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High-precision cavity-enhanced spectroscopic measurements are commonly compromised by interferences
caused by external etalons. Here, we present the differential cavity ring-down spectroscopy (D-CRDS) technique
for reducing these perturbations. We discuss how etalons are caused by coupled-cavity interactions between the
primary ring-down cavity and other optical elements of the experiment, and we model and experimentally verify
how drift in cavity base loss correlates with barometric pressure and laboratory temperature. D-CRDS measure-
ments of near-infrared CO2 spectra that are insensitive to etalon-induced distortions are then presented. Based on
an average of ∼100 spectra, these results yield a signal-to-noise ratio of 170;000∶1 and a minimum detectable
absorption coefficient of 4 × 10−12 cm−1. © 2013 Optical Society of America
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1. INTRODUCTION
The use of optical resonators comprising ultra-high-
reflectivity mirrors enables a wide variety of cavity-enhanced
absorption spectroscopy techniques for which extremely long
optical path lengths and, hence, high sensitivity are achieved
[1]. However, uncontrolled variations in base losses of the
cavity that are caused by spurious reflections [2] or by eta-
lon/coupled-cavity effects [3] usually complicate measured
spectra. These perturbations (typically referred to as etalon-
ing) are caused by self-mixing between the circulating intra-
cavity light and the external light that recouples through a
cavity mirror port. For example, in early cavity ring-down
spectroscopy (CRDS) experiments, sinusoidal variations in
the base losses were ascribed to etaloning arising from the
back surface of ring-down cavity (RDC) mirrors [4]. Etaloning
causes the reflectivity of the involved resonator mirror to de-
pend on the phase (i.e., wavelength and path length), ampli-
tude, and spatial coupling efficiency of the recoupled field,
leading to an effective mirror reflectivity that can be signifi-
cantly greater or less than that of the isolated mirror [3].
Although etaloning recently was demonstrated as a potentially
beneficial mechanism that enables active control of the cavity
finesse [3], this effect usually is undesirable because it causes
uncertainty in the spectrometer’s base losses. Indeed this
effect typically sets a lower bound on the spectrometer detec-
tion limit, especially for long averaging times. However, the
amplitude of etalons in measured baselines can be reduced
by long-term averaging, most likely because of stochastic var-
iations in the etalon phase [5–7]. In the case of high fidelity line
shape measurements, distortion caused by drifting etalons is
commonly reduced by subtracting (fitting) baselines that com-
prise one or more sinusoidal components from (to) measured
spectra. When long-term measurements are implemented,

drift in the cavity base losses usually makes such postcorrec-
tions unreliable unless the time-varying etalon phase and
amplitude are taken into account [8].

Ideally, and in the absence of scattering, an etalon-free
cavity-enhanced spectrometer would be achieved by tilting
all the optical interfaces traversed by the light with respect
to the cavity’s optical axis. In this manner, all specular reflec-
tions that retroreflect the leaking RDC mode would be sup-
pressed. This requires careful alignment (note that the use
of antireflective coatings on all optical elements of a cavity-
enhanced setup is a prerequisite under normal experimental
conditions). However, as shown below, for experiments
involving high-finesse cavities, even residual feedback at
the part-per-thousand intensity scale can significantly influ-
ence the base losses. Complete elimination of etalons in
high-finesse cavity-enhanced spectrometers is, thus, rarely
if ever realized. A recent exception is a high-sensitivity,
long-term averaging CRDS study, in which the authors report
no direct evidence of etaloning [7]. However, we note (unlike
the measurements herein) that these measurements involve
continuous dithering of the RDC length, an approach that
diminishes the contributions of etalons (on the side of the
moving mirror) at the expense of reduced spectrum frequency
resolution. Another approach to suppressing the effects of
residual etalons would be to capture at a given time the spec-
tral dependence of the absorption-free baseline by alternating
between measurements of samples with and without the
analyte. In this sample modulation approach, the measured
etalon could be, in principle, subtracted from the absorption
spectrum. This method has been implemented in a noncavity-
enhanced spectrometer in which the system was alternately
flushed using gas mixtures with and without the absorbing
species for recording background spectra [9]. This approach
to sample modulation for recording reference spectra is
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limited by the relatively slow refresh rate of the gas sample.
Also, for completeness, we mention that sample modulation
has been realized via the Stark effect in a nonresonant
multipass absorption cell [10]. In this fashion an alternating
electric field was used to separate background and absorption
losses.

In cavity-enhanced spectrometers, etalon fringes have been
reduced by subtracting background spectra [11] or by install-
ing elements at so-called etalon-immune distances [12], which
correspond to multiples of c∕�2νm� where c is the speed of
light and νm is the laser modulation frequency. Note that
the cavity free spectral range (FSR) is given by c∕�2lc�, where
lc is the RDC length. Indeed, when sources of optical feedback
are placed at distances that equal a multiple or submultiple of
lc, the etalon modulation amplitude in the resulting spectrum
is suppressed. This results because the sinusoidal etalon is
sampled at optical frequencies that correspond to a constant
etalon phase. Nevertheless, the method requires that the op-
tical items traversed by the light be accurately located since
any mismatch in the previous condition incurs undesired
aliasing of the modulation. Further, this method does not ad-
dress the issue of baseline drift, namely the etalon phase shifts
that occur under normal experimental conditions.

In the present study we present a new approach to CRDS
[13] that enables reduction in the etalon-induced variations in
base RDC losses, including diminution of drift-related effects.
The idea was inspired by two previous CRDS methods [14,15]
that relied on the rapid alternation and acquisition of on- and
off-absorption line measurements with two laser beams hav-
ing different frequencies: our present idea is to scan both
frequencies together and evaluate the difference spectrum.
To demonstrate, we alternately measure and then subtract in-
tracavity losses associated with pairwise TEM00 modes that
are separated in frequency by an integer value, Δq, of the
RDC FSR. Each measurement pair is acquired rapidly enough
to overcome the effects of etalon drift. We call this technique
differential CRDS (D-CRDS). Importantly, we note that the
present study corresponds to a length-stabilized RDC (with
no mirror dithering) that has a frequency resolution and
long-term stability of ∼1 MHz [16]. As shown below, the
etalon phases drift because of temperature- and pressure-
dependence of external pathlengths, despite the fact that
the RDC itself is length-stabilized. To mitigate the effect of
etalons, we demonstrate that specific placements of the opti-
cal elements relative to the high-reflectivity surfaces of the
RDC mirrors correspond to etalon-reduced regions (ERRs).
This configuration can lead to improved measurement perfor-
mance when the differential method is applied. For scans
through an absorption line, the resulting D-CRDS technique
yields spectra with substantially higher signal-to-noise ratios
(SNRs) than those of a conventional CRDS spectra. This
improved performance is caused by reduction of the etalon
amplitude (which tends to reduce the effects of etalon drift,
thus minimizing distortion of average spectra acquired over
long time intervals) and by an enhancement of the magnitude
of the absorption profile. Importantly, no additional fitting
parameters are required to fit line shape models to D-CRDS
spectra.

In the remainder of this article we model cavity ring-down
spectra that exhibit etaloning effects and we show how a dif-
ferencing approach can alter the magnitude of these etalons.

Subsequently, we present D-CRDS measurements of empty
cavity losses in which we demonstrate reduced sensitivity
to drift in etalon amplitude and phase. A model is then de-
rived, highlighting how slow drift in cavity base losses corre-
lates with measured barometric pressure and laboratory
temperature. Finally, to illustrate the performance of this tech-
nique, we present and compare D-CRDS and frequency-
stabilized CRDS (FS-CRDS) [16,17] measurements of a CO2

absorption line near 6246.3 cm−1. For brevity, hereafter when
referring to the “conventional CRDS” technique we mean
FS-CRDS (not to be confused with more common implemen-
tations of CRDS that use unstabilized ring-down cavities). We
also include an Appendix where we model coupled-cavity
effects that induce variations in RDC base losses, and where
we introduce the concept of ERRs that must be considered for
optimization of the D-CRDS technique.

2. PRINCIPLE, EXPERIMENTAL
PROCEDURES, AND MEASUREMENTS
A. Spectrum Model
When cavity CRDS is implemented with a length-stabilized
cavity (i.e., FS-CRDS method), the decay time τ is measured
at regularly spaced values of the optical frequency ν. The
reciprocal of the decay time (decay rate) can be modeled
as the sum of all system optical losses, including absorption
by the cavity medium and the effective mirror losses. In prac-
tice, etalons are manifest by sinusoidal, frequency-dependent
variation in the mirror losses. Defining the total RDC loss-
per-unit length as 1∕�cτ� and summing over N etalons gives

1
cτj

� αa�νj� � αm �
XN
i

Δαe;i sin
�
2πνj
νe;i

� ϕi�t�
�

(1)

for the jth point in an FS-CRDS spectrum. In this formula, the
τj and νj terms are measured quantities; αa is the absorption
loss within the RDC medium; αm is the base loss in the ab-
sence of etaloning; and Δαe;i, νe;i, and ϕi are the amplitude,
period, and phase of the ith etalon, respectively. We assume
αm to be given by �1 − R�∕lc whereR is the intensity reflectivity
of the RDCmirrors, which for simplicity we assume to be con-
stant. Note that in order to account for small changes in opti-
cal path lengths that perturb the etalons, we explicitly indicate
time dependence in the etalon phases through the indepen-
dent variable t. In Appendix A we present generalized relation-
ships for the effective base loss of the system as a function of
the reflectivity, the transmittance, path lengths, and spatial
coupling coefficients for an arbitrary number of external op-
tical elements that form coupled cavities with the RDC. For
weak coupling with a high-finesse RDC, the contribution of
each coupled cavity essentially reduces to a sinusoidal term
as given in the summation of Eq. (1).

The D-CRDS method described here gives the following
spectrum that we note is independent of αm:

Δα�νj� � αa�νj � Δν� − αa�νj − Δν�

�
XN
i

Δαe;i
�
sin

�
2π�νj � Δν�

νe;i
� ϕi

�

− sin
�
2π�νj − Δν�

νe;i
� ϕi

��
; (2)
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where νj is the unshifted laser frequency and Δν �
Δq × FSR∕2. Evaluation of the sinusoidal terms in Eq. (2) re-
veals that the differential spectrum can either suppress or am-
plify a specific etalon amplitude, depending on the ratio
Δν∕νe. Specifically, the etaloning terms cancel if 2Δν∕νe � k,
where k is an integer. Conversely, for the ratio 2Δν∕νe � m∕2,
wherem is an odd integer, the two terms are out of phase and
give an amplitude of 2Δαe, corresponding to an amplification
factor of 2. For Δq � 2 and k � 1 or m � 3, then these two
limiting cases correspond to le∕lc � 1∕2 and le∕lc � 3∕4, re-
spectively, where le∕lc is the ratio of etalon length to cavity
length. Arbitrary values of Δν∕νe result in an amplification fac-
tor between 0 and 2 and, consequently, the values ofΔq and νe
must be chosen to ensure that the D-CRDS technique reduces
the etalon amplitude. A generalized analysis of this amplifica-
tion factor is given in the Appendix B.

B. The Differential Technique: Experimental Apparatus
and Measurements of Empty Cavity Base Losses
To demonstrate the D-CRDS approach for reduction of etalon-
ing effects, we use an FS-CRDS apparatus [17] consisting of a
74 cm long, two-mirror length-stabilized RDC with R ∼
99.998% [T � �1 − R� ∼ 2 × 10−5]. The high-reflectivity mirrors
comprise multilayer stack (MLS) dielectric coatings on fused
silica substrates that have a radius of curvature of 1 m. We use
a distributed feedback (DFB) semiconductor diode fiber-
coupled laser emitting near the wavelength of λ � 1.6 μm
for our probe beam. The probe laser is effectively switched
off using a semiconductor amplifier [booster optical amplifier
(BOA)] that is externally triggered and used to initiate the
ring-down decay events. As depicted in Fig. 1, the principal
novelty of this experiment relies on utilizing two fiber-
pigtailed variable-frequency (tuning range of 20 MHz)
acousto-optic modulators (AOMs). These are driven by two
switchable radio-frequency (RF) sources, each with a 50 dB
extinction ratio. The AOM devices have two functions. First,
they act as optical switches to select each probe beam. Sec-
ond, the AOMs act as frequency shifters for each probe beam.
They are designed so that AOM1 and AOM2 efficiently trans-
mit their �1 and −1 first-order diffracted mode, respectively.
A 1 × 2 fiber coupler is utilized to split the light out of the
DFB laser, with the beam subsequently traversing its respec-
tive AOM. The two beams undergo frequency shifts of

Ω�1 � −Ω
−1, of equal magnitude but opposite sign. Here

the employed fiber technology turns out to be advantageous
because the use of a 2 × 1 fiber coupler out of the AOMs
enables both the up- and down-shifted beams to be recom-
bined and merged into the same fiber mode. This arrangement
allows efficient coupling into the same RDC transverse mode,
namely the TEM00. By the very nature of this setup, both
beams sample the same spatial region of the multilayer surfa-
ces of the RDC mirrors. The RF sources driving the AOMs are
fine tuned to satisfy Ω�1 −Ω

−1 � 2 × FSR so that both beams
can be simultaneously resonant with the same transverse
mode of the RDC. This arrangement makes it possible to
alternately measure intracavity losses associated with two
different longitudinal RDC modes separated by this constant
frequency difference.

Measurements of empty cavity base losses are shown in
Fig. 2, where we illustrate advantages and potential pitfalls
of the D-CRDS method introduced in this study. To this
end we present two sets of data, shown in Figs. 2(a) and
2(b). The first of these corresponds to the etalon-immune dis-
tance corresponding to the photodetector position that mini-
mizes the etalon amplitude, and the other corresponds to the
position that amplifies the etalon. In Fig. 2(a) the probe beam
photodetector has been installed 37 cm (namely ∼lc∕2) away
from the MLS of M2, while in Fig. 2(b) this photodetector has
been moved 55.5 cm away (∼3lc∕4) from the MLS of M2. As
discussed above and as highlighted by the red curve depicted
in Fig. 8 of the Appendix, these distances correspond to con-
figurations where pairwise differencing the cavity modes with
Δq � 2 either cancels out or doubles the amplitude modula-
tion associated with etaloning. Both empty cavity spectra
were acquired without user intervention by temperature tun-
ing the DFB probe laser through successive cavity resonan-
ces. With the DFB laser locked to the RDC, 100 cavity
decay time constants were acquired and averaged at each
spectrum point. Each spectrum point required about 10 s,
which included the time for ring-down decay signal acquisi-
tion, laser temperature tuning, and laser relocking.

Inspection of Figs. 2(1)(a) and 2(1)(b) reveals that the
CRDS spectrum of base cavity losses exhibits oscillations with
a period of ∼25 GHz, which corresponds to an optical path
length of 6 mm. We assign this etalon to spurious reflections
from the unwedged back surfaces of the fused silica RDC mir-
rors (thickness ∼4 mm, with n � 1.44 at λ � 1.6 μm). There
also exists a faster oscillation arising from a spurious reflec-
tion at the surface of our detector. These two main sources of
feedback to the RDC are clearly discernible in the fast Fourier
transform (FFT) of the base loss measurements (not shown in
Fig. 2) where, the optical frequency detuning Δν is converted
into equivalent etalon lengths through the relation
le � c∕�2Δν�. Comparison of Figs. 2(1)(a) and 2(1)(b) and 2
(2)(a) and 2(2)(b) reveals that (depending on the position
of the detector surface relative to the RDC) the D-CRDS
method can either reduce [Fig. 2(a)] or amplify [Fig. 2(b)]
the amplitude of the etalon seen in CRDS.

Coupled-cavities originate from interfaces traversed by the
light in the setup. Of course, the relative importance of the
respective contributions depends both on the intensity of
the spurious reflection and the spatial coupling efficiency into
the RDC transverse mode, cf. Appendix Eqs. (A1) and (A2). In
our setup the most common external surfaces contributing to

Fig. 1. Schematic diagram of the D-CRDS system. FI, fiber isolator;
FSI, free space isolator; FC, fiber coupler; DM, dichroic mirror; PD,
photodetector; BOA, booster optical amplifier; M1 and M2, RDC mir-
rors. The RDC length is stabilized through the cavity lock servo as
detailed in [11]. The probe lock servo ensures that the two diffracted
beams (from AOM1 and AOM2) are resonant with the RDC and allows
for alternately switching these beams on and off.
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etalons are the back sides of the RDC mirrors (le ∼ 6 mm), the
vacuum windows (le ∼ 13 mm and le ∼ 18 mm), the fiber end
(le ∼ 85 cm), and the surface of the detector itself. Note that
this list does not include the mode-matching lens or the lens
that focuses the RDC transmitted signal on the active surface
area of the detector since their biconvex surfaces yield little
specularly reflected light and small spatial coupling coeffi-
cients. Experimentally, we found it necessary to incorporate
a free-space isolator in the setup between the single-mode fi-
ber and the RDC. Indeed, we observed variations in τ as large
as 10% that were caused by optical feedback from the fiber
end to the RDC. This result is not surprising because by a time
reversal symmetry argument the coupling efficiency of the
returning light that is retroreflected by the fiber end should
be the same as the coupling efficiency of the probe laser beam
(which is close to unity) into the TEM00 of the RDC.

Most importantly for high-fidelity line shape studies, the
D-CRDS method can reduce the amplitude of etalons and,
thus, diminish their contribution to spectrum residuals. To
quantify the short term time scales over which averaging
tends to improve precision, we performed Allan variance
[18] measurements of the ring-down time constants with
the probe laser at a fixed optical frequency. The results are
given in Figs. 2(3)(a) and 2(3)(b). Here we have plotted the
Allan deviation, σα, in units of loss per unit length versus
the averaging bin size δb (corresponding to 100 ms per point).
These Allan deviation plots quantify the improvement in pre-
cision afforded by increased averaging time (proportional to
δb) as well as the optimal averaging time (given by the time
scale at the Allan variance minimum). Consistent with that

of a random process, σα initially decays with 1∕
p
δb for all four

cases. However, for small values of δb the two D-CRDS cases
yield Allan deviations that are a factor of approximately

p
2

larger than the corresponding CRDS cases. This is because the
D-CRDS analysis involves two uncorrelated ring-down time
constant measurements per point as opposed to one for the
CRDS case. In Fig. 2(3)(a), corresponding to the setup where
feedback sources are installed in ERRs, the minimum detect-
able absorption coefficients are σα ∼ 7 × 10−12 cm−1 and σα ∼
9 × 10−12 cm−1 for the D-CRDS method and the conventional
CRDS method, respectively. The improved sensitivity for the
D-CRDS relative to CRDS is enabled by the ability to average
for longer times (∼120 s for CRDS and ∼500 s for D-CRDS),
which compensates for the

p
2-fold larger Allan deviation of

D-CRDS for small values of δb. The longer optimal averaging
time for the D-CRDS case indicates a reduced sensitivity to
drift in external etalons, which we ascribe to reduction in
the etalon amplitude. Conversely, when the photodetector
is placed at a position that amplifies the formation of an eta-
lon, apart from the constant

p
2-fold vertical shift we find that

the D-CRDS and CRDS Allan deviations are nearly identical.
A noteworthy attribute of the D-CRDS method is that one

can quantitatively probe any transverse mode of the RDC.
This is possible despite the fact that there are large trans-
verse-mode-dependent variations in the ring-down time con-
stants which are caused by nonuniformity in reflectivity
across the surface of RDC mirrors. However, as discussed
above, D-CRDS is insensitive to the base mirror losses be-
cause of the differencing nature of the technique. Conse-
quently, the sampling density of acquired spectra could be

(a) (b)

Fig. 2. Experimental comparison between two extreme cases for theΔq � 2, D-CRDS system. (a) The detector surface forms a source of feedback
that is at a distance of lc∕2 from the MLS of M2 (i.e., amplification factor 0, cf. Fig. 8), while in (b) it has been placed at a distance of 3lc∕4 from the
same RDCmirror (i.e., amplification factor 2, cf. Fig. 8). Blue and red traces correspond to CRDS and D-CRDSmeasurements, respectively. In (1)(a)
and (1)(b) we present the baseline-subtracted empty cavity losses [lc∕�cτ�] of the RDC obtained from the conventional CRDSmethod while in (2)(a)
and (2)(b) we show the resulting D-CRDS measurements. Note that the same vertical scale has been used in (1) and (2) in order to highlight the
importance of the ERRs characteristic of the D-CRDS technique. The horizontal axes represent the optical frequency detuning Δν. We assign the
small slope in the D-CRDS spectrum to residual quadratic frequency dependence of the mirror losses. (3) shows the Allan deviation σα versus
averaging bin size δb and related improvements in drift cancellation afforded by the differential technique when using a proper setup that minimizes
the amplification factor. Measurement pairs were acquired at a rate of ∼10 Hz, such that an averaging bin size of unity corresponds to a 100 ms
averaging time.
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increased by combining measurements made on various
transverse modes of the RDC. We note that although degen-
eracy splitting of non-TEM00 modes may occur because of mir-
ror astigmatism, it has been shown that these signals can be
readily modeled by biexponential decays [19].

We also performed measurements to verify that drift in the
base losses could be ascribed to changes in the phase of an
external etalon in accordance with Eq. (2). To this end, we
monitored the cavity decay time over several hours, with
the photodetector installed at lc∕2 and the laser frequency
continuously locked to the stabilized RDC. We simultaneously
recorded the laboratory barometric pressure p and air temper-
ature T . Time series for these measurements are summarized
in Fig. 3, where we show fractional variations in the measured
and modeled base losses 1∕�cτ� (upper panel) as well as p and
T (lower panel). These data were smoothed to reveal drift in
the base losses. Notably, we found that the base losses corre-
lated with air density and temperature. Specifically, it was
possible to model this drift by incorporating two distinct
mechanisms that affect the etalon phase: density-dependent
changes in the refractive index of the laboratory air (p∕T
dependence), and thermal expansion of the optical table
leading to changes in the geometric length of the etalon
(T dependence). Details regarding the model are given in
the caption of Fig. 3. Although the former mechanism for drift
in ring-down base losses was previously discussed in [14],
we are unaware of any previous analysis that explicitly

considered thermal expansion effects. Inspection of Fig. 3 re-
veals that over the time interval 0–8 h, the fractional changes
in the air density and pressure were nearly the same (indicat-
ing a nearly constant temperature). In this time interval, the
first mechanism dominates (refractive index effect) and
the model closely fits the observations. For longer times,
the temperature begins to change enough (nominally 20 mK
from the initial temperature) such that thermal expansion
of the optical table affects the base losses. In this time interval,
we found that the thermal expansion effect was necessary to
ensure good agreement between the model and observations,
and by eliminating it the model failed to capture the observed
trend (partial model curve Fig. 3). Finally, as shown in the
lower panel of Fig. 3, we found that the phase of the etalon
changed by ∼4π over the 24 h period, indicating that relatively
long time scales can be required to average out the effects of
drifting etalons.

C. Application to Measurements of Absorption Spectra
In order to demonstrate practical improvements achieved
with the D-CRDS technique we probed the air-broadened ro-
vibrational transition of CO2 [R26e (30013←00001)] located
near a wave number of 6246.3 cm−1. These measurements
were done on a dry gas sample (water vapor specified to
be <2 μmolmol−1) containing nominally 425 μmolmol−1 of
CO2 in air. A total of 98 spectra at a ring-down cell pressure
of 13.3 kPa (100 Torr) and at room temperature were ac-
quired. The total measurement time was ∼33 h, corresponding
to a single-spectrum acquisition time of nominally 20 min.
Although the mode pairs were acquired at a nominal rate
of 10 Hz, we note that the time required to temperature tune
the DFB laser frequency was ∼30 s. This process was rate lim-
ited by the time to break the probe laser lock and jump and
relock to the next longitudinal mode of the RDC.

Measurement and fit results for single and averaged
D-CRDS and CRDS spectra are given in Figs. 4(a) and 4(b),
respectively. We fit both the Galatry profile (GP) and speed-
dependent Nelkin–Ghatak profile (SDNGP) to the measured
spectra using a nonlinear least-squares Levenberg–Marquardt
algorithm [20]. Typical SDNGP fit results for the averaged
spectra are displayed in the upper panels of Fig. 4 (solid lines).
The physical basis and mathematical form for the GP and
SDNGP profiles can be found in [21] and [22,23], respectively.
The GP can be calculated in terms of the Doppler width ΓD,
the Lorentzian (collisional) width ΓL and the narrowing
frequency νn, whereas the SDNGP includes these three param-
eters, the pressure shifting parameter δ plus two speed-
dependent terms given by aw and as. Except for ΓD and δ
all other quantities were treated as fitted parameters. In the
case of the SDNGP, we assumed a quadratic model for the
speed dependence of the collisional broadening (Bw) and
the speed dependence of the shifting (Bs) of the line [24], and
these terms were approximated by Bw�η� � 1� aw�η2 − 3∕2�
and Bs�η� � 1� as�η2 − 3∕2�, where η is the reduced absorber
velocity as given in [25]. We set δ to the value given
in HITRAN 2008 [26], which is equal to −1.83 kHzPa−1

(−0.0062 cm−1 atm−1). The differential line shapes Δα�ν� mea-
sured were modeled as Δα�ν� � α�ν�Δν� − α�ν−Δν� �
naS�T��g�ν�Δν − ν0� − g�ν−Δν− ν0�� �Δαb�ν�, where α�ν� �
�cτ�−1, ν0 is the line center, na is the absorber number density,
S�T� is the line intensity at the measurement temperature, and

Fig. 3. Upper panel: measured (dashed blue line with open symbols)
and modeled (solid and dashed red lines) fractional variation in
RDC base losses, 1∕�cτ�. Lower panel: the corresponding fractional
variation in the measured air density and pressure (indicated
dashed curves, left axis) and etalon phase (solid line, right axis).
Fractional variations in the losses were modeled with the function
a0�sin�ϕ0 � �ϕ − ϕ0� − sin�ϕ0�� where �ϕ − ϕ0� � 4πν�n0l0 − nl�∕c
assuming ν∕c � 6250 cm−1 and an etalon of nominal length
l0�T0� � 40 cm. Here changes in the etalon phase are calculated in
terms of the measured air temperature and pressure (which alter
the refractive index n of the laboratory air) and thermal expansion
of optical table (which alters l). Air refractive index was calculated
as n − 1 � dn∕dρ ρ�p; T�, with ρ being air number density and
dn∕dρ � 1.07 × 10−23 cm3 molecule-1. The temperature-dependent
etalon length was modeled as l�T� � l0 � β�T − T0�, where β is the
thermal expansion coefficient of stainless steel and assumed to be
1.69 × 10−5 K−1. The original sampling interval was ∼8 min, and the
data were smoothed to give an effective averaging time of ∼7 h. The
modeled loss included only the etalon amplitude, a0 � 4.8 × 10−4

(corresponding to Δαe � 1.3 × 10−10 cm−1), and the phase shift ϕ0
as adjustable parameters.
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g�ν − ν0� is the GP or SDNGP. The quantity na S, which cor-
responds to the peak area Ap for the conventional spectrum,
also was treated as a fitted parameter. As given above, the
quantity Δν is half the frequency difference between mode
pairs, given by Δν � Δq × �FSR�∕2 � 201.057 MHz. It also
was necessary to include in the fitting procedure the quantity
Δαb�ν�, which accounts for the baseline losses of the differen-
tial spectrum. This term consists of two etalons and a residual
baseline term.

We also compared the spectra obtained with D-CRDS to
those measured via the single-channel CRDS measurements.
To this end, the formula α�ν� � naS�T�g�ν − ν0� � α�νb� was
fitted to the CRDS spectra, in which α�νb� includes two etalons
plus a baseline offset and slope and where the last term
accounts for the weak wavelength dependence of the mirror
reflectivity. We emphasize that compared to the CRDS case,
fitting the D-CRDS spectra requires no additional spectro-
scopic parameters to model the intensity, position, and shape
of the absorption line. With regard to the spectrum baseline,
there are two etalons and a constant term for modeling both
the CRDS and D-CRDS cases, whereas only the CRDS spec-
trum model includes a sloping baseline.

In the bottom panels of Fig. 4 we also show the SDNGP fit
residuals for single and averaged spectra obtained by both
techniques. The D-CRDS spectra exhibited lower root-
mean-square (rms) residuals than the conventional CRDS
results, and for the former case line shape deviations were
manifest in the residuals more clearly. All things being equal
and for uncorrelated baseline noise, the rms of the differential
spectrum residuals is expected to be

p
2 times greater than

that of the conventional spectrum given that the former re-
quires twice as many observations as the latter. We confirmed
this assumption by numerically simulating and fitting “noisy”
spectra for the differential and conventional cases. Moreover,
we also found for all parameters that the fit uncertainties of
these simulated spectra were nominally a factor of

p
2 times

greater for the differential case. However, analysis of our mea-
sured spectra yielded similar fitted parameter uncertainties
for the differential and conventional measurements. We also
found that the rms values of the differential spectra residuals
were typically smaller than the conventional ones. We attrib-
ute the improved performance of the differential measure-
ments to the reduction of etaloning (period of 400 MHz) in
the baseline spectrum. Further, when comparing the differen-
tial and conventional measurements, all fitted quantities gen-
erally agreed to within the combined uncertainties of their
fitted values. However, because all spectra were acquired
at a single pressure, it was not possible to disentangle corre-
lations between the fitted narrowing frequency νn and the
speed dependent term aw. We note that multispectrum fits
acquired over a range of pressure are typically required to
overcome this complication [27]. Nevertheless, fitting the
GP to both the differential and conventional data yielded a
narrowing coefficient, νn∕p � 6.47�16� kHzPa−1. This result
is similar to previous FS-CRDS measurements of the [R16
(30012←00001)] CO2 line at 6359.9673 cm−1, which gave
(νn∕p � 6.18�21� kHzPa−1) [27] and slightly larger than calcu-
lations based on molecular diffusion (5.44�27� kHzPa−1).
We also obtained a broadening coefficient ΓL∕�2p� �
20.39�8� kHzPa−1 (temperature corrected to 296 K) that
was nominally 2% below the HITRAN 2008 value [26], as
was the case for previous FS-CRDS measurements of the
6359.9673 cm−1 CO2 transition [27].

An important question that we considered is whether or not
single-channel results (i.e., spectra obtained from single-
channel measurements that are converted into differential
spectra by calculating the pairwise differences between
modes) give the same results as differential spectra obtained
with the two-channel D-CRDS technique. In other words, we
investigated whether differential spectra acquired in rapid
succession with two distinct probe laser beams were the same
as those obtained by a post-experimental subtraction of mode

(a) (b)

Fig. 4. Spectra (top) and fit residuals (bottom) of air-broadened CO2 [R26e (30013←00001)] transition. (a) Two-channel D-CRDS spectrum and
(b) conventional CRDS spectrum. These results were obtained by averaging 98 spectra. Lower panels: corresponding SDNGP fit residuals. Baseline
rms values for single and average spectra, respectively, are: D-CRDS: 5.2 × 10−11 cm−1 and 3.9 × 10−12 cm−1; CRDS: 6.9 × 10−11 cm−1 and
7.2 × 10−12 cm−1.
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pairs for a single channel. The most important difference
between the two approaches is the characteristic time scale
over which the mode pairs are acquired. In the two-channel
D-CRDS case this time interval is the reciprocal of the ring-
down acquisition rate, ∼100 ms, whereas in the single-channel
D-CRDS case the time difference is ∼60 s. In Fig. 5, we com-
pare these techniques as a function of number of averaged
spectra ns, illustrating that these approaches do indeed yield
different results. Here, we introduce two figures of merit to
compare the two-channel (fast) and single-channel (slow)
D-CRDS results as well as conventional CRDS measurements.
These quantities are the SNR displayed in Fig. 5(a), and the
quality of fit (QF) in Fig. 5(b). Both are shown as a function
of number of averaged spectra for all three cases. The SNR
and the QF are computed as the ratio of absorption signal am-
plitude αamp, [which equals (αmax − αmin) for the conventional
CRDS spectra or equivalently (Δαmax − Δαmin) for the D-CRDS
spectra] to either the rms of the random noise in the residuals
of the spectrum baseline for the SNR or the rms of all the fit
residuals for the QF [8]. The QF quantifies not only the ran-
dom noise of the fit residuals but also all systematic
differences between the measured line shape and the fitted
line profile.

Figure 5(a) illustrates that the two-channel D-CRDSmethod
gives the highest SNR for a given number of averaged spectra
and, unlike the single-channel D-CRDS and CRDS cases, the
SNR scales on average with the square root of ns as would be
expected for ergodic statistical behavior. The SNR for a single
spectrum is higher for the two-channel D-CRDS case
(∼13;700) than for the CRDS case (∼8300), and the averaged
differential spectra yield a maximum SNR reaching
∼170;000∶1. The SNR and QF are similar for the CRDS case
because the fit residuals are dominated by noise in the base-
line, which masks systematic residuals in the fitted profile.
Conversely, for the D-CRDS case, lower baseline noise
increases the relative importance of residuals under the ab-
sorption peak, thus reducing the QF relative to the SNR.

We attribute the improved SNR of the fast two-channel
D-CRDS measurements (compared to those of the slow
single-channel case) to more efficient suppression of time-
dependent etalons. This value of SNR corresponds to a mini-
mum detectable absorption coefficient of 4 × 10−12 cm−1 and
is comparable to recently reported line shape measurements
of O2 with a Pound–Drever–Hall-locked FS-CRDS system [8].
Although our results were acquired over a similar time scale,
we achieved this result with ∼10 times fewer spectra than re-
ported in this previous study. Assuming ergodic improvement
in the measurement precision, equal averaging times, and ac-
counting for the differences in the base cavity losses, our mini-
mum detectable absorption coefficient is consistent with
recent measurements that used an unstabilized and dithered
RDC [7], although we note that the latter system is not suitable
for high-fidelity studies of molecular line shape.

For all three cases and for small values of ns we find in
Fig. 5(a) that the QF increases with ns. As with the SNR, the
highest QF is obtained for the two-channel D-CRDS spectra
and on average the lowest QF occurs for the conventional
CRDS spectra. We observe that for all three cases, the QF
has two local minima, which occur for ns ∼ 55 and ∼80. This
effect is likely caused by incomplete compensation of etaloning
in the data analysis. This is consistent with previous observa-
tions that revealed the importance of considering additional
etalons in the analysis of long-term averaged FS-CRDS spectra
[8]. It can be seen clearly in Fig. 5 that both D-CRDS realizations
reduce the depth of the minima occurring at ns � 55 averaged
spectra, whereas the relative depth of the CRDS case remains
approximately constant. Depth reduction of the first minimum
is consistent with reduction in the etalon amplitude, which is
afforded by the D-CRDS technique. The approximately con-
stant depth of the second minimum suggests that it is caused
by an etalon, whose amplitude is neither significantly reduced
nor amplified for Δq � 2 (see Appendix Fig. 8).

We also emphasize that the amplitudes of the differential
and conventional spectra do not have the same pressure
dependence. This property is illustrated in Fig. 6(a) where
the ratio of the peak absorption for the differential to

(a)

(b)

Fig. 5. (a) SNR versus number of averaged spectra ns, obtained for
CRDS for two-channel D-CRDS and single-channel D-CRDS spectra.
Dashed lines indicate calculated values given by the square root of the
number of averaged spectra times the corresponding average SNR ob-
tained for single spectrum. (b) QF versus number of averaged spectra
for the differential and conventional spectra. Data points are con-
nected with spline fits.

(a)

(b)

Fig. 6. (a) Calculated absorption amplification factor ramp as a func-
tion of pressure. (b) Spectrum SNR as a function of pressure for
the air-broadened CO2 [R26e (30013←00001)] transition. The two
symbols labeled “measured” correspond to the maximum SNR values
reported in Fig. 5. The curves labeled “predicted” are based on scaling
the maximum measured CRDS value as discussed in the text.
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conventional cases ramp is shown as a function of pressure. As
pressure is reduced ramp tends to increase. At low pressure, the
amplitude of the differential spectrum is eventually limited by
the Doppler width and approaches a maximum value nearly
twice that of the conventional spectrum, whereas for the ab-
sorption transition considered here both types of spectra have
similar amplitudes when p ∼ 20 kPa. In Fig. 6(b) we show the
maximum measured SNR (corresponding to ns � 98) for the
conventional and differential cases (symbols) and predicted
SNRs for these two cases (lines) as a function of pressure.
The dashed line labeled “predicted CRDS” is based on the mea-
sured SNR value of the CRDS spectrum scaled by the calculated
pressure dependence of the absorption signal. Similarly, the
solid red line labeled “predicted D-CRDS” was calculated using
the SNR for the predicted CRDS curve times the factor
ramp∕

p
2. Consistent with our previous discussion, these results

illustrate that ourmeasured SNR for the differential spectra was
more than 2.5 times greater than the predicted value, which we
attribute to the reduction of etaloning in the spectrum baseline.
These results indicate that the differential method should yield
improved spectrum SNRs compared to conventional measure-
ments over a relatively wide range of pressure.

3. CONCLUSIONS
We have demonstrated a cavity-enhanced absorption tech-
nique that reduces sensitivity to etalons that often modulate
resonator base losses. Called D-CRDS, this method involves
measurements of decay rates for pairs of modes that are
separated by a fixed optical frequency. We anticipate that
the D-CRDS analysis method can be exploited in CRDS experi-
ments where the spectrum acquisition rate is fast enough to
compensate for confounding effects of drifting etalons. For a
rapidly scanned, single-channel cavity ring-down system this
technique requires only a slightly modified approach to the
data analysis. Furthermore, the high SNR and high QF
obtained here indicate the potential for stringent tests of theo-
retical line profiles. In this context, the occurrence of poorly
characterized etalons is often problematic in data reduction
because fitting these background signals can bias fitted line
shape parameters. The differencing method presented here
provides a useful strategy that enables the efficient suppres-
sion of these insidious spectrum interferences.

APPENDIX A: COUPLED-CAVITY
MECHANISM TO INDUCE ETALONING:
GENERALIZATION
We recently presented an analysis for coupled cavities that
models feedback from an external optical element to a

high-finesse RDC [3]. We experimentally validated the pre-
dicted amplitude and phase of etalons that modulate the base
losses of the RDC. Thus, we found that one can describe a
coupled-cavity system by an equivalent two-mirror configura-
tion in which the RDC mirror involved in the feedback has an
effective reflectivity that is different from the isolated case.
This effective reflectivity depends on the reflectivity of the iso-
lated ring-down mirror and the position, reflectivity, and spa-
tial coupling coefficient of the external optical element that
recycles the light. In the following, we generalize the analysis
to the case of N partially reflective interfaces that feed light
back to the RDC as shown in Fig. 7. For this scheme, the light
leaking out of the RDC is partially and successively further
retroreflected by the set of optical interfaces labeled
1; 2; 3…N whose amplitude reflectivity and amplitude trans-
mission are, respectively, denoted by (r1;2;3…N , t1;2;3…N).
Following the notation of Fig. 7 and neglecting absorption,
we find an effective amplitude reflectivity for M1 of

rRDC;eff � rRDC � C00r1t
2
RDCe

2iϕ1

−1� e2iϕ1r1rRDC
(A1)

for N � 1, and more generally,

rRDC;eff � rRDC � t2RDC

XN
j�1

C00;jrje
2iϕj

Qj−1
k�1 t

2
k

�−1� j � e2iϕj rjrRDC
Qj−1

k�1 t
2
k

(A2)

for N > 1. Here tRDC1 � �1 − r2RDC1�1∕2 and tk � �1 − r2k�1∕2 are
the amplitude transmission of both the high-reflective MLS of
the RDC mirror and the kth interface, respectively; ϕj �
2πljλ−1 is the single-pass phase shift experienced by the light
while propagating through the jth coupled-cavity, which is a
distance lj from the involved MLS; and C00;j is the jth TEM00

amplitude coupling coefficient of the feedback beam associ-
ated with the jth coupled cavity (see [2] for further details). Of
course identical relationships hold for M2.

From Eq. (A1), we can calculate the modified ring-down
time constant in the case of self-mixing through both RDCmir-
rors M1 and M2 as τeff � lc∕�cTRDC;eff�, where TRDC;eff �
1 − �jr2RDC1;eff j × jr2RDC2;eff j�1∕2 represents the geometric mean
transmittance of the RDC system and lc is the distance be-
tween M1 and M2. As an illustration of the magnitude of the
perturbation, we consider an RDC composed of two identical
mirrors with an intensity transmission T � 2 × 10−5. If approx-
imately 0.016% of the light that leaked through both RDC mir-
rors returns and constructively interferes with the circulating
ring-down intracavity field (i.e., both returning fields maxi-
mize the effective reflectivity of the mirrors) and assuming

Fig. 7. Schematic diagram of a CRDS involved in a single-sided, coupled-cavity mechanism and its corresponding equivalent optical system. Once
the probe-beam intensity has been interrupted, light leaks out of the RDC at a rate dictated by its round-trip losses. In the coupled-cavity case, the
reflected field from the MLS of M1, given by Arefl, arises from the direct reflection of the RDC intracavity field r1A

inc plus the portion of all the
circulating fields that retroreflects from the N interfaces and couples back into the RDC. Coupled-cavity effects alter the effective reflectivity of
mirror M1 in the equivalent optical system, thus altering the base losses of the composite system.
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C00 � 1 for both coupled cavities, then the resultant
wavelength-dependent baseline losses would have a
modulation amplitude of 10−6 or 5% of the isolated mirror
transmission.

APPENDIX B: ETALON-REDUCED REGIONS
(ERRS)
As illustrated in Fig. 2, sampling effects in D-CRDS must be
taken into account in order to ensure that the differential tech-
nique tends to suppress and not enhance the etalon of interest.
The sampling interval to which we refer is the D-CRDS differ-
ential frequency given by Δq × FSR. Consider a sinusoidal
etalon whose amplitude is to be reduced. For the measure-
ments reported here, it is clear that the FSR of the length-
stabilized RDC intrinsically imposes a sampling grid on the
acquired spectrum. Given that the D-CRDS technique relies
on subtracting pairwise modes that are separated by this fixed
frequency interval, one finds that the maximum difference in
base losses obtained between neighboring modes that are
separated by Δq should not exceed twice the amplitude of
the original etalon. More specifically, an analysis of Eq. (2)
(for the case of one etalon) shows that if the following inequal-
ity is satisfied

1
Δq

�
i −

1
6

�
≤
le

lc
≤

1
Δq

�
i� 1

6

�
; (B1)

then the differencing scheme will result in a sampled etalon
having a smaller amplitude than that of the original etalon.
Here i � 0; 1; 2;…;∞, le is the distance from the etalon-form-
ing surface to the RDC mirror and lc is the length of the RDC.
Conversely, etalons associated with any coupled cavities
whose lengths are out of these ranges will be increased in am-
plitude. We call these ranges (where the amplitude of the eta-
loning is effectively decreased by virtue of the differential
analysis) the ERRs. Thus, retroreflecting optical elements
in the D-CRDS setup must be installed within an ERR to re-
duce the effect of etaloning. Further, precise positioning of
these items at a distance i × lc∕Δq away from the MLS of
the RDC mirrors is necessary to ensure that the D-CRDS tech-
nique effectively suppresses the etalon background structure.
In Fig. 8 we present the etalon amplification factor calculated
from Eq. (2) as a function of le∕lc for Δq � 1, 2, and 3. This
quantity varies between 0 and 2, and has Δq minima over

the range 0 < le∕lc ≤ 1. The ERRs have halfwidths of
1∕�6Δq� and they are centered on minima that occur at values
of le∕lc that correspond to multiples of 1∕Δq. Careful inspec-
tion of the amplification factor given in Fig. 6 reveals that its
derivative is discontinuous at the minima. This is caused by a
π phase shift of the differential etalon as the minimum is trav-
ersed. From Eq. (B1), we predict that the D-CRDS method in
our system (where the two AOMs have been designed so that
Δq � 2, with lc � 74 cm) reduces coupled-cavity perturba-
tions involving interfaces closer than ∼6.2 cm from the
MLS of the RDC mirrors and ranging from 30.8 to 43.2 cm,
67.8 to 80.2 cm, and 104.8 to 117.2 cm, etc.
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