residual of 0.15. This bi-modal
model yields a lower residual compared with either the
mono-modal Nmodel=8±1 or the mono-modal Nmodel=9±1
models shown as dashed lines.

Figure 5 shows a series of 60 nm HRP-AuNPs with
NLig=5, 7, and 12, respectively. A bi-modal distribution fit
provided reasonably low residuals in each case. For NLig=5
(Fig. 5a), 60 % Nmodel=2±1, 40 % Nmodel=5±1 yielded a
residual of 0.22 and a fit mean of 3.2. For NLig=7 (Fig. 5b),
50 % Nmodel=5±1, 50 % Nmodel=8±1 yielded a fit mean of
6.5 and residual of 0.15. For NLig=12 (Fig. 5c), 30 %
Nmodel=4±1, 70 % Nmodel=9±1 yielded a fit mean of 7.5
and residual of 0.12. The fact that multimodal models fit the
data best reiterates the fact that stochastic reaction processes
are taking place during the synthesis of the HRP-AuNPs and
yields a distribution of HRP:AuNP ratios within the product
with a given mean and standard deviation [18].

From data analysis of the quantitative immunostaining
AFM images, it is possible to calculate the reaction yields,
represented as the fit mean divided by NLig. The reaction
yields are reasonably comparable to those predicted by so-
lution stoichiometry, ranging from 62 % to 93 %. The overall
trend of the data in Figs. 3 and 4 suggests increasing the

amount of ligand in the reaction increases the final ligand
loading on the particle. This illustrates the types of studies
that are enabled by this approach; however, more datasets
should be collected before such a trend can be confidently
applied to broader situations based on the data reported in
this work.

The quantitative immunostaining by AFM technique’s
true strength lies in its ability to resolve quantitatively
the number of ligands on single NPs, while providing a
metric to compare with the integrative techniques with
the fit mean value. The refined models presented in this
work provide higher confidence when interpreting quan-
titative results, especially in regards to assessing the NP
to NP heterogeneity of number of ligands actually bound
to the NP surface. Multimodal distribution models pro-
vided a better fit than any broad mono-modal distribution
could for all but one of the example datasets collected in
this work. This novel measurement approach confirms
there is clearly a heterogeneity in the distribution of
observed NLig values and that this heterogeneity is likely
greater than previously assumed.

Conclusion

A refined probabilistic model has been developed, to im-
prove the quantitative interpretation of immunostaining re-
sults when assaying for the number of biomolecules conju-
gated to a NP surface. Key assumptions from previous
models and additional new assumptions to account for steric
constraints and system geometries were combined into this
new model. Sample data sets were analyzed with this new
model and found to agree reasonably well with expected
solution chemistry reaction yields. Comparisons to previous
models and datasets revealed that this new model can pro-
vide quantitative results closer to solution stoichiometries.

Future work should explore even more subtle details of
the statistical calculations. For example, it is more physically
realistic to assign coordinates for each surface Au atom that
could serve as the bonding atom for a ligand molecule.
Additionally, assigning a binding probability coefficient fac-
tor, ranging from 0 for completely blocked Au atoms up to 1
for Au atoms far enough away that no repulsive forces
between ligands (electrostatic, steric, or otherwise) will be
present, would enable a more “fine-grained” approach that
was found to be too computationally intensive for the routine
desktop PC user implementation proposed here. Access to
greater computational resources employing fine-grained ap-
proaches could provide useful reference curves for the field
that would only need to be calculated one time and model
even more physically realistic situations occurring on NP
surfaces.
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Fig. 4 a Previously reported
60 nm Au analtye NPs with
NLig=10 data (squares) and model
(triangles) (Geronimo et al. [26])
and new model (circles) using bi-
modal distribution of 80 %
Nmodel=8±2, 20 % Nmodel=2±1.
Fit mean=6.8. Residual of old
model=0.52, residual of new
model=0.07. b 30 nm Au analyte
NP with NLig=10 HRP, batch #1,
observed normalized data, and
model fit. Nmodel=7±2,
residual=0.13. c 30 nm Au analyte
NP with NLig=10 HRP, batch #2.
Fit is bi-modal distribution, 30 %
Nmodel=7±1, 70 % Nmodel=9±1.
Fit mean=8.4, residual=0.15.
Dashed lines showNmodel=8±1and
Nmodel=9±1models to illustrate
utility of bi-modal models
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Fig. 5 The 60-nm Au analyte
NPs with HRP and bi-modal
distribution fits. a NLig=5. Fit is
60 % Nmodel=2±1, 40 %
Nmodel=5±1. Fit mean=3.2,
residual=0.22. b NLig=7. Fit is
50 % Nmodel=5±1, 50 %
Nmodel=8±1. Fit mean=6.5,
residual=0.15. c NLig=12. Fit is
30 % Nmodel=4±1, 70 %
Nmodel=9±1. Fit mean=7.5,
residual=0.12

Refining the statistical model for quantitative immunostaining



Acknowledgments The authors thank Drs. Julian Taurozzi, Laura
Espinal, Joshua Martin, Chris Forrey, and Richard Gates for insightful
discussion and helpful comments preparing this manuscript.

References

1. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supra-
molecular chemistry, quantum-size-related properties, and applica-
tions toward biology, catalysis, and nanotechnology. Chem Rev
104:293–346

2. Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L, Brennan MF,
Allen PJ, Mason MD (2008) PEGylated gold nanoparticles conju-
gated to monoclonal F19 antibodies as targeted labeling agents for
human pancreatic carcinoma tissue. ACS Nano 2:2263–2272

3. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin
RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector
for tumor directed drug delivery. Drug Deliv 11:169–183. doi:10.
1080/10717540490433895

4. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA,
Adiseshaiah PP, Clogston JD, McNeil SE (2012) Common pitfalls
in nanotechnology: lessons learned from NCI's Nanotechnology
Characterization Laboratory. Integr Biol

5. Marquis B, Maurer-Jones M, Lin YS, Ersin M, Haynes C (2011)
The bench scientist’s perspective on the unique considerations in
nanoparticle regulation. J Nanopart Res 1–12

6. Hall JB, Dobrovolskaia MA, Patri AK, Mcneil SE (2007) Character-
ization of nanoparticles for therapeutics. Nanomedicine 2:789–803

7. McNeil SE (2009) Nanoparticle therapeutics: a personal perspective.
WIREs Nanomed Nanobiotechnol 1:264–271. doi:10.1002/wnan.6

8. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA
(1997) Selective colorimetric detection of polynucleotides based on
the distance-dependent optical properties of gold nanoparticles.
Science 277:1078–1081

9. Elzey S, Tsai DH, Rabb S, Yu L, Winchester M, Hackley V (2012)
Quantification of ligand packing density on gold nanoparticles
using ICP-OES. Anal Bioanal Chem 403:145–149

10. Tsai DH, Shelton MP, DelRio FW, Elzey S, Guha S, Zachariah MR,
HackleyVA (2012) Quantifying dithiothreitol displacement of functional
ligands from gold nanoparticles. Anal Bioanal Chem 404:3015–3023

11. Elzey S, Tsai DH, Yu LL, Winchester MR, Kelley ME, Hackley VA
(2013) Real-time size discrimination and elemental analysis of gold
nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal
Chem 405:2279–2288

12. Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI
(2011) Measuring silver nanoparticle dissolution in complex biolog-
ical and environmental matrices using UV-visible absorbance. Anal
Bioanal Chem 401:1993–2002. doi:10.1007/s00216-011-5266-y

13. Cho TJ, Zangmeister RA, MacCuspie RI, Patri AK, Hackley VA
(2011) Newkome type dendron stabilized gold nanoparticles: syn-
theses, reactivity, and stability. ChemMater 23:2665–2676. doi:10.
1021/cm200591h

14. Tsai D-H, Davila-Morris M, Delrio FW, Guha S, Zachariah MR,
Hackley VA (2011) Quantitative determination of competitive mo-
lecular adsorption on gold nanoparticles using attenuated total
reflectance-Fourier transform infrared spectroscopy. Langmuir
27:9302–9313. doi: 10.1021/la2005425

15. Jespersen ML, Mirau PA, Meerwall E, Vaia RA, Rodriguez R,
Giannelis EP (2010) Canopy dynamics in nanoscale ionic mate-
rials. ACS Nano 4:3735–3742. doi:10.1021/nn100112h

16. Woehrle GH, Brown LO, Hutchison JE (2005) Thiol-functionalized,
1.5-nm gold nanoparticles through ligand exchange reactions: scope
andmechanism of ligand exchange. J AmChem Soc 127:2172–2183

17. Slocik JM and Naik RR (2010) Probing peptide-nanomaterial in-
teractions. Chem Soc Rev 39:3454-3463

18. Levy R,Wang ZX, Duchesne L, Doty RC, Cooper AI, BrustM, Fernig
DG (2006) A generic approach to monofunctionalized protein-like
gold nanoparticles based on immobilized metal ion affinity chroma-
tography. Chembiochem 7:592–594. doi:10.1002/cbic.200500457

19. Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Fluorescence-
enhanced, near infrared diagnostic imagingwith contrast agents. Curr
Opin Chem Biol 6:642–650

20. Szollosi J, Damjanovich S, Matyus L (1998) Application of fluo-
rescence resonance energy transfer in the clinical laboratory: rou-
tine and research. Cytometry 34:159–179

21. Jain KK (2003) Nanodiagnostics: application of nanotechnology in
molecular diagnostics. Expert Rev Mol Diagn 3:153–161

22. Maeshima K, Eltsov M, Laemmli UK (2005) Chromosome struc-
ture: improved immunolabeling for electron microscopy.
Chromosoma 114:365–375

23. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O’Regan RM
(2006) Emerging use of nanoparticles in diagnosis and treatment of
breast cancer. Lancet Oncol 7:657–667

24. Achilefu S (2004) Lighting up tumors with receptor-specific optical
molecular probes. Technol Cancer Res Treat 3:393–409

25. Romer T, Leonhardt H, Rothbauer U (2011) Engineering antibodies and
proteins formolecular in vivo imaging.CurrOpinBiotechnol 22:882–887

26. Geronimo CLA, MacCuspie RI (2011) Antibody-mediated self-
limiting self-assembly for quantitative analysis of nanoparticle
surfaces by atomic force microscopy. Microsc Microanal 17:206–
214. doi:10.1017/S1431927610094559

27. El Rifai OM, Youcef-Toumi K (2004) On automating atomic force
microscopes: an adaptive control approach. Decision and Control,
43rd IEEE Conference , vol 2, 1574–1579

28. Neffati R, Alexeev A, Saunin S, Brokken-Zijp JCM, Wouters D,
Schmatloch S, Schubert US, Loos J (2003) Automated scanning
probe microscopy as a new tool for combinatorial polymer re-
search: conductive carbon black/poly(dimethylsiloxane) compos-
ites. Macromol Rapid Comm 24:113–117

29. Boyd R, Cuenat A (2011) New analysis procedure for fast and reliable
size measurement of nanoparticles from atomic force microscopy
images. J Nanopart Res 13:105–113. doi:10.1007/s11051-010-0007-2

30. Fischbarg, J (1978) Fluid transport by corneal epithelium. In:
Schmidt-Nielsen, Bolis, and Maddrell (ed) Comparative Physiolo-
gy: Water, ions, and fluid mechanics. Cambridge, UK, Cambridge
University Press 21–21

31. Striemer CC, Gaborski TR,McGrath JL, Fauchet PM (2007) Charge-
and size-based separation of macromolecules using ultrathin silicon
membranes. Nature 445:749–753. doi:10.1038/nature05532

32. MacCuspie RI, Banerjee IA, Pejoux C, Gummalla S, Mostowski
HS, Krause PR, Matsui H (2008) Virus assay using antibody-
functionalized peptide nanotubes. Soft Matter 4:833–839.
doi:10.1039/b714470a

33. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N,
Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing
manufactured nanoparticles in the environment: multimethod de-
termination of particle sizes. Environ Sci Technol 43:7277–7284

34. MacCuspie RI (2011) Colloidal stability of silver nanoparticles
with various surface coatings in biologically relevant conditions. J
Nanopart Res 13:2893–2908. doi:10.1007/s11051-010-0178-x

35. Li X, Lenhart JJ, Walker HW (2011) Aggregation kinetics and
dissolution of coated silver nanoparticles. Langmuir 28:1095–
1104. doi:10.1021/la202328n

36. MacCuspie RI, Rogers K, Patra M, Suo Z, Allen AJ, Martin MN,
Hackley VA (2011) Challenges for physical characterization of silver
nanoparticles under pristine and environmentally relevant conditions.
J Environ Monit 13:1212–1226. doi:10.1039/c1em10024f

37. Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR
(2011) Aggregation and dispersion of silver nanoparticles in expo-
sure media for aquatic toxicity tests. J Chromatogr A 1218:4226–
4233. doi:10.1016/j.chroma.2011.03.034

R.I. MacCuspie, D.E. Gorka

http://dx.doi.org/10.1080/10717540490433895
http://dx.doi.org/10.1080/10717540490433895
http://dx.doi.org/10.1002/wnan.6
http://dx.doi.org/10.1007/s00216-011-5266-y
http://dx.doi.org/10.1021/cm200591h
http://dx.doi.org/10.1021/cm200591h
http://dx.doi.org/10.1021/la2005425
http://dx.doi.org/10.1021/nn100112h
http://dx.doi.org/10.1002/cbic.200500457
http://dx.doi.org/10.1017/S1431927610094559
http://dx.doi.org/10.1007/s11051-010-0007-2
http://dx.doi.org/10.1038/nature05532
http://dx.doi.org/10.1016/j.chroma.2011.03.034
http://dx.doi.org/10.1007/s11051-010-0178-x
http://dx.doi.org/10.1021/la202328n
http://dx.doi.org/10.1039/c1em10024f
http://dx.doi.org/10.1016/j.chroma.2011.03.034

	Refining the statistical model for quantitative immunostaining of surface-functionalized nanoparticles by AFM
	Abstract
	Introduction
	Experimental<?show [a]><?A3B2 }skip?>
	Synthesis of functionalized AuNPs
	Sample prep and AFM imaging
	AFM data analysis
	Statistical model for quantitative interpretation of AFM data

	Simplified protocol
	Results and discussion
	Conclusion
	References


