
Computers & Industrial Engineering 83 (2015) 39–60
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A framework to canonicalize manufacturing service capability models
http://dx.doi.org/10.1016/j.cie.2015.01.027
0360-8352/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: 100 Bureau Drive, Stop 8260, Gaithersburg, MD
20899-8260, USA. Tel.: +1 3019758798.

E-mail address: yslee@nist.gov (Y. Lee).

1 In this paper the term ‘‘manufacturing service capability (MSC) model
model generally includes both schema and instance data. However, the
ontology generally does not have instance data. A simple example of an insta
is ‘Company A has drilling process capability with 0.025 mm precision’. W
term ‘MSC data model’ in a very general sense to refer to any structured
structured MSC information source; while the term ‘MSC model’ refers to
encoded information specifically in OWL.
Boonserm Kulvatunyou a, Yunsu Lee a,b,⇑, Nenad Ivezic a, Yun Peng b

a Systems Integration Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
b Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
a r t i c l e i n f o

Article history:
Received 6 September 2013
Received in revised form 14 January 2015
Accepted 29 January 2015
Available online 7 February 2015

Keywords:
Manufacturing service capability
Ontology design pattern
Pattern-based ontology transformation
Canonicalization
OWL
Semantic mediation
a b s t r a c t

The capability to share precisely defined information models, which reveal a supplier’s manufacturing ser-
vice capability (MSC) with anyone who needs it, is key to the creation of more agile supply chains. Today,
unfortunately, this capability does not exist. Why? Because most suppliers use proprietary information
models to represent and share their MSC information! This limits both the semantic precision in the
models, which is needed for interoperability, and the level of agility in the supply chains. The availability
of a semantically precise and rich reference MSC ontology could address both of these limitations. Based
on our prior research, the development of such an ontology will require a semantic mediation process
between the proprietary MSC models and the reference MSC ontology. At the heart of every known,
semantic-mediation process is a mapping between a proprietary MSC model and the reference MSC
ontology. Such a mapping must deal with the structural and semantic conflicts between the two. In this
paper, we propose a new approach, which we call canonicalization to address the structural conflicts. The
semantic conflicts are addressed using logical mapping. The canonicalization pre-processes the structural
representations of the proprietary models and then aligns them using ontology design patterns which are
also used in the reference ontology. This simplifies both the mapping problems themselves and the
resulting mapping statements considerably. In the paper, we also demonstrate our approach and its
benefits in the context of a description-logic-based semantic mediation using the Ontology Web
Language (OWL).

� 2015 Elsevier Ltd. All rights reserved.
’’ or data
reference
1. Introduction

The Smart Manufacturing Leadership Coalition stated in its
2011 workshop report that the capability to share manufacturing
service capability (MSC) information was the key to the creation
of more agile and better optimized supply chains (SMLC, 2011).
Min and Zhou (2002) also showed that this same capability could
enable successful supply chain integration. Ameri and Dutta
(2006) showed that integration was only possible when that MSC
information is semantically precise, complete, and interoperable.
Currently, this is not the case, because manufacturing companies
provide their MSC information in proprietary MSC data models.
Examples of these proprietary MSC data models can be found in
every online marketplace dedicated to finding manufacturing
suppliers for OEMs. These proprietary MSC data models are hetero-
geneous in their structures and representations, which make it
hard for the OEMs to understand those models and find the best
supplier that fits their needs. In situations like this, it is clear that
information sharing, which is critical to the success of both the
OEM and the supplier, is extremely difficult and costly.

Researchers have shown that a reference ontology can enhance
the access to and precision of information models. In particular, Ye
et al. (2007), Lu et al. (2013), Wang et al. (2013), and Zheng and
Terpenny (2013) use Web Ontology Language (OWL) (W3C,
2009a) coupled with Semantic Web Rule Language (SWRL) (W3C,
2004a) to link local and reference ontologies. Kulvatunyou et al.
(2013) and Tsinaraki et al. (2004) achieve similar linkages using
only OWL axioms.

The OWL-based semantic mediation approach in Kulvatunyou
et al. (2013) uses an OWL reasoner and OWL mapping axioms to
inherit semantics from a semantically rich reference MSC ontology.1

This approach enhances semantic precision and coverage and
nce data
e use the
or semi-
formally

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2015.01.027&domain=pdf
http://dx.doi.org/10.1016/j.cie.2015.01.027
mailto:yslee@nist.gov
http://dx.doi.org/10.1016/j.cie.2015.01.027
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


40 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
resolves semantic conflicts across proprietary MSC data models. The
approach worked because the reference MSC ontology provided a
common domain model and terminology. It has three major steps.
First, information in the proprietary MSC data models is transformed
into the common RDF syntax (W3C, 2004b) using the OWL seman-
tics. Second, the resulting OWL-encoded proprietary MSC model is
mapped to the reference ontology using OWL axioms. Finally, the
description logic inference, over the OWL-encoded proprietary
MSC models, the reference ontology, and the mapping axioms,
results in improved MSC information sharing.

In this paper, we focus on transformation and the axioms. There
are generally two ways to transform proprietary MSC data models
into OWL: purely syntactic or with semantic interpretation. In the
purely syntactic way, generic transformation rules are applied to
the data source. Those rules are based on the underlying schema
language. For example, in the case of relational databases, tables
are transformed into classes and columns are transformed into
properties. In the semantic-interpretation way, humans write rules
that are specific to the data source schema and they use them for
the transformation. Such rules are typically developed from the
sole viewpoint of the data source owner.

In either case, the resulting models, called arbitrary OWL-encoded
proprietary MSC model,2 are not aligned structurally with the
target reference ontology (see the top of Fig. 1). Such an arbitrary
OWL-encoded proprietary MSC model can render the OWL mapping
axioms, which are required by the approach in Kulvatunyou et al.
(2013), exceedingly complex, if it is at all possible. Technologies such
as the D2RQ (D2RQ, 2014) and the W3C’s R2RML (Relational Database
to RDF Mapping Language) (Das et al., 2012) support both the pure
syntactical as well as the semantic-interpretation transformation
practices.

In this paper, we propose a methodology, called a canonicaliza-
tion approach, to streamline the OWL-based semantic mediation
process by simplifying the OWL mapping axioms and the actual
mapping itself. First, we transform the proprietary MSC data model
automatically by using a common, syntactic, rule set that is inde-
pendent of its source data schema. Second, a human applies a
canonicalization by transforming the data again using a set of
design patterns. Third, the human writes the OWL mapping axioms
against the reference ontology. Since the design patterns used in
the canonicalization are also used in the reference ontology, the
resulting canonicalized OWL-encoded proprietary MSC model is more
structurally aligned and, therefore, simpler to map to the reference
ontology. This proposed methodology is illustrated at the bottom
of Fig. 1.

In this paper, we also validate our approach by providing quan-
titative and qualitative analysis for a manufacturing semantic
mediation example. The qualitative analysis will show that
canonicalization can (1) amend a model not originally suited for
semantic mediation via OWL DL, (2) simplify the mapping by
avoiding the need for complex, OWL-class expressions in the map-
ping axioms, and (3) simplify the mapping maintenance by reduc-
ing the number of, and complexity of, mapping axioms. The
quantitative analysis will show that computational time grows
cubically when a certain, yet common, type of structural conflicts
is resolved without canonicalization, as opposed to linearly when
using canonicalization.

The rest of the paper is structured as follows. In the next sec-
tion, we provide a literature review. In Section 3, we characterize
canonicalization by the types of semantic conflicts it can address.
Section 4 introduces the proposed canonicalization framework. It
2 By arbitrary, we mean that the MSC model inconsistently and sub-optimally uses
one or more approaches to express manufacturing information using the OWL
language, whether it involves class-based, property-based, or some general axiomatic
representation that is specific to proprietary view of the data.
is followed with Section 5, which validates the applicability and
usefulness of the framework with a running example. Section 6
presents the qualitative and quantitative analyses. Finally, we pro-
vide a conclusion and remarks on the current work and our future
plans in Section 7.

2. Literature review

The importance of a reference model in semantic mediation has
been emphasized in recent research. Bloomfield et al. (2012) pro-
posed a core, manufacturing-simulation reference model to
improve the data exchange between manufacturing simulations
throughout the product life cycle. Wang et al. (2013) provided a
shared-negotiation ontology to address communicative interoper-
ability problems in supply chain negotiation. Zheng and Terpenny
(2013) enhanced the semantics of legacy information by combin-
ing a global ontology with the legacy domain knowledge. The glob-
al ontology served as the reference model to provide additional
semantics to the legacy domain knowledge. As noted above,
Kulvatunyou et al. (2013) provided details of semantic mediation
using the Web Ontology Language (OWL) (W3C, 2009a). In that
work, the inference over the mapping between the proprietary
and the semantically rich reference OWL model results in semantic
enhancement to the proprietary OWL model.

All of the previously mentioned approaches require a mapping
between the proprietary model and the reference model. Accord-
ing to Shvaiko and Euzenat (2011), they note, however, that devel-
oping such a mapping is one of the most difficult tasks in the
semantic mediation, especially if there are structural conflicts. It
is not surprising then that none of the previously mentioned
semantic mediation approaches provides any methods or tools to
assist in the mapping task. In addition, our evaluation of the ontol-
ogy-mapping approaches described in Noy and Musen (2003) and
McGuinness et al. (2000) found that they also do not perform well
in the face of structural conflicts. Our hypothesis is that the map-
ping task could be simplified if the proprietary model is encoded
with the same Ontology Design Patterns (ODPs) as the reference
ontology. The reason is that concepts in the proprietary model
would be represented with the same types of entities and with
the same relationship structures used in the reference ontology.
We call this, ontology canonicalization.

The approach described in Svab-Zamazal et al. (2009) and Svab-
Zamazal and Svatek (2011) includes workable methods and tools
for the ODP-based ontology transformations. Together, these
methods and tools are called PATOMAT. PATOMAT produces a
well-defined XML schema for both pattern definitions and trans-
formation rules. In addition, the authors developed the function-
ality and software to generate a SPARQL query from the pattern
definitions. That software uses an OPPL application interface
(OPPL, 2012) for pattern transformation and a GUI editor for cap-
turing both the source and target ontology patterns and the asso-
ciated transformation rules.

PATOMAT provides a good foundation for our ontology
canonicalization approach. However, several enhancements are
needed. First, PATOMAT does not deal with the representative arti-
facts that represent the varying parts of the source ontology pat-
tern. This means that whenever there are multiple pattern
instances that use the same source ontology pattern, PATOMAT
does not generate the correct, recursive, transformation rules. Sec-
ond, PATOMAT does not provide any method either to generate a
source ontology pattern or to retrieve a reusable target ontology
pattern. This means that all the patterns must be defined manually.
Lastly, PATOMAT has no facilities to deal with literal value pattern
detections and transformations at present. In this paper, we
describe a framework that fills these gaps in PATOMAT so that it
can be used to fully canonicalize a proprietary ontological model.



Fig. 1. Typical (top) and proposed (bottom) process to OWL-based semantic mediation between proprietary MSC data models and a Reference ontology (dark grey boxes
typically require human involvement and are not fully automated).

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 41
3. Canonicalization defined

Conceptually, canonicalization is a way to preprocess diverse
proprietary representations to simplify mappings. To implement
this concept, we use logical and conceptual ontology design
patterns. Using these patterns, as we will show, in the initial
encodings of both the proprietary and reference MSC information
models avoids certain conflicts in the mapping process. As shown
in Sheth and Kashyap (1992) and Park and Ram (2004), these
conflicts can occur at two different levels the data-level and
schema-level.

3.1. Data-level conflicts

Data-level conflicts are caused by multiple representations and
interpretations of similar data. In our work, we deal with three
such conflicts: data-representation conflicts, data-unit conflicts,
and data-precision conflicts. Data-representation conflicts occur
when semantically equivalent values are represented differently
– for example, 05/08/2012 and May-08-2012. The data-unit
conflicts occur when the same quantities are represented with dif-
ferent units – for example, 2 inches and 5 centimeters. Data-
precision conflicts occur when different scaling methods are used
to represent the same concept. For example, consider the concept
temperature. One way to represent temperature is to use a con-
tinuous scale from 0 to 100; another way is to use a discrete scale
like cold, cool, warm, and hot.

3.2. Schema-level conflicts

Schema level conflicts include naming conflicts, entity-identi-
fier conflicts, schema-isomorphism conflicts, generalization con-
flicts, aggregation conflicts, and schematic discrepancies. Naming
conflicts occur when two semantically identical concepts are
named differently (synonyms); or, when two semantically differ-
ent concepts are named the same (homonyms). Naming conflicts
are applicable to OWL classes and properties. Entity-identifier con-
flicts can occur when differing primary keys are used for the same
entity in different databases. This can occur in OWL when multiple
class instances (individuals) with different URIs (Uniform Resource
Identifiers) refer to the same individual. Isomorphism conflicts
occur when two semantically identical concepts are modeled with
either a different set or a different number of attributes. Consider
for example Address which can be modeled as Address(Line1,
Line2, Zip) and Address(Street, City, State, Zip). Isomor-
phism conflicts are applicable to OWL classes in the sense that they
can have different properties.

Generalization conflicts occur when objects/classes subsume
one another – for example, Student(ID, Name) subsumes
GraduateStudent(ID, Name). Generalization conflicts are
applicable to OWL classes and properties particularly when two
models have different subsumption hierarchies. Aggregation
conflicts occur when a property of a class is an aggregation of
properties from multiple instances of another class. For example,
the MonthlyProduction(ID, Month, Year, Item, Quantity)

is an aggregation of the DailyProduction(ID, Date, Item,

Quantity). Schematic discrepancies occur when information is
modeled using differing constructs – table name, attribute
name, and attribute value. In OWL, for example, information about
a supplier providing a CNC Machining Service may be modeled
using (1) a class declaration axiom (a supplier is a type of
CNCMachiningService class), (2) an object property assertion
(the supplier has an object property pointing to an instance of
CNCMachiningService class), (3) the supplier has an object
property pointing to a CNCMachiningService instance of a
ManufacturingService class), (4) a literal data property
assertion (the supplier has a string-based property pointing to
‘‘CNCMachiningService’’, or (5) a boolean data property
assertion (the supplier has a isCNCMachiningServiceProvider
property with the value true).
3.3. What does canonicalization mean?

In our work, canonicalization means encoding the proprietary
MSC data model such that it follows a set of Ontology Design Pat-
terns (ODPs). Gangemi (2005) has described two types of ODPs:
logical and conceptual. Logical ODPs are independent of domain
conceptualization; conceptual ODPs, on the other hand, are specific
to a domain conceptualization. Examples of logical ODPs are those
given by the W3C Semantic Web Task Force on ODPs (W3C, 2005a;
W3C, 2005b) including Representing Classes As Property Values on
the Semantic Web and Representing Specified Values in OWL. An
example of a conceptual ODP is Participation at spatio-temporal
location (Gangemi, 2005).

Our research focuses mostly on conceptual ODPs. An example of
a conceptual OPD related to our work is Dimensional Capability



Fig. 2. Canonicalization framework.

42 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
Expression ODP. This pattern is represented as a class with two
data properties: a minimum value and a maximum value. These
properties effectively provide a range of permissible values. So,
whenever the representation of a concept includes a range of per-
missible values, the Dimensional Capability Expression ODP must
be used in that representation. Canonicalization identifies all of
those concepts and ensures that the correct ODPs are used in their
encoding.

Canonicalization resolves two of the schema-level conflicts
described above: isomorphism conflicts and schematic discrepan-
cies. Canonicalization also resolves a wide range of data-level con-
flicts as well. In this paper, however, we discuss the resolution of
the two schema-level conflicts only.

With respect to the isomorphism conflicts, we looked at two
cases: those with the same data precision and those with differing
data precision.3 The isomorphism conflicts with the same data preci-
sion usually occur when two different objects contain the same set
of information. We extend this type of conflict to include cases
where the data precisions are different provided they can be made
the same by a transformation based on existing ODPs. Consider, for
example, an information object called MaximumPartSize(value)

of an EDM machine that describes the largest part that can be
machined on a particular EDM machine. Since the minimum size
is zero (0), we can ‘‘canonicalized’’ this object by using the
DimensionalCapability(minValue, maxValue) ODP to create
a new object called the PartSizeCapability(minValue,

maxValue) where the maxValue = value and the minValue = 0.
The minValue may be alternatively derived from common domain
knowledge.

Isomorphism conflicts with differing data precision occur when
two objects, which are semantically equivalent, have differing sets
of information and those differences are not transformable using a
set of ODPs. For example, suppose the EDMService object and the
EDMMachiningService object are supposed to represent the
capabilities of the same EDM machine. EDMService has three
properties: (ID, Type, SpecialService); yet EDMMachin-

ingService has four properties: (ID, Type, SpecialService,
MaxPartLength). Canonicalization does not resolve these types
of isomorphism conflicts.
3 Canonicalization helps avoid only the former case. The latter case may be better
left to handle via the OWL’s description logic-based mapping.
3.4. Remarks

In this section, we have described the canonicalization from the
perspective of schematic differences resolutions. In the next sec-
tion, we describe the framework to canonicalize proprietary
manufacturing service capability data models that originally may
be implemented in various syntaxes such as relational databases,
XML and XML schemas (W3C, 2006; W3C, 2004c).
4. Canonicalization framework

This section describes the proposed canonicalization frame-
work. Readers are referred to the OWL 2 Structural Specification
(W3C, 2009b) for definitions of a number of OWL-related terms
used throughout the rest of the discussion. These terms include
entities – various types of entities including classes, datatypes, object
properties, data properties, annotation properties, and named indi-
viduals; literals; and axioms – various types of axioms including
declaration axioms, class axioms, object property axioms, datatype
definitions, keys, assertions/facts, and annotation axioms. For the pur-
pose of our discussion, entities, literals, and axioms are collectively
referred to as ontology artifacts.

4.1. Overview

This section describes the proposed canonicalization frame-
work, which is outlined in Fig. 2. The initial input to the canonical-
ization is a proprietary MSC data model. That model can be based
on different syntaxes such as relational databases, XML and XML
schemas (XML databases). In the first step of canonicalization pro-
cess, these heterogeneous syntaxes are transformed into a com-
mon RDF graph syntax using OWL DL vocabulary and semantics.
This Syntactical Transformation is generally automatic because it
uses a standard transformation rule set that is independent of
the MSC information semantics but specific to the proprietary data
modeling syntax. The output of this step is a source ontology.4 This
ontology and the current ODP library become the input to second
step, which we call Ontology Pattern Correspondence (OPC) identifica-
tion. Each ODP in the library provides the structural patterns needed
4 Source ontology is mapped to the Intermediate OWL-Encoded Proprietary MSC
model in Fig. 1.



B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 43
to model archetypical, manufacturing-service objects and relations
that are already in the source ontology.

In this OPC identification step, we determine which ODPs go
with which ontology fragments in the source ontology. The output
of this step is a set of OPCs. The OPCs are used to construct source
ontology patterns in the source ontology pattern generation step and
also to retrieve the applicable target ontology pattern from the pat-
tern library. A source ontology pattern is used to retrieve all
matching pattern instances from the source ontology. A pattern
instance is a source ontology fragment to be transformed with
respect to a target ontology pattern. These artifacts are trans-
formed using the pattern transformation rules that are generated
in the transformation rule generation step. The final pattern trans-
formation step (1) applies the source ontology pattern and then
(2) executes the respective pattern transformation rules on the
source ontology to generate the canonicalized OWL-encoded pro-
prietary MSC model (canonicalized proprietary MSC model for
short).

Subsequent sections describe ODP and each canonicalization
step in more detail.

4.2. OWL ontology design pattern

Pattern-based approaches for ontology design have been gain-
ing popularity recently. The reason is that by reusing existing, test-
ed patterns as building blocks, a domain ontology can be
constructed quickly with higher quality and less conceptual diver-
gence (Gangemi, 2005). A large amount of such patterns has been
proposed in the ontology design community (Presutti et al., 2008).5

The community presented a general template for describing ODPs
and an initial repository of OWL-based ODPs. We define a formal
representation of OWL ODPs as follows:

Definition 1: Archetypical Ontology is a fragment of OWL
structure represented with abstract concepts. It is a 4-tuple
{E, L, AI, A}.

– E is a set of OWL entities
– L is a set of OWL literals
– AI is a set of OWL anonymous individual
– Ax is a set of OWL axioms

Definition 2: ODP is a 2-tuple {Sig, BE}

– Sig is a non-empty set representing an ontology signature
– BE is a non-empty set representing binding expressions

Definition 3: Ontology Signature is a 2-tuple {SE, SX}

– SE is a non-empty set of entity and literal parameters
– SX is a set of axioms relating members in SE

Definition 4: Binding Expressions is a 2-tuple {SE, C}

– SE is a non-empty set of entity and literal parameters, as in
Definition 2

– C E U L, is a non-empty set of concepts and values assigned
to the parameters in BE that give a specific meaning to the
ontology signature

An ODP6 is represented by a signature and a set of binding
expressions. An ODP signature is a parameterized structure of an
archetypical ontology; the binding expressions connect parameters
5 http://www.ontologydesignpatterns.org.
6 The requirement for canonicalization is that the reference ontology follows a set

of ODPs. However, rationalization and development of ODPs is out of the scope of this
paper. The design of an ODP is concerned with the semantics and associated structure
to convey the semantics. The related work section points to works concerned with
ODP developments and other ODPs’ information that may be of interest to store
within the pattern library. In this paper, ODPs are derived from the Manufacturing
Description Language ontology (Ameri and Dutta, 2006).
in the ODP signature to a subset of entities and literals in the arche-
typical ontology fragment. These entities and literals are concepts
and values that give a specific meaning to the ODP signature. The
entities and literals are divided into two groups: conceptual and
representative. Only the conceptual entities and literals, however,
are used in the binding expressions to convey the meaning of the
ODP. The representative entities and literals represent the varying
parts of the pattern; they must be replaced by (1) entities and literals
from the source ontology or (2) by defaulted values when the ODP is
used.

Figs. 3 and 4 illustrate this through a Supplier-Service ODP
example. Fig. 3 shows the archetypical ontology fragment (concep-
tual pattern) of the ODP. Fig. 4 shows the ODP represented by a sig-
nature and binding expressions. With respect to the archetypical
ontology fragment in Fig. 3 and ODP in Fig. 4, p:Supplier, p:Pro-
file, p:ServiceCategory, p:hasProfile and p:hasService

are conceptual. While p:ServiceSubcategory, p:SupplierIn-
stance, p:ProfileInstance, and p:CategoryInstance are
representative. Notice that only the conceptual entities are used
in the binding expressions where C1, C2, C3, OP1, and OP2 are
bound (in this example there is no conceptual literal). I1, I2, I3,
and C4 are not bound because they are parameterized part of the
ODP. It should be noted that the same ODP signature may be used
by multiple ODPs but with differing binding expressions. Table 1
shows the serialization of this ODP (note that unbounded entities
that are a parameterized part of the ODP simply do not have asso-
ciated binding expression).

4.3. Syntactical Transformation

The Syntactical Transformation step applies a standard, rule-
based transformation to convert heterogeneous syntaxes of propri-
etary MSC data models into the common RDF graph syntax using
OWL DL vocabulary and semantics. The output of this step is called
the source ontology, which corresponds to the intermediate OWL-
encoded proprietary MSC model in Fig. 1.

This step can be largely automated when the proprietary MSC
data model is structured information (e.g., RDB) as opposed to
unstructured (e.g., text, HTML). Currently, there are many tools
that support RDB-to-RDF transformations. The W3C RDB2RDF
Incubator group presented a survey on these tools such as
D2RQ (D2RQ, 2014), Oracle Database 11g, Virtuoso’s RDF View,
Metatomix Semantic Platform, RDBtoOnto, SquirrelRDF, TopBraid
Composor and Triplify (Satya et al., 2009). We have investigated
D2RQ in particular. It provides a mapping language to create a
mapping profile between a relational database schema and
RDFS/OWL ontologies. Its software platform can execute the map-
ping profile to create an RDF representation of a corresponding
relational database (Bizer, 2003; Bizer and Seaborne, 2004;
D2RQ, 2014).

In our work, the proprietary MSC data models are captured in
relational databases. The standard rule-based transformation fol-
lows the default mapping profile7 proposed in the D2RQ with minor
enhancements. Since the D2RQ’s default mapping profile only uses
RDF vocabulary and semantics, we can enhance the mapping profile
by (1) specializing RDF vocabulary with OWL vocabulary (e.g.,
replace rdf:Class with owl:Class) and (2) specifically replacing
the generic RDF property with OWL data or object property. The
resulting mapping profile is summarized below. The mapping profile
uses OWL DL vocabulary and semantics without a need to be tailored
to specific database entities. Hence, it can transform any relational
data independent of its schema.
7 In the D2RQ framework, mapping profile is used to generate RDB-to-RDF
mapping for a database schema of a relational database. The mapping is then used to
execute the RDB-to-RDF transformation on a database instance using that schema.

http://www.ontologydesignpatterns.org


Fig. 3. Archetypical ontology of the Supplier-Service ODP.

Fig. 4. Supplier-Service ODP example.

44 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
Relational database to OWL DL mapping profile:
1. A table is mapped as an owl:Class (class declaration).
2. A record in the RDB is mapped as an owl:NamedIndi-

vidual (class assertion) of the corresponding class.
3. An attribute that is not a foreign key, is mapped to an

owl:DataProperty (data property declaration); and its
value is mapped as a data property assertion whose literals
have data types carried from the database schema.

4. An attribute that is a foreign key attribute is mapped to an
owl:ObjectProperty (object property declaration); and
its value is mapped as an object property assertion.

Fig. 5 below shows an example of the transformation from a
relational database table into an OWL DL source ontology using
the above mapping profile. The Capability table is converted into
an owl:Class named Capability. The ID attribute is converted
into owl:DataProperty named ID. The Capability_Name attri-
bute is converted into an owl:DataProperty, named Capa-

bility_Name. The record, which has the value 5 as its key, is
converted into an owl:NamedIndividual named Capability/

5. Its ID attribute value 5 is an xsd:integer value of the ID data
property. Its Capability_Name attribute value CP_EDM is an
xsd:string value of the Capability_Name data property.

4.4. OPC identification

The purpose of the Ontology Pattern Correspondence (OPC)
Identification step is to select a unique ODP for a specific fragment
of the source ontology. The OPC identification process starts with
establishing semantic links between entities/literals in the source
ontology and the elements of the pattern library (by matching on
their intended meaning).

Semantic links form the foundation of an ontology mapping.
These links can be homogeneous or heterogeneous. A homogeneous
link is between the same types of entities and literals. Examples
include class-to-class, property-to-property, individual-to-indi-
vidual, and literal-to-literal. A heterogeneous link is between
different types of entities and literals. Examples include class-to-
individual, class-to-property and property-to-individual. There is
no restriction on the cardinality of either type of link. For instance,
a part size capability may be represented as a single concept with
the literal value ‘‘5–25 cm’’ on the proprietary side. The same
capability, however, can be represented as multiple concepts such
as minimum part size and maximum part size in the reference
ontology. Solution to this situation would need 1:n semantic links.

Semantic links may be established manually or with assistance
from an ontology matching algorithm (Shvaiko and Euzenat, 2011).
Once established, these links provide the foundation for selecting
an ODP for a specific collection of source ontology artifacts. The
selected ODP is called a target ontology pattern. Note that an indi-
vidual ODP can be the target pattern for several collections of
source artifacts. We call the selected collection of these source arti-
facts, representative ontology artifacts. The goal of the OPC identifi-
cation process is to find all of these artifacts.

Typically, semantic links identify only part of the representative
ontology artifacts for an ODP. The user will need to manually sup-
ply the rest. After identify all the representative ontology artifacts
for an ODP, structural differences between the representative



Table 1
Serialization of the Supplier-Service ODP in.

Entity Literal Axiom Binding expression

Class Indi vidual Object property Data property Data type

C1 I1 OP1 – – – (I1, rdf:type, C1)
C2 I2 OP2 (I2, rdf:type, C2) C1 = p:Supplier
C3 I3 (C4, rdfs:subClassOf, C3) C2 = p:Profile
C4 (I3, rdf:type, C4) C3 = p:ServiceCategory

(I1, OP1, I2) OP1 = p:hasProfile
(I2, OP2, I3) OP2 = p:hasService

Fig. 5. Transformation example.

Fig. 6. An example source ontology.

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 45
ontology artifacts and the ODP in each OPC are identified. If there
are structure differences, the canonicalization process proceeds
to rectify the differences for that OPC. Note, the identification pro-
cess is not always linear because interactions with other ODPs can
occur after the initial pattern transformation.

4.4.1. OPCs identification illustration
Fig. 6 shows an example of the source ontology. Fig. 7 shows

some semantic links between the source ontology and the pattern
library established by the user. Note that the prefix ‘s’ denotes
entities and literals from the source ontology and the prefix ‘p’

denotes entities and literals from the pattern library.

{s:Supplier, p:Supplier, Class-to-Class},

{s:ServiceCategory, p:ServiceCategory, Class-

to-Class}

Based on the matching between concepts in the semantic links
and concepts in the binding expressions of ODPs, candidate ODPs
are suggested as illustrated in Fig. 7. In this example, only the sup-
plier-service ODP is suggested. If multiple ODPs were suggest-
ed, the user would inspect each of the suggested ODPs and their
semantic relationships with the related source ontology artifacts
(bottom part of Fig. 7). The canonicalization system can assist the
user during this semantic relations inspection by identifying paths
between the matching source ontology artifacts (in this case the
s:Supplier and s:ServiceCategory). Once the user selects a
suggested ODP, an ontology pattern correspondence is initiated
to capture information related to the suggestion. Table 2 shows
the initialization of this example as OPC1. OPC1 is not yet complete
as only the representative artifacts identified by the semantic links
are captured. The representative artifacts do not form a complete
source ontology (graph) fragment since the s:Supplier and
s:ServiceCategory are not connected.

The user identifies the rest of representative source ontology
artifacts for OPC1. The complete OPC1 is shown in Table 3. Notice
that only s:SupplierA and s:EDM instances are identified as rep-
resentative source ontology artifacts. Notice also, other instances,
such as s:SupplierB and s:Machining (see Fig. 6), also match
this pattern. These other instances will be identified via the source
ontology pattern created in the next canonicalization step. Next



Fig. 7. OPC identification process.

Table 2
Initial state of OPC1.

OPC ID Source ontology pattern Target ontology pattern

Artifact type Representative artifact

OPC1 Class s:Supplier, s:ServiceCategory Supplier-Service

Individual

ObjectProperty

DataProperty

Datatype

Literalal

Axiom

Table 3
Finished state of OPC1.

OPC ID Source ontology pattern Target ontology pattern

Artifact type Representative artifact

OPC1 Class s:Supplier, s:ServiceCategory Supplier-Service

Individual s:SupplierA,s:EDM

ObjectProperty s:hasMachiningService

DataProperty

Datatype

Literalal

Axiom (s:SupplierA, s:hasMachiningService, s:EDM)

46 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
the user determines whether OPC1 requires subsequent canonical-
ization steps.

By analyzing the graph structures, the user can determine that
OPC1 does requires subsequent canonicalization steps because the
logical structure of source ontology artifacts is different from that
in the Supplier-Service ODP. The reasons are (1) schematic dis-
crepancy, i.e., the source ontology represents the semantic service
category s:EDM as an instance of the s:ServiceCategory class
while the Supplier-Service ODP represents any semantic ser-
vice category (p:ServiceSubcategory) as a subclass of the
p:ServiceCategory class and (2) isomorphism conflict, e.g.,
s:SupplierA has a direct connection to the s:EDM service catego-
ry via the s:hasMachiningService object property in the source
ontology while the p:SupplierInstance has an indirect connec-
tion to the p:CategoryInstance through the p:hasProfile,
p:ProfileInstance, and p:hasService.

In this step, we are only concerned with terminological links.
Manually establishing these links can become cumbersome when
the source ontology and pattern library are large. Since we are
not dealing with structural relationships here, we believe that
existing ontology matching algorithms could be quite useful. This,
however, will be the topic of our future work.

4.5. Source ontology pattern generation

A source ontology pattern is used to retrieve all pattern
instances that are related to an OPC from the source ontology. Each
pattern instance is a source ontology fragment. Each of such
instances will contain source ontology artifacts that will be trans-
formed according to the target ontology pattern in the OPC. Source
ontology patterns also have a signature and a set of binding expres-
sions. The signature is the parameterized ontology structure: it has
a fixed part and a variable part. Binding expressions define the
fixed part by connecting parameters in the signature to the entities
and literals in the source ontology artifacts. The remaining
unbound parameters become the variable parts of the ontology
structure. Together the signature and binding expressions must
be sufficient enough to be converted into a query that retrieves a



B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 47
collection of variable parts of the ontology structure. Each member
of the collection, together with the fixed part of the source ontol-
ogy pattern, makes up a pattern instance. The query must retrieve
all pattern instances related to the OPC from the source ontology.
At the end of the source ontology pattern generation step, a source
ontology pattern is defined for each OPC output from the OPC iden-
tification step.

The source ontology pattern generation step can be largely
automated. Based on the representative source ontology artifact
identified in the OPC, the source ontology signature can be derived.
All possible binding expressions can be generated. Specific binding
expressions can be recommended based on the semantic links
established earlier. That is, the framework will also suggest fixing
the parameters in the source ontology signature that are linked
to the fixed part of the target ontology pattern. The query
generation can be automated based on the suggestion in
Svab-Zamazal et al. (2009) and Svab-Zamazal and Svatek (2011).

Fig. 8 shows a graphical representation of an exemplary source
ontology pattern, called SP1. Table 4 shows its serialization. It is a
pattern devised for the representative source ontology artifacts in
OPC1 shown in Table 3 above. In this example, the binding expres-
sions indicate that C1, C2, and OP1 are bound to constants, while
I1 and I2 are unbound. That is, I1 and I2 will be used to retrieve
all instances of the classes Supplier and ServiceCategory

matching this pattern.
Fig. 9 shows the SPARQL query (W3C, 2008) automatically con-

structed using the source ontology pattern definition. Unbound
variables I1 and I2 are outputs of the query, while axioms and
binding expressions make up the condition (i.e., WHERE clause) of
the query.
4.6. Pattern transformation rule generation

In this process, a pattern transformation rule set (PTRS) is gener-
ated for each OPC. A PTRS consists of pattern transformation rules
(PTRs). A PTR specifies relations between parameters in the source
and target ontology patterns within a particular OPC. These rela-
tions describe how the source ontology pattern should be trans-
formed according to the target ontology pattern. Each relation in
a PTR is a 3-tuple including source column, target column, and
transformation expression column. The source column indicates
one or more entities or literals in the source ontology pattern that
will be transformed using a parameter from the pattern signature.
Fig. 8. Graphical representation of the

Table 4
Serialization of the source ontology pattern SP1 in Fig. 8.

Entity

Class Individuals Object Property Data Property Data type

C1,C2 I1, I2 OP1 – –
The target column indicates the entity or literal in the target ontol-
ogy pattern into which the source column will be transformed
using a parameter from the pattern signature. Either the source
column or target column can be null but not both. The last column,
transformation expression column, indicates the specific names/
IRIs to be used for the target in the output. The value can be a para-
meter from the target ontology pattern signature, a fixed value, or
a string expression.

Transformation Type-1: same artifact type transformation
(e.g., Class-to-Class, Instance-to-Instance)

Transformation Type-2: different artifact types
transformation and n:1 transformation (e.g., Class-to-
Instance, Property-to-Class, Classes-to-Class)

Transformation Type-3: Artifact removal transformation
(e.g., source ontology pattern signature has a class A that
does not have a correspondence in the target ontology
pattern signature entity)

Transformation Type-4: Artifact creation transformation
(e.g., source ontology pattern signature does not have the
class A which is defined in the target ontology pattern)

Each PTR can be one of the three transformation types as listed
below. Transformation types can be automatically determined
based on source and target columns and handled automatically
by the canonicalization infrastructure.

Similar to the OPC identification step, the pattern transforma-
tion rule generation step may be done manually or with assistance
from an ontology matching algorithm. However, in this case the
scope of the match is more specific to only ontology artifacts in
the representative source ontology and in the archetypical ontol-
ogy of the target ontology pattern.

Table 5 below shows an example transformation rule set,
PTRS1, for OPC1. OPC1 consists of the source and target ontology
pattern shown in Figs. 8 and 4. It requires 10 PTRs.

4.7. Pattern transformation

Pattern transformation executes pattern transformation rules
on the source ontology. The resulting transformation is the OWL
DL encoding of the canonicalized OWL-encoded proprietary MSC
model (canonicalized proprietary MSC model for short). The
source ontology pattern for OPC1.

Literal Axiom Binding expression

– (I1, rdf:type, C1) C1 = S:Supplier
(I2, rdf:type, C2) C2 = S:ServiceCategory
(I1, OP1, I2) OP1 = s:hasMachiningService



Fig. 9. Source ontology pattern SPARQL query.

Table 5
An exemplary PTRS1 for OPC1.

PTR ID Source ontology pattern Target ontology pattern Transformation type Transformation expression

PTR1.1 s:C1 p:C1 Type-1 s:C1

PTR1.2 s:C2 p:C3 Type-1 s:C2

PTR1.3 s:I1 p:I1 Type-1 s:I1

PTR1.4 s:I2 p:C4 Type-2 s:I2

PTR1.5 s:OP1 – Type-3 –
PTR1.6 – p:C2 Type-4 p:C2

PTR1.7 – p:I2 Type-4 p:I2

PTR1.8 – p:I3 Type-4 p:I3

PTR1.9 – p:OP1 Type-4 p:OP1

PTR1.10 – p:OP2 Type-4 p:OP2

48 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
canonicalized proprietary MSC model will be aligned structurally
with an OWL DL-based reference MSC ontology that is also con-
structed based on the same pattern library. The pattern transfor-
mation of an OPC is divided into two sub-processes: detecting
pattern instances and applying pattern transformation rules. The
whole process can be automated based on the aforementioned
PATOMAT work.

The detection process applies the source ontology pattern to
find all pattern instances. A pattern instance is a set of source
ontology’s entities and literals to be transformed by a transforma-
tion rule. For example, the SPARQL query generated from the
source ontology pattern shown in Fig. 9 will retrieve all pattern
instances for OPC1. Two pattern instances should be returned for
the source ontology in Fig. 6.

The application process applies the pattern transformation rules
on the retrieved source ontology’s entities and literals in the pattern
instances. The output entities and literals provide all the necessary
elements to establish the set of axioms in the target ontology pat-
tern. After the pattern transformation executes all the pattern trans-
formation rules on the source ontology, the canonicalized
proprietary MSC model is obtained as the final output.

In the next section we demonstrate our canonicalization frame-
work on a manufacturing service capability example.
5. Canonicalization example

We first describe inputs to the canonicalization process includ-
ing a pattern library and a proprietary MSC data model that is cap-
tured in a relational database. We then walk through each process
step in the canonicalization framework. After obtaining the
canonicalized proprietary MSC model, we will show how it simpli-
fies the mappings to the reference MSC ontology in Section 6.

5.1. Pattern library

In this example, we assume a hypothetical pattern library,
which consists of four ODPs including Supplier-Service,
Service-LengthCapability, Service-Categorization, and
LengthCapability. Fig. 10 illustrates the definitions of these
ODPs.

5.2. Proprietary MSC data model

Fig. 11 below shows a set of relational tables in a proprietary
MSC data model. It represents how the supplier, service, service
category, and part length capability concepts are related in that
model.

5.3. Syntactical Transformation

Transformation of a table without a foreign key into OWL DL
source ontology involves creating only a class, named individuals,
data properties, and assertions. Fig. 12 below illustrates this trans-
formation using the Supplier table. The Supplier table is con-
verted into an owl:Class named s:Supplier. The record, which
has the value Supplier_3 as its ID, is converted into an
owl:NamedIndividual named s:Supplier_3. Its ID attribute
value Supplier_3 becomes an xsd:string value of the s:Sup-

plier_ID data property.
Transformation of a table with foreign keys involves creating a

class, named individuals, object properties, data properties, and
assertions. Fig. 13 illustrates the transformation using one of the
records in the SupplierService table. The table is converted into
an owl:Class named s:SupplierService. The record, which has
5 as its ID, is converted into owl:NamedIndividual named
s:SS_3_4. Its ID attribute value 5 is an xsd:integer value of
the s:SupplierService_ID data property. This table has two
foreign key attributes including SupplierID and ServiceID,
which are respectively primary keys of the Supplier table and
Service table. These two foreign key attributes are converted into
two owl:ObjectProperty declarations, namely s:Suppli-

erService_SupplierID and s:SupplierService_ServiceID.
These object properties are used to connect the s:SupplierSer-

vice individuals to owl:NamedIndividual converted from the



Fig. 10. Pattern library.

Fig. 11. Proprietary manufacturing service capability data model.

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 49
records in the Supplier and Service tables as shown in the
figure.

Fig. 14 shows the source ontology, which is the output from the
transformation of the proprietary MSC data model. The figure
includes transformation of s:Supplier_3 and s:Supplier_6

records in the Supplier table and related records in other tables
as highlighted in Fig. 11. The rest of the canonicalization illustra-
tion will be based on this data.
5.4. OPC identification

Recall that the first step in the OPC identification process is for
the user to establish the semantic links between the source ontol-
ogy and the pattern library (see the box below). For example, the
user has linked s:EDM and s:Moldmaking with the p:Ser-

viceCategory. Next, the ODPs’ binding expressions are used to
retrieve the ODPs that are related to these semantic links and OPCs



Fig. 12. Standard rule-based OWL DL encoding of the supplier table.

Fig. 13. Standard rule-based OWL DL encoding of the SupplierService table.

50 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
are initialized as shown in Table 6. Note that OPC3 is initialized
using not just the semantic links but also some logical inferences.
This happened because s:EDM is linked to p:ServiceCategory

and not to p:Service as in the Service-LengthCapability’s
binding expression. However, as shown in Fig. 10, the Service-

Categorization ODP illustrates that an instance of p:Service
is an instance of p:ServiceCategory as well. Thus, s:EDM is
linked indirectly to the p:Service; and the OPC3 can be initialized
even though s:EDM has no direct semantic link to p:Service.

{s:Supplier, p:Supplier, Class-to-Class},

{s:Service, p:Service, Class-to-Class}, {s:EDM,

p:ServiceCategory, Class-to-Class},

{s:PartLength, p:LengthCapability, Class-to-

Class}, {s:Moldmaking, p:ServiceCategory, Class-

to-Class}

In the next step, all the representative source ontology artifacts
are identified for the OPCs. The results are shown in Table 7. At this
point we can identify how the logical structure of each source
ontology artifact differs from its corresponding ODP. Thus, OPC1
to OPC5 are the OPCs output from the OPC identification on which
subsequent canonicalization steps will be performed.

5.5. Source ontology pattern generation

With all the representative source ontology artifacts identified
in the OPCs, source ontology patterns can be generated. Fig. 15
shows a graphical representation of the source ontology patterns
based on the source ontology artifacts in Table 7.

5.6. Pattern transformation rule generation

With the source and target ontology patterns captured in the
OPCs, pattern transformation rules (PTRs) can be created for each
OPC. Fig. 16 visualizes the PTR relationships between the source
ontology pattern SP1 and the target ontology pattern Supplier-

Service ODP in OPC1. Table 8 shows the details. PTR1.1 and
PTR1.2 state that s:C1 and s:C3 in the SP1 should be respectively
transformed into the same artifact type p:C1 and p:C2 in the Sup-
plier-Service ODP; and hence, they are type-1 transformations.



Fig. 14. Source ontology.

Table 6
Initial ontology pattern correspondences.

OPC ID Source ontology pattern Target ontology pattern

Artifact type Source ontology artifact

OPC1 Class s:Supplier, s:Service Supplier-Service

OPC2 Class s:Service,s:EDM Service-Categorization

OPC3 Class s:EDM, s:PartLength Service-LengthCapability

OPC4 Class s:PartLength LengthCapability

OPC5 Class s:Service, s:Moldmaking Service-Categorization

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 51
PTR1.3 and PTR1.4 state that s:L1 and s:L2 in the SP1 on the
other hand should be respectively transformed into differing arti-
fact types p:I1 and p:I2 in the Supplier-Service ODP; and
hence, they are type-2 transformations. PTR1.1 to PTR1.4 use
the names/IRIs from the source ontology. Type-4 transformation
is needed in PTR1.5 to create the relationship between p:I1 and
p:I2 using the new object property p:OP1. Since type-4 transfor-
mation creates a new artifact and there is no source ontology enti-
ty corresponding to p:OP1, the name p:hasService from the ODP
is used as shown in the Transformation Expression column. Lastly,
PTR1.6 to PTR1.12 removes the unwanted artifacts with the type-
3 transformation. Associated axioms can also be automatically
removed.

Pattern transformation rule set for OPC2, OPC3 and OPC4 are
denoted by PTRS2, PTRS3, and PTRS4, respectively. Their PTRs
only need to deal with structural pattern detections and entity
transformations that are similar to those of OPC1; and, conse-
quently, can be created in the same way. The PTRs for OPC5, how-
ever, have an additional problem: they must also deal with literal
values. This is because the LengthCapability ODP has two data
properties: p:hasMin and p:hasMax. However, the SP5 source
ontology pattern has only one data property that represents the
same information in a literal value – ‘‘6cm – 48cm’’, for example.
Fig. 17 illustrates the situation.
To deal with this situation, we define a literal value pattern with
the following regular expression.

� ([0 � 9]+)–([0 � 9]+)cm

The first group in the regular expression, which is embraced by
the first set of parentheses, corresponds to the minimum part
length in the literal value and is assigned to the variable s:G1.
The second group in the regular expression, which is embraced
by the second set of parentheses, corresponds to the maximum
part length in the literal value and is assigned to the variable
s:G2. This literal value pattern detection is used in PTR5.3 and
PTR5.4 as indicated by their usages of s:G1 and s:G2 in Table 9.

5.7. Pattern transformation

The pattern transformation process is a final step of the
canonicalization and it executes pattern transformation rules on
the source ontology for each OPC. Table 10 below summarizes
the current state of the OPCs that provide sufficient information
to execute the pattern transformation.

Below we illustrate the pattern transformation on OPC1, which
is divided into two sub-processes, the pattern instances detection
and pattern transformation rules application, as follows.



Table 7
Source and target ontology pattern correspondences output from the OPC identification.

OPC ID Source ontology pattern Target ontology pattern

Artifact type Source ontology artifact

OPC1 Class s:Supplier, s:SuplierService, s:Service Supplier-Service

Individual s:Supplier_3, s:SS_3_4, s:Service_4

Object Property s:SupplierService_SupplierID,s:SupplierService_ServiceID

Data Property s:Supplier_ID, s:Service_Name

Datatype xsd:string

Literalal ‘‘Supplier_3’’, ‘‘S3_EDM_Service’’

Axiom (s:Supplier_3, rdf:type, s:Supplier),
(s:SS_3_4, rdf:type, s:SuplierService),
(s:SS_3_4, s:SupplierService_SupplierID, s:Supplier_3),
(s:SS_3_4, s:SupplierService_ServiceID, s:Service_4),
(s:Supplier_3, s:Supplier_ID, ‘‘Supplier_3’’),
(s:Service_4, s:Service_Name, ‘‘S3_EDM_Service’’)

OPC2 Class s:Service, s:EDM Service-Categorization

Individual s:Service_4, s:EDMService_3

Object Property s:EDM_ServiceID

Data Property s:Service_Name

Datatype xsd:string

Literalal ‘‘S3_EDM_Service’’

Axiom (s:Service_4, rdf:type, s:Service), (s:EDMService_3, rdf:type, s:EDM),
(s:Service_4, s:Service_Name, ‘‘S3_EDM_Service’’)
(s:EDMService_3, s:EDM_ServiceID, s:Service_4)

OPC3 Class s:Service, s:Moldmaking Service-Categorization

Individual s:Service_9, s:MoldmakingService_3

Object Property s:Moldmaking_ServiceID

Data Property s:Service_Name

Datatype xsd:string

Literalal ‘‘S6_Moldmaking_Service’’

Axiom (s:Service_9, rdf:type, s:Service),
(s:Service_9, s:Service_Name, ‘‘S6_Moldmaking_Service’’),
(s:MoldmakingService_3, rdf:type, s:Moldmaking),
(s:MoldmakingService_3, s:Moldmaking_ServiceID, s:Service_9)

OPC4 Class s:EDM, s:PartLength, s:EDMPartLength Service-Length Capability

Individual s:EDMService_3, s:EP_3_4, s:PartLength_4

Object Property s:EDMPartlength_EDMID, s:EDMPartLengnth_PartLengthID

Data Property s:PartLength_Value

Datatype xsd:string

Literalal ‘‘6–48 cm’’

Axiom (s:EDMService_3, rdf:type, s:EDM), (s:PartLength_4, rdf:type, s:PartLength),
(s:EP_3_4, rdf:type, s:EDMPartLength),
(s:EP_3_4, s:EDMPartLengnth_PartLengthID,s:PartLength_4),
(s:EP_3_4, s:EDMPartlength_EDMID, s:EDMService_3)

OPC5 Class s:PartLength Length Capability

Individual s:PartLength_4

Object Property –
Data Property s:PartLength_Value

Datatype xsd:string

Literalal ‘‘6–48 cm’’

Axiom (s:PartLength_4, rdf:type, s:PartLength), (s:PartLength_4,
s:PartLength_Value, ‘‘6 cm – 48 cm’’)

52 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
The pattern instances detection sub-process uses the SPARQL
query generated from the source ontology pattern SP1 to find
instances of a source ontology pattern to be transformed. The
SPARQL query generated from SP1 is shown in Fig. 18. It retrieves
all the pattern instances, which contain source ontology entities
and literals as shown in Table 11. Two pattern instances are
returned in this example, based on the source ontology in Fig. 14.

The pattern transformation rules application sub-process
applies PTRs on the retrieved entities and literals. Table 12 shows
the result of applying PTRs in PTRS1 (Table 8) on the SPI1.1 query
result shown in Table 11 (note that some SP1 variables are bound
to constants and are not shown in Table 11). Fig. 19 shows the final
output of the canonicalization process from executing pattern
transformation on OPC1 to OPC5.
8 Note: Our canonicalization process does not improve necessarily the other steps
in that process.
6. Analysis

This section provides qualitative and quantitative analyses to
demonstrate that our canonicalization approach enables simpler
OWL mapping axioms, shorter reasoning time, and better semantic
mediation results. Specifically, that approach significantly
improves the OWL Mapping & Inference step of the semantic med-
iation process shown in Fig. 1. This leads to enhanced, sharable
MSC information semantics.8

Two cases are used in the analyses to show the canonicalization
impacts. Case 1 is the OWL mapping between a canonicalized
proprietary MSC model and the reference MSC ontology. Case 2
is the OWL mapping between a non-canonicalized proprietary
MSC model and the reference MSC ontology. The non-canonical-
ized proprietary MSC model is an OWL-encoded proprietary MSC
model using the RDB automatic conversion profile described in
Section 4.3, i.e., it is the source ontology. As such, it does not follow
the ODPs used by the reference MSC ontology. On the other hand,
the canonicalized proprietary MSC model follows the same ODPs
used by the reference MSC ontology. It is the result of performing



Fig. 15. Graphical representations of the source ontology patterns.

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 53
the transformations of the non-canonicalized schema and the cor-
responding data that are described in Section 5. The next two sub-
sections provide a detailed discussion of these analyses.

6.1. Qualitative analysis

The qualitative analysis compares the OWL mapping statement
complexity, mappability, and query behavior of the two cases.
Queries, which use only terminologies from the reference MSC
ontology, are used in the analysis. These queries retrieve informa-
tion encoded in the proprietary terminologies and structures. Con-
sequently, they verify the extent to which semantic mediation has
occurred.

MSC information related to Supplier_3 in the proprietary
MSC data model shown in Fig. 11 is used for this illustration. The
MSC information has two features: service category and part
length capability. The queries Q1 and Q2 in Fig. 20 contain condi-
tions for these two features; hence, they are sufficient to verify
the semantic mediation related to these two features. These
queries are encoded in OWL DL query language (W3C, 2009c) with
the reference ontology terminology and structure. The expected
results from both queries are Supplier_3.
First, we analyze Case 1: OWL mapping between a canonical-
ized proprietary MSC model and the reference MSC ontology. On
the left side of Fig. 21 is the canonicalized proprietary MSC model
of Supplier_3; and, on the right side is the reference MSC ontol-
ogy. The dotted lines in the figure depict all the necessary mapping
axioms between the two models via either the owl:equivalen-

tClass or owl:equivalentProperty predicate. These axioms
are sufficient for both Q1 and Q2 to return the correct results.
Notice that both the subjects and objects of the mapping axioms
are simply a single class or property name. There is no need for
complex OWL class or property expressions (W3C, 2009b). This is
because both models follow the same set of ODPs and are struc-
turally aligned.

Next we analyze Case 2: OWL mapping between the original
MSC source ontology, derived from its relational DB, and the refer-
ence MSC ontology. Fig. 22 illustrates this case where the left side
shows Supplier_3 information from the source ontology and on
the right side shows the reference ontology. Unlike the previous
case, simple class-to-class and property-to-property mapping
axioms are insufficient to enable Q1 and Q2 to find the correct
results. Specifically, there are two issues and they are highlighted
in the shaded areas connected by the double arrow lines in the



Fig. 16. PTRs between the source and target ontology patterns in OPC1.

Table 8
Pattern transformation rule set for OPC1.

PTRS ID PTR ID Source ontology pattern variable Target ontology pattern variable Transformation type Transformation expression

PTRS1 PTR1.1 s:C1 p:C1 Type-1 s:C1

PTR1.2 s:C3 p:C2 Type-1 s:C3

PTR1.3 s:L1 P:I1 Type-2 s:L1

PTR1.4 s:L2 P:I2 Type-2 s:L1

PTR1.5 – p:OP1 Type-4 p:hasService

PTR1.6 s:I1 – Type-3 –
PTR1.7 s:I2 – Type-3 –
PTR1.8 s:I3 – Type-3 –
PTR1.9 s:OP1 – Type-3 –
PTR1.10 s:OP2 – Type-3 –
PTR1.11 s:DP1 – Type-3 –
PTR1.12 s:DP2 – Type-3 –
PTR1.13 s:C2 – Type-3 –

Fig. 17. Literal value pattern detection.

54 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60



Table 9
Pattern transformation rule set for OPC5.

PTRS ID PTR ID Source ontology pattern Target ontology pattern Transformation type Transformation expression

PTRS5 PTR5.1 s:C1 p:C1 Type-1 s:C1

PTR5.2 s:I1 p:I1 Type-1 s:I1

PTR5.3 s:L1 p:L1 Type-2 s:G1

PTR5.4 s:L1 P:L2 Type-2 s:G2

PTR5.5 – p:DP1 Type-4 p:hasMin

PTR5.6 – p:DP2 Type-4 p:hasMax

PTR5.7 s:DP1 – Type-3 –

Table 10
OPCs ready for the pattern transformation.

OPC ID Source ontology pattern Target ontology pattern Pattern transformation rule set

OPC1 SP1 Supplier-Service PTRS1

OPC2 SP2 Service-Categorization PTRS2

OPC3 SP3 Service-Categorization PTRS3

OPC4 SP4 Service-LengthCapability PTRS4

OPC5 SP5 LengthCapability PTRS5

Fig. 18. SPARQL query generated from SP1.

Table 11
Occurrences of SP1 in the source ontology derived from SP1 query.

SP1 instance ID I1 I2 I3 L1 L2

SPI1.1 s:Supplier_3 s:SS_3_4 s:Service_4 ‘‘Supplier_3’’ ‘‘S3_EDM_Service’’

SPI1.2 s:Supplier_6 s:SS_6_9 s:Service_9 ‘‘Supplier_6’’ ‘‘S6_Moldmaking_Service’’

Table 12
Results of PTRS1 application on SPI1.1.

PTR ID SP1 variables Source ontology artifacts Transformation type Result

Name Type

PTR1.1 s:C1 s:Supplier Type-1 s:Supplier Class

PTR1.2 s:C3 s:Service Type-1 s:Service Class

PTR1.3 s:L1 ‘‘Supplier_3’’ Type-2 s:Supplier_3 Individual

PTR1.4 s:L2 ‘‘S3_EDM_Service’’ Type-2 s:S3_EDM_Service Individual

PTR1.5 – – Type-4 s:hasService Object Property

PTR1.6 s:I1 s:Supplier_3 Type-3 – –
PTR1.7 s:I2 s:SS_3_4 Type-3 – –
PTR1.8 s:I3 s:Service_4 Type-3 – –
PTR1.9 s:OP1 s:SupplierService_SupplierID Type-3 – –
PTR1.10 s:OP2 s:SupplierService_ServiceID Type-3 – –
PTR1.11 s:DP1 s:Supplier_ID Type-3 – –
PTR1.12 s:DP2 s:Service_Name Type-3 – –
PTR1.13 s:C2 s:SupplierService Type-3 – –

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 55



Fig. 19. Canonicalized proprietary MSC model.

Fig. 20. Desired query behavior to demonstrate the OWL-based semantic mediation.

Fig. 21. Qualitative analysis of OWL mapping after canonicalization.

56 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
figure. First there is a need to map between differing OWL ontology
artifact types, specifically from a literal, ‘‘6cm – 48cm’’, to two
OWL data properties, mo:hasMin and mo:hasMax. This is related
to the part length information and is needed to enable Q1; howev-
er, the required mapping cannot be constructed within OWL DL.

The other issue involves the creation of a bridge to deal with the
different structural representations of the EDM manufacturing ser-
vice in the source and reference ontologies. Such a bridge, which is
necessary to enable Q2, can be created using the mapping class
technique described in (Kulvatunyou et al., 2013). The required
mapping class EDMSupplier is shown in Table 13. A mapping
class is a defined-class with multiple necessary and sufficient con-
ditions (owl:equivalentClass axioms). Each condition uses
terms from a single terminology set and requires an OWL class
expression as an object in the axiom. In this case, the two mapping
class axioms, A1 and A2, are shown in Table 13. Although these
mapping class axioms enable Q2 to return the desired results, the
query behavior associated with the mapping class technique is
somewhat restricted. The reason is that the bridge between the
views is limited to the class expressions provided in the axioms.



Fig. 22. Qualitative analysis of OWL mapping without canonicalization.

Table 13
Mapping class axioms.

Mapping class Axiom
ID

Mapping class axioms

EDMSupplier A1 mo:Supplier and

mo:hasService some

mo:ElectroDischargeMachiningService

A2 s:Supplier and inverse

s:SupplierService_SupplierID

some (s:SupplierService and

s:SupplierService_ServiceID

some (s:Service and inverse

s:EDM_ServiceID some s:EDM))

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 57
For example, the EDMSupplier mapping class in A1 is related only
to mo:Supplier and mo:hasService. If a new target of the query
is related to, say, mo:Factory and mo:hasService, another map-
ping class will be needed. Moreover, the number of mapping class-
es grows proportionally with the number of service categories.

In summary then, this qualitative analysis shows that our
canonicalization approach can circumvent OWL DL limitations
and simplify the mappings. Additionally, it can simplify the
mapping maintenance by reducing the number and complexity
of mapping axioms.

6.2. Quantitative analysis

The quantitative analysis focuses on OWL inference times.
Specifically, we study the impact of the number of mapping classes
on the amount of time required to complete the OWL DL reasoning
process. The reasoning process consists of four tasks: loading, con-
sistency checking, classification, and realization as described in
(MINDSWAP, 2012). All the reasoning is performed on a desktop
running Pellet version 2.2.2 (Clark and Parsia, 2012).

In this analysis, we use only the MSC information related to the
supplier’s service declaration in both the source and the reference
ontologies. We show that even if a human applies additional trans-
formation rules to the proprietary model without considering the
design pattern used in the reference ontology, the two ontologies
may still be structurally misaligned and increase reasoning
inefficiency, and therefore, reasoning time. Fig. 23 shows this
additional lift-up based on the proprietary semantic interpretation.
A single relationship via the s:provideService object property
and the s:EDM instance of the s:Service class replaces the whole
complex structure to declare the EDM (Electro-discharge
Machining) service capability.

To analyze the effect on reasoning time, this modeling pattern,
which represents service category as an instance of the service
class, is replicated with polymorphic names (C1, C2, . . ., Cn) for
several declarations of service capabilities. The reference ontology,
on the other hand, represents each service category as a subclass of
the service class. Different sets of mapping axioms are then
required in the case of canonicalized and non-canonicalized pro-
prietary MSC model as shown in the middle of Figs. 24 and 25,
respectively.

Since the canonicalized proprietary MSC model is structurally
aligned with the reference MSC ontology, the service categories
s:C1 to s:Cn are modeled the same way with OWL classes,
mo:C1 to mo:Cn. As a result, the mapping consists of only simple
class-to-class and property-to-property equivalence mapping
axioms as shown in the figure. On the other hand, different model-
ing patterns between the non-canonicalized proprietary MSC mod-
el and the reference ontology necessitate the mapping classes.
Differing mapping classes are required for C1 to Cn. In general,
an additional mapping class is needed for each additional service
category. For the quantitative analysis, we perform 10 semantic
mediation experiments and compare reasoning times between
the two cases by incrementing the number of service categories
by 10 for each experiment up to 100 (n = 100).

Table 14 shows the reasoning times in the canonicalization
case. It shows that increases in the number of service categories
has (1) little impact on the consistency checking and classification
times and (2) minor increases on the loading and realization times.
Table 15 shows the reasoning times in the non-canonicalization. In
this case, the classification and realization times are significantly
affected by the increase in the number of service categories; while
the loading and consistency-checking times are marginally
increased. The graph in Fig. 26 concludes that the total reasoning
time in the non-canonicalization case grows cubically with the
number of service category classes versus linearly in the canonical-
ization case. This finding suggests that canonicalization can play a



Fig. 23. Semantically-interpreted non-canonical model.

Fig. 24. Quantitative analysis of OWL mapping inference after canonicalization.

Fig. 25. Quantitative analysis of OWL mapping inference without canonicalization.

58 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60



Table 14
Reasoning times in the canonicalization case (all times are in second).

Number of service category classes Loading time Consistency checking time Classification time Realization time Total time

10 0.005 0.001 0.001 0.001 0.008
20 0.006 0.001 0.001 0.002 0.010
30 0.009 0.002 0.001 0.003 0.015
40 0.01 0.001 0.001 0.007 0.019
50 0.012 0.002 0.001 0.009 0.024
60 0.013 0.003 0.001 0.012 0.029
70 0.016 0.002 0.001 0.017 0.036
80 0.02 0.005 0.001 0.023 0.049
90 0.022 0.004 0.001 0.026 0.053

100 0.024 0.005 0.002 0.031 0.062

Table 15
Reasoning times in the non-canonicalization case (all times are in second).

Number of service category classes Loading time Consistency checking time Classification time Realization time Total time

10 0.031 0.031 0.203 0.062 0.327
20 0.047 0.032 1.67 0.391 2.14
30 0.062 0.047 10.744 2.17 13.023
40 0.063 0.156 38.508 6.184 44.911
50 0.047 0.25 91.101 13.039 104.437
60 0.062 0.343 185.847 24.81 211.062
70 0.062 0.421 339.18 44.652 384.315
80 0.078 0.687 573.335 78.936 653.036
90 0.078 0.796 948.925 124.508 1074.307

100 0.078 1.046 1505.469 183.522 1690.115

Fig. 26. Aggregated reasoning performances of two cases.

B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60 59
significant role in a practical deployment of OWL DL-based seman-
tic mediation when there are structural conflicts.

7. Conclusion and future works

This paper describes a novel approach to semantic mediation by
decomposing the mapping task into two steps. The first step
resolves the structural conflicts between the source schemas and
the reference ontology using a ‘‘canonicalization’’ transformation.
The second step addresses other conflicts using OWL DL mapping
axioms. The paper formalized a canonicalization framework and
demonstrated its applicability using a realistic example of a propri-
etary manufacturing service capability database.

The primary contribution of this framework is the synthesis of
complementary pieces of work in syntactical data transformation,
ontology design patterns, ontology matching, and pattern-based
ontology transformation. In addition, the framework outlines a
novel approach to representing reusable, conceptual, ontology
design patterns and capturing the ontology pattern correspon-
dences (OPCs) in the source ontology. The proposed framework
was evaluated using both a qualitative and a quantitative analysis.
The qualitative analysis shows that canonicalization can circum-
vent OWL DL limitations to increase the mappability and can sim-
plify the OWL mapping axiom. The quantitative analysis shows
that OWL reasoning time grows (1) cubically when OWL DL axioms
are used to resolve a common type of structural conflict but (2) lin-
early using our canonicalization approach.

In terms of future work, we plan to develop methods and tools
to implement the proposed framework. This includes (1) pattern
library storage, which supports the proposed conceptual ontology
design pattern representation, (2) a computer-assisted OPC identi-
fication environment that employs ontology matching algorithms,
(3) a software component that helps users manage the OPC identi-
fication process, (4) enhancements to the existing pattern transfor-
mation engine, and (5) a methodology for deriving ontology design
patterns for the manufacturing service capability information.



60 B. Kulvatunyou et al. / Computers & Industrial Engineering 83 (2015) 39–60
Disclaimer

Certain commercial software products are identified in this
paper. These products were used only for demonstration purposes.
This use does not imply approval or endorsement by NIST, nor does
it imply these products are necessarily the best available for the
purpose.

Acknowledgement

The work described in this paper was funded in part by NIST
through University of Maryland, Baltimore County cooperation
agreement #70NANB13H154.

References

Ameri, F., & Dutta, D. (2006). An upper ontology for manufacturing service
description. In ASME 2006 international design engineering technical conferences
and computers and information in engineering conference (pp. 651–661).
American Society of Mechanical Engineers.

Bizer, C. (2003), D2R MAP: A database to RDF mapping language. In Proceedings of
the 12th international world wide web conference, Budapest, Hungary, 2003.

Bizer, C., & Seaborne, A. (2004), D2RQ–treating non-RDF databases as virtual RDF
graphs. In S.A. McIlraith, D. Plexousakis, F. van Harmelen (Eds.), Proceedings of
3rd international semantic web conference (Hiroshima, Japan, 2004) (Vo. 3298),
Springer, Lecture Note in Computer Sciences.

Bloomfield, R., Mazhari, E., Hawkins, J., & Son, Y. J. (2012). Interoperability of
manufacturing applications using the Core Manufacturing Simulation Data
(CMSD) standard information model. Computers & Industrial Engineering, 62(4),
1065–1079.

Clark and Parsia LLC (2012). Pellet: OWL 2 reasoner for Java version 2.2.2. <http://
clarkparsia.com/pellet/> Accessed May 2014.

D2RQ framework version 0.8.1. Accessing relational databases as virtual RDF graphs.
<http://d2rq.org/> Accessed May 2014.

Das, S., Sundara, S., & Cyganiak (2012). R. R2RML: RDB to RDF mapping language.
World Wide Web Consortium, Recommendation REC-r2rml-20120927,
September 2012.

Gangemi, A. (2005). Ontology design patterns for semantic web content. In
International semantic web conference. Lecture Note in Computer Sciences (Vol.
3729, pp. 262–276). Berlin: Springer-Verlag.

Kulvatunyou, B., Ivezic, N., Lee, Y., & Shin, J. (2013). An analysis of OWL-based
semantic mediation approaches to enhance manufacturing service capability
models. International Journal of Computer Integrated Manufacturing, 1–21
(ahead-of-print).

Lu, Y., Panetto, H., Ni, Y., & Gu, X. (2013). Ontology alignment for networked
enterprise information system interoperability in supply chain environment.
International Journal of Computer Integrated Manufacturing, 26(1–2), 140–151.

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000). The chimaera ontology
environment. In: AAAI/IAAI 2000 (pp. 1123–1124).

Min, H., & Zhou, G. (2002). Supply chain modeling: Past, present and future.
Computers & Industrial Engineering, 43(1), 231–249.

MINDSWAP – Maryland Information and Network Dynamics Lab Semantic Web
Agents Project (2012), Pellet Performance Report. <http://www.mindswap.org/
2003/pellet/performance.shtml> Accessed September 2012.

Noy, N. F., & Musen, M. A. (2003). The PROMPT suite: Interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies, 59(6),
983–1024.

OPPL – Ontology Pre-Processor Language version 2 (2012). <http://
oppl2.sourceforge.net/> Accessed September 2012.

Park, J., & Ram, S. (2004). Information systems interoperability: What lies beneath?
ACM Transactions on Information Systems, 22(4), 595–632.
Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M. C.,
Montiel-Ponsoda, E., et al. (2008), NeOn project delivery – D2.5.1. A library of
ontology design patterns: Reusable solutions for collaborative design of networked
ontologies.

Satya, S. S., Halb, W., Hellmann, S., Idehen, K., Thibodeau, T., Auer, S., et al. (2009), A
survey of current approaches for mapping of relational databases to RDF, W3C
RDB2RDF incubator group. <http://www.w3.org/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport.pdf>.

Sheth, A. P., & Kashyap, V. (1992). So far (schematically), yet so near (semantically).
In D. K., Hsiao, E. J. Neuhold, R. Sacks-Davis (Eds.), Proceedings of the IFIP WG2.6
database semantics conference on interoperable database systems (DS-5, Lorne,
Victoria, Australia, November 16–20) (pp. 283–312).

Shvaiko, P., & Euzenat, J. (2011). Ontology matching: State of the art and future
challenges. IEEE Transactions on Knowledge and Data Engineering, 99.

SMLC – Smart Manufacturing Leadership Coalition (2011). Implementing 21st
century smart manufacturing, Workshop Summary Report, June 24, 2011.
<https://smart-process-manufacturing.ucla.edu/about/news/Smart%
20Manufacturing%206_24_11.pdf>.

Svab-Zamazal, O., & Svatek, V. (2011), OWL matching patterns backed by naming
and ontology patterns. In Znalosti, 10th Czecho-Slovak knowledge technology
conference, Stara Lesna, Slovakia.

Svab-Zamazal, O., Svatek, V., Scharffe, F., & David, J. (2009), Detection and
Transformation of Ontology Patterns, Knowledge Discovery, Knowledge
Engineering and Knowledge Management, Revised Selected Papers from IC3K.
Springer CCIS no.128, 2011, 210–223.

Tsinaraki, C., Polydoros, P., & Christodoulakis, S. (2004). Interoperability support for
ontology-based video retrieval applications. Image and Video Retrieval, 3115,
582–591.

W3C – World Wide Web Consortium (2004a). SWRL: A Semantic Web Rule
Language, May 21, 2004. <http://www.w3.org/Submission/2004/SUBM-SWRL-
20040521/>.

W3C – World Wide Web Consortium (2004b). Resource Description Framework
(RDF): Concepts and Abstract Syntax, February 10, 2004. <http://www.w3.org/
TR/2004/REC-rdf-concepts-20040210/>.

W3C – World Wide Web Consortium (2004c), XML Schema, Parts 0, 1, and 2 (2nd
ed.), October 28, 2004. <http://www.w3.org/TR/xmlschema-0/, http://www.w3.
org/TR/xmlschema-1/, and http://www.w3.org/TR/xmlschema-2/>.

W3C – World Wide Web Consortium (2005a). Representing Classes As Property
Values on the Semantic Web, April 5, 2005. <http://www.w3.org/TR/swbp-
classes-as-values/>.

W3C – World Wide Web Consortium (2005b). Representing Specified Values in
OWL: ‘‘value partitions’’ and ‘‘value sets’’, May 17 2005. <http://www.w3.org/
TR/swbp-specified-values/>.

W3C – World Wide Web Consortium (2006). Extensible Markup Language (XML)
1.1, August 16, 2006. <http://www.w3.org/TR/xml11/>.

W3C – World Wide Web Consortium (2008). SPARQL Query Language for RDF,
January 15, 2008. <http://www.w3.org/TR/rdf-sparql-query/>.

W3C – World Wide Web Consortium (2009a). OWL 2 Web Ontology Language,
October 27, 2009. <http://www.w3.org/TR/owl2-overview/>.

W3C – World Wide Web Consortium (2009b). OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax, October 27, 2009. <http://
www.w3.org/TR/owl2-syntax/>.

W3C – World Wide Web Consortium (2009c). OWL 2 Web Ontology Language
Manchester Syntax W3C Working Group Note, October 27, 2009. <http://www.
w3.org/TR/owl2-manchester-syntax/>.

Wang, G., Wong, T. N., & Wang, X. (2013). An ontology based approach to organize
multi-agent assisted supply chain negotiations. Computers & Industrial
Engineering. http://dx.doi.org/10.1016/j.cie.2012.06.018.

Ye, Y., Yang, D., Jiang, Z., & Tong, L. (2007). An ontology-based architecture for
implementing semantic integration of supply-chain management. International
Journal of Computer Integrated Manufacturing, 21(1), 1–18.

Zheng, L., & Terpenny, J. (2013). A hybrid ontology approach for integration of
obsolescence information. Computers & Industrial Engineering. http://dx.doi.org/
10.1016/j.cie.2013.02.011.

http://refhub.elsevier.com/S0360-8352(15)00046-7/h0190
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0190
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0190
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0190
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0020
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0020
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0020
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0020
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://d2rq.org/
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0195
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0195
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0195
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0200
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0200
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0200
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0200
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0055
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0055
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0055
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0065
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0065
http://www.mindswap.org/2003/pellet/performance.shtml
http://www.mindswap.org/2003/pellet/performance.shtml
http://refhub.elsevier.com/S0360-8352(15)00046-7/h9005
http://refhub.elsevier.com/S0360-8352(15)00046-7/h9005
http://refhub.elsevier.com/S0360-8352(15)00046-7/h9005
http://oppl2.sourceforge.net/
http://oppl2.sourceforge.net/
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0075
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0075
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0100
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0100
https://smart-process-manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf
https://smart-process-manufacturing.ucla.edu/about/news/Smart%20Manufacturing%206_24_11.pdf
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0120
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0120
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0120
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/swbp-classes-as-values/
http://www.w3.org/TR/swbp-classes-as-values/
http://www.w3.org/TR/swbp-specified-values/
http://www.w3.org/TR/swbp-specified-values/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://dx.doi.org/10.1016/j.cie.2012.06.018
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0180
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0180
http://refhub.elsevier.com/S0360-8352(15)00046-7/h0180
http://dx.doi.org/10.1016/j.cie.2013.02.011
http://dx.doi.org/10.1016/j.cie.2013.02.011

	A framework to canonicalize manufacturing service capability models
	1 Introduction
	2 Literature review
	3 Canonicalization defined
	3.1 Data-level conflicts
	3.2 Schema-level conflicts
	3.3 What does canonicalization mean?
	3.4 Remarks

	4 Canonicalization framework
	4.1 Overview
	4.2 OWL ontology design pattern
	4.3 Syntactical Transformation
	4.4 OPC identification
	4.4.1 OPCs identification illustration

	4.5 Source ontology pattern generation
	4.6 Pattern transformation rule generation
	4.7 Pattern transformation

	5 Canonicalization example
	5.1 Pattern library
	5.2 Proprietary MSC data model
	5.3 Syntactical Transformation
	5.4 OPC identification
	5.5 Source ontology pattern generation
	5.6 Pattern transformation rule generation
	5.7 Pattern transformation

	6 Analysis
	6.1 Qualitative analysis
	6.2 Quantitative analysis

	7 Conclusion and future works
	Disclaimer
	Acknowledgement
	References


