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Implicitly Coupling Heat Conduction into a

Zone Fire Model

William F. Moss� Glenn P. Forneyy

Abstract

This report examines several methods for coupling the partial di�erential
equations that arise in conductive heat transfer with the ordinary di�erential
equations that arise in zone �re modeling. Two existing algorithms (method
of lines and time splitting) are discussed and a new strategy is proposed for
performing this coupling. This strategy couples the wall surface temperature
rather than the entire wall temperature pro�le with the other zone �re modeling
solution variables by requiring that the wall surface temperature gradient and
the incident heat 
ux (sum of convective and net radiative 
ux) satisfy Fourier's
law, q00 = �K@u=@x.

Two prototype �re models were written to test the ideas discussed in this
report. The �rst, CONRAD1, implements the method of lines strategy for
solving heat conduction. The second, CONRAD2, implements the new strategy.
Though ine�cient, CONRAD1 uses well established numerical techniques and
therefore serves as a benchmark to test the numerical ideas implemented in
CONRAD2. Both programs use the sti� di�erential-algebraic equation solver
DASSL. Supporting numerical results are presented.

1 Introduction

In a zone �re model, each room in a building is divided into a relatively smoke-laden
upper layer and a relatively clear lower layer. Temperatures in the ceiling, 
oor, and
vertical walls of a room must be computed in order to adequately account for heat
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exchange due to convective and radiative heat transfer. The ceiling, 
oor, and vertical
walls of each room are usually divided into \wall" segments. Here the term \wall"
may mean the ceiling, the 
oor, or the vertical walls of a room. Wall temperatures are
usually computed by solving a series of 1-d heat conduction problems; one problem
per wall segment. The gas layers in a zone �re model are often modeled using ordinary
di�erential equations (ODE) which are derived from conservation of mass and energy.
CCFM.VENTS [1] and FAST (renamed CFAST) [2] are two examples of zone �re
models. CCFM.VENTS uses pressure, layer interface height, and upper and lower
layer masses as solution variables, while CFAST uses pressure, upper layer volume,
and upper and lower layer temperatures. Reference [3] shows how these two and
many other formulations are equivalent in the sense that one can be converted into
another using the ideal gas law and de�nitions of physical properties such as internal
energy and density.

The heat conduction problems for the wall segments are formulated using the heat
conduction equation, a partial di�erential equation (PDE) [4], which can be derived
using the conservation of energy. The gas solution variables and the wall segment
temperature pro�les are presumed known at some time t. The ODE's and PDE's are
used to advance the solution variables to some later time t+�t. The gas layers and
the wall segments or equivalently the ODE's and the PDE's are coupled via convective
and radiative heat transfer terms.

Procedures for solving 1-d heat conduction problems are well known. For �nite
di�erence methods such as backward di�erence (fully implicit), forward di�erence
(fully explicit) or Crank-Nicolson see [5]. For �nite element methods see [6].

The question addressed by this report is how to couple the ODE's from the gas
layers with the PDE's from the wall segments in a numerically accurate, robust and
e�cient manner.

Two prototype �re codes were written to test the ideas presented in this report.
CONRAD1 implements the method of lines strategy for solving the heat equation
using standard cubic Hermite polynomials to represent the unknown wall temper-
ature pro�le. CONRAD2 implements a new method called \gradient matching"
which is based on an implicitly de�ned functional equation approach. Though in-
e�cient, CONRAD1 uses well established numerical techniques and therefore serves
as a benchmark to test the new numerical ideas implemented in CONRAD2. CON-
RAD1 and CONRAD2 both use the sti� di�erential-algebraic equation (DAE) solver
DASSL[7, 8]. These zone �re models, documented in [9], use the same solution vari-
ables as CCFM.VENTS which are denoted by P , y, mU and mL. Here these variables
are referred to as the gas solution variables. The procedures discussed in this report
for coupling the gas zone properties with the wall temperatures will work for many
other formulations of the gas solution variables.
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2 Background

Two standard approaches for coupling zone �re modeling di�erential equations with
1-d heat conduction problems are time splitting and the method of lines (MOL).
These two methods will be brie
y discussed in the next two subsections.

2.1 Time Splitting

Time splitting makes the assumption that two or more phenomena change over sig-
ni�cantly di�erent time scales. For example, in the zone �re modeling case, it can
often be assumed that the characteristic time scale for wall segment temperature pro-
�les is much longer than that for the gas solution variables. Suppose that the gas
solution variables and the wall segment temperature pro�les are known at time t. If
the characteristic time scale for wall segment temperature pro�les is �t, then wall
segment temperature pro�les would be solved over the time interval (t; t+�t). This
time interval would then be further subdivided in order to solve for the shorter time
scale phenomena. The longer time interval is often called the outer time step and the
shorter interval is called the inner time step.

Referring to Figure 1, time splitting advances the short time scale phenomena
from time t to time t+�t in a series of time steps chosen su�ciently small by the solver
to satisfy the error criteria. Next the wall segment temperature pro�les, are advanced
from time t to time t + �t. The outer time stepsize �t must be chosen su�ciently
small so that the computed wall segment temperature pro�les are consistent with the
gas solution variables at time t + �t. By consistent it is meant that the heat 
ux
striking each wall segment, q00, is related to the temperature gradient, @u=@x, at the
surface of the wall segment via Fourier's law, q00 = �K@u=@x, where K is the thermal
conductivity of the wall.

The wall segment temperature pro�les are advanced using a 
ux boundary con-
dition. The 
ux at the interior surface of a wall segment is the sum of convective
and net radiative heat 
uxes. The question then is what 
ux to use to advance the
solution; the 
ux at time t, the 
ux at time t + �t, or some combination. The 
ux
at time t + �t is not known until both the inner variables (P , y, mU and mL) and
the outer variables (wall segment temperature pro�les) are determined at t + �t.
Consequently, an iterative procedure must be used to insure that the 
ux striking the
interior surface of a wall segment is consistent with the temperature gradient there.

The method of time splitting does not work well when the time scales are close
which can occur when wall materials are thin and/or highly conductive. Time split-
ting is also di�cult to implement e�ciently since it is not clear what time stepsizes
should be used. A time stepsize chosen too small will result in ine�ciency and time
stepsize chosen too large will result in unnecessarily inaccurate answers. The former
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Figure 1: A General Flowchart for the Method of Time Splitting
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can easily occur as a �re simulation approaches steady state. In this case, solution
variables do not change much and ine�ciency occurs because of restrictive time step-
size selections.

2.2 Method of Lines

The MOL consists of converting the heat conduction partial di�erential equation into
a system of ordinary di�erential equations. The unknown wall segment temperature
pro�le is expanded as

û(x; t) =
NX
k=1

ak(t)Bk(x) (1)

where û(x; t) is an approximation to the unknown temperature pro�le at a distance x
into the wall segment at time t. The functions Bk(x) are known basis functions and
the ak(t) are unknown coe�cient functions. Equation (1) is substituted into the heat
equation

@u(x; t)

@t
= �

@2u(x; t)

@x2
;

where � is the thermal di�usivity, to obtain a di�erential equation for the unknown
coe�cients ak:

NX
k=1

a0k(t)Bk(x) = �
NX
k=1

ak(t)B
00
k(x) :

A system of ODE's is obtained by requiring that the above equation be satis�ed
at a set of collocation points x = x1; : : : ; xN�2. The 
ux boundary conditions at
each end of the wall segment generate two additional equations. Many variations of
the MOL algorithm can be derived by choosing di�erent basis functions (B-Splines,
cubic Hermite interpolating polynomials, trigonometric polynomials, for example)
and di�erent sets of collocation points. The MOL algorithm in CONRAD1 uses
the standard basis functions for cubic Hermite polynomial interpolation, and it uses
Gaussian points for collocation points. This is discussed in Appendix A.

In CONRAD1, the ODE's for the the gas solution variables and the coe�cients
ak are solved simultaneously. Heat conduction and gas phenomena are coupled via

radiative and convective heat transfer.
In CONRAD1 and CONRAD2 the four gas solution variables have four associated

ODE's. In CONRAD1, the number of additional ODE's required per room is NM
where N is the number of basis functions used to represent the wall segment temper-
ature pro�les and M is the number of wall segments per room. Even for moderate
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values of M , N , and the number of rooms, the run-times required for CONRAD1
can easily increase by an order of magnitude over a simulation with the conduction
submodel turned o�.

CONRAD1 advances the gas solution variables along with the wall temperature
pro�les from time t to t + �t. The time stepsize, �t, is chosen by the DAE solver
to satisfy appropriate error criteria. The 
ux boundary conditions form part of the
system of equations being solved. As a result, the inconsistencies that could arise
using time splitting will not occur. This gain in consistency, however, is at the
expense of increased computational requirements.

As is the case here, the MOL often requires a DAE solver because the boundary
conditions are algebraic equations which cannot be easily converted into ODE's. For
simple problems in which the boundary conditions can be easily di�erentiated with
respect to time, a standard (sti�) ODE solver can be used.

3 Coupling Heat Conduction Using GradientMatch-

ing

This report presents a new strategy for coupling 1-d heat conduction problem with
the ODE's for the gas solution variables. Only the temperature of the interior wall
segment surface (as opposed to the entire wall segment temperature pro�le) is di-
rectly coupled with the gas layers and �re through convective and radiative heat
transfer. This observation has been exploited to design a new and e�cient algorithm
for coupling heat conduction with a zone �re model.

3.1 Description

The method for modeling heat conduction discussed in this section couples the wall
segment surface temperatures, rather than the entire wall segment temperature pro-
�le, with the gas solution variables by requiring that the wall segment surface temper-
ature gradient, @u(x;t)

@x
, and the incident heat 
ux (sum of convective and net radiative


ux), q00 satisfy Fourier's law

q00 = �K@u(x; t)

@x
(2)

at the wall boundaries x = 0 and x = W where K is the thermal conductivity of
the wall material and W is the wall thickness. This solution strategy requires a
DAE solver that can simultaneously solve both di�erential (gas ODE's) and algebraic
equations (Fourier's law). With this method, only one or two extra equations are
required per wall segment (two if both the interior and exterior wall segment surface
temperatures are computed). This solution strategy is computationally more e�cient
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t nTime:
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zero?

wall
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temperature, advance the 
wall temperature profile

No

Yes

Increment n 

Figure 2: A General Flowchart for the Method of Gradient Matching

than the method of lines since fewer equations need to be solved. Wall segment
temperature pro�les, however, still have to be stored so there is no decrease in storage
requirements.

Consider a room with a single wall segment with both interior and exterior wall
segment surface temperatures computed. In this case, there will be six solution
variables, the four gas solution variables, P , y, mU , mL, plus the two wall segment
surface temperatures. There will be six equations to solve, four ODE's associated
with the gas solution variables, plus two algebraic equations consisting of Fourier's
law applied at the surfaces of the wall segment. Referring to Figure 2, the gradient
matching method assumes that the gas solution variables and the wall segment
temperature pro�le are known at time t. The DAE solver will make an initial guess
at values for the solution variables at time t+�t. Based on the wall segment surface
temperatures at times t and t+�t, the wall segment temperature pro�le is advanced
to time t+�t. Next, the wall segment surface temperature gradients are estimated at
time t+�t. Finally, the residuals are computed at time t+�t for the six equations
including the two Fourier law equations. The DAE solver adjusts the stepsize �t
until the residuals for all six equations are below an error tolerance.
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3.2 Theoretical Justi�cation for the Algorithm

The basic idea is to transform the initial-boundary value problem for each wall seg-
ment into a pair of functional equations. To explain further, consider the following
standard problem. Find the temperature pro�le u(x; t) that satis�es

@u(x; t)

@t
= �

@2u(x; t)

@x2
; 0 < x < W; t > 0 (3)

u(x; 0) = g(x); 0 � x � W (4)

u(0; t) = f0(t); t � 0 (5)

u(W; t) = f1(t); t � 0; (6)

where g, f0, and f1 are given continuous functions, � = K

�c
is the thermal di�usivity,

K is the thermal conductivity, � is the density and c is the speci�c heat of the wall
material. The existence and uniqueness theory (see [10]) for this problem shows that
u(x; t) is uniquely determined by the initial temperature pro�le, g, and the interior
and exterior temperature boundary functions f0(� ) and f1(� ) for 0 � � � t. In other
words, there is a functional relation between the initial temperature pro�le, boundary
functions, and the solution of the form

u(x; t) = G[g; f0(0 � � � t); f1(0 � � � t)](x; t) : (7)

In [10] the Laplace transform is used to construct the functional G. In the special
case when the initial temperature is constant, say u(x; 0) = Tamb, the functional G
can be written in terms of convolution integrals. With � = W = 1, the solution has
the form

u(x; t) = Tamb �
Z t

0
f0(t� � )

@

@x
�3(

x

2
; � )d� �

Z t

0
f1(t� � )

@

@x
�3(

1 � x

2
; � )d� ;

where �3(x; t) is a theta function [11] which can be expressed as

�3(x; t) = 1 + 2
1X
k=1

e��
2k2t cos 2�kx :

From equation (7), substituting x = 0 for the interior and x = W for the exterior
wall segment boundaries, it follows that

@u

@x
(0; t) =

@

@x
G[g; f0(0 � � � t); f1(0 � � � t)](0; t)

@u

@x
(W; t) =

@

@x
G[g; f0(0 � � � t); f1(0 � � � t)](W; t) :
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For each wall segment in a room, two functional equations are added to four gas
ODE's. These equations, based on Fourier's law (equation (2)), have the form

K
@

@x
G[Tamb; u(0; 0 � � � t); u(W; 0 � � � t)](0; t)

+ q00(u(0; t);mL(t);mU(t); y(t); P (t)) = 0 (8)

K
@

@x
G[Tamb; u(0; 0 � � � t); u(W; 0 � � � t)](W; t)

+ q00(u(W; t);mL(t);mU(t); y(t); P (t)) = 0 : (9)

The expressions u(0; 0 � � � t) and u(W; 0 � � � t) in equations (8) and (9) denote
the temperatures of the interior and exterior wall segment surfaces over the time
interval (0; t) which makes these functional equations.

Returning to the one room, one wall segment discussion of the previous section,
there are six unknowns: P (t), y(t),mL(t),mU(t), u(0; t), and u(W; t). Four ODE's for
the �rst four unknowns are coupled with the two functional equations (8) and (9). The
resulting system can be called a di�erential-functional equation (DFE) system. The
gradient matching method is a procedure for �nding an approximate solution to this
DFE system using a DAE solver. It is based on the following semi-group property of
the heat equation. The temperature pro�le obtained by advancing the initial pro�le
to time t + �t is identical with the pro�le obtained by �rst advancing the initial
pro�le to time t and then advancing it from time t to time t+�t. Implementation of
the gradient matching method requires that storage be allocated for the temperature
pro�le at the previous time, t, and at the next time, t+�t. Given the pro�le at time
t and values for the six unknowns at time t + �t (initial guess by the solver), the
pro�le G is advanced from time t to time t + �t. The gradient of G at x = 0 and
x =W is computed followed by the residuals for the six equations including equations
(8) and (9). The DAE solver adjusts the stepsize �t until the residuals for all six
equations are below an error tolerance. Once the solver has completed the step, the
array storing the temperature pro�le for the previous time is updated, and the DAE
solver is ready to take its next step.

3.3 Implementation Details

The gradient matching method was implemented in CONRAD2. For CONRAD2 the
set of unknowns are constructed as follows. For each room in which conduction is
modeled, there are four wall segments. The 
oor and ceiling are each treated as a
segment. The vertical walls in the room are divided into two segments, one above
the layer interface and one below. Each segment contributes two unknowns, one for
the segment interior surface temperature and one for the segment exterior surface

9



temperature. The four gas solution variables P , y, mU , and mL bring the total
number of unknowns to twelve per room.

To compute the �rst terms in equations (8) and (9) at time t+�t, the temperature
pro�le must be advanced from time t to time t + �t and its endpoint gradients
approximated. To advance the temperature pro�le a simple MOL approach was used
in CONRAD2. A graded (non-uniform) mesh with nx breakpoints was introduced for
the spatial variable x. The second spatial derivative in the heat equation was replaced
by a second divided (�nite) di�erence approximation. This produces a system of nx�2
ODE's for the nx�2 unknown temperatures at the interior breakpoints. This system
was solved by one step of the backward Euler method. Crank-Nicholson was also
tried but produced spurious oscillations in the temperature pro�les at the beginning
of the simulation; backward Euler does not su�er from this defect which is related
to the non-uniform mesh being used. The solution at time t + �t can be found by
solving a tridiagonal system of linear equations. The temperature gradient at x = 0
and time t + �t was approximated by interpolating the temperature values at the
�rst three breakpoints with a quadratic and then evaluating the derivative of this
polynomial at x = 0. A similar procedure was used to approximate the temperature
gradient at x = W and time t+�t.

A graded mesh scheme was chosen to allow breakpoints to cluster near the in-
terior and exterior wall segment surfaces. This is where the temperature gradi-
ents are the steepest. A breakpoint xb was de�ned by xb = min(xp;W=2), where
xp = 2

p
�t�nal erfc

�1(:05) and erfc�1 denotes the inverse of the complementary error
function. The value xp is the location in a semi-in�nite wall where the temperature
rise is 5% after t�nal seconds; it is sometimes called the penetration depth. Eighty
percent of the breakpoints were placed on the interior side of xb and the remaining
twenty percent were placed on the exterior side.

The temperature pro�le in a conduction node at time t + �t is found from the
temperature pro�le at time t by solving a tridiagonal system as follows. Let ui(t)
denote the approximate temperature at time t and breakpoint xi, let �xi = xi+1�xi
denote the breakpoint spacing, and let s = 2��t

W 2 . The tridiagonal system that must
be solved is0

BBBBBBBBBBBBBBB@

1 0

b2 a2 c2

. . .

bnx�1 anx�1 cnx�1

0 1

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

u1(t+�t)

u2(t+�t)

...

unx�1(t+�t)

unx(t+�t)

1
CCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBB@

f0(t+�t)

u2(t)

...

unx�1(t)

f1(t+�t)

1
CCCCCCCCCCCCCCCA

;
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where for i = 2; : : : ; nx � 1

ai = 1 +
s

�xi�1�xi

bi =
�s

�xi�1(�xi�1 +�xi)

ci =
�s

�xi(�xi�1 +�xi)
:

If the spacing is uniform (�xi = �x) and s = �x2 then the above coe�cient matrix
reduces to 0

BBBBBBBBBBBBBBB@

1 0

�1
2

2 �1
2

. . .

�1
2

2 �1
2

0 1

1
CCCCCCCCCCCCCCCA

In wall materials composed of multiple slabs, a di�erent form for ai, bi and ci must
be used at the breakpoints where the slab material properties change. This occurs
because the second partial of temperature, @2u

@x2
, does not exist at these breakpoints.

Formulas for these coe�cients are derived in Appendix B using the fact that heat

ow through a wall is continuous. These breakpoint coe�cients are

ai =
K+

i

�xi
� K�

i

�xi�1

bi = � K�
i

�xi�1

ci =
K+

i

�xi
di = 0

where K+
i (K

�
i ) is the thermal conductivity on the right(left) side of breakpoint xi.

The gradients at time t+�t at the points x = 0 and x = W are estimated from
quadratics passing through the �rst three and last three temperature values. These
gradients are computed using Newton divided di�erences. Let u(x0), u(x1) and u(x2)
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denote the temperatures at the �rst three breakpoints. The wall temperature gradient
at the interior surface is estimated by

K
u[x1; x2]� u[x1; x2; x3]�x1

W

where

u[x; y] =
u(x)� u(y)

x� y
;

u[x; y; z] =
u[x; y]� u[y; z]

x� z
:

Similarly the wall temperature gradient at the exterior surface is given by

K
u[xnx�1; xnx]� u[xnx�2; xnx�1; xnx ]�xnx�1

W
:

4 Numerical Results

In this section the MOL approach used in CONRAD1 is compared numerically with
the gradient matching approach used in CONRAD2. These numerical experiments
were conducted on a Sun Sparcstation 2. CONRAD1 and CONRAD2 were written
in Fortran 77 together with two extensions that are available on almost all Fortran 77
compilers. These extensions are the \IMPLICIT NONE" statement that forces the
typing of all variables and the \INCLUDE" statement that allows various header �les
to be read at the beginning of a program unit. CONRAD2 has been ported to and
tested on an Apple Macintosh II, a Sun Sparcstation 2, a Silicon Graphics 4D35, and
an IBM Risc 6000 Model 320. CONRAD1 has been ported to and tested on an Apple
Macintosh II, a Sun Sparcstation 2, and a Silicon Graphics 4D35. The only machine
dependent parts of these codes are the default unit number for screen output, the
timing routines, and the 
oating point constants. CONRAD1 and CONRAD2 are
fully documented via comment statements which include porting instructions.

The user communicates with CONRAD1 and CONRAD2 through nearly identical
input data �les. In this section, these codes are compared on a four room test case
for which the CONRAD1 input data �le has the following structure. The units here
are meters and seconds.

'RELATIVE ERROR TOLERANCES FOR P, Y, MU, ML, NODETEMP, NODETEMPGRAD'

1.D-6 1.D-6 1.D-6 1.D-6 1.D-3 1.D-3

'ABSOLUTE ERROR TOLERANCES FOR P, Y, MU, ML, NODETEMP, NODETEMPGRAD'

1.D-6 1.D-6 1.D-6 1.D-6 0.D0 0.D0

12



'NUMBER OF ROOMS'

4

'FIRE WATTS,DIM:DATUM TO FLOOR,XROOM,YROOM,ZROOM,GXFIRE,GYFIRE,GZFIRE'

'FOLLOWED BY RADIATION,NODES,CODES(0=NULL,1=CONCRETE,2=GYPSUM,3=KAOWOOL)'

500000. 0. 3.64 3.63 2.45 0. 0. 0.

.TRUE. 4 2 2 2 2

0. 0. 2.43 18.9 2.43 0. 0. 0.

.TRUE. 4 2 2 2 2

0. 0. 3.64 3.65 2.45 0. 0. 0.

.TRUE. 4 2 2 2 2

0. 0. 3.52 3.52 2.43 0. 0. 0.

.TRUE. 4 2 2 2 2

'NUMBER OF VENTS'

6

'AREA, DIS: DATUM TO TOP,DATUM TO BOTTOM,ROOM NUMBERS ON EACH SIDE'

0.18400E+01 0.20000E+01 0.00000E+00 1 2

0.50000E-01 0.30000E+00 0.20000E+00 1 -1

0.60000E-01 0.20000E+01 0.00000E+00 2 3

0.60000E-01 0.20000E+01 0.00000E+00 2 4

0.50000E-01 0.30000E+00 0.20000E+00 3 -1

0.50000E-01 0.30000E+00 0.20000E+00 4 -1

'NUMBER OF FORCED VENTS'

0

'AREA, DIS: DATUM TO TOP,DATUM TO VENT,FLOW RATE,ROOM NUMBERS ON EACH SIDE'

'TFINAL, TPRINT'

600. 60.

'LOGICAL, TS, TF: DIAGNOSTICS AT INTERMEDIATE STEPS IN INTERVAL [TS, TF]'

.FALSE. 0.0 0.5

'NUMBER OF BREAKPOINTS NX'

5

Lines 2 and 4 specify six error tolerances. For CONRAD2 the last tolerance
is left out since wall segment temperature gradients are not solution variables in
CONRAD2. Lines 10, 12, 14, and 16 specify that the radiation submodel should be
used in each room, that four wall segments (nodes) should be used in each room,
and that all wall segment materials should be gypsum. Lines 20{25 specify the vents
that interconnect the rooms. Room number �1 indicates the outside. The last line
speci�es the number of breakpoints used in the wall segments. This number is 5
for CONRAD1 and 20 for CONRAD2. These numbers were chosen on the basis
of a set of numerical experiments. Using more than this number of breakpoints
does not signi�cantly improve the accuracy of the wall segment temperature pro�le
computation.

Table 1 gives cpu times in seconds for three cases: gas equations only, gas plus
conduction equations, gas plus conduction plus radiation. The wall segment surface
temperatures for these two codes agreed to within the error tolerance set in the input
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Table 1: CPU Time Comparisons

Code gas gas + cond gas + cond + rad

CONRAD1 3.1 45.2 97.5

CONRAD2 3.4 30.5 51.6

data �le which here is 0.1%. This table illustrates the savings in cpu time provided
by CONRAD2 without any loss of accuracy in the computation of wall segment
temperatures. The number of DAE's solved by DASSL in CONRAD1 is 16 for the
gas case and 176 for the gas plus conduction and gas plus conduction plus radiation
cases. The number of DAE's solved by DASSL in CONRAD2 is 16 for the gas case
and 48 for the gas plus conduction and gas plus conduction plus radiation cases.
Notice that the cost of using the radiation submodel is signi�cant.

No attempt has been made in CONRAD1 to exploit any special structure in the
linear systems that DASSL solves at each time step. DASSL solves a nonlinear system
at each time step by a variant of Newton's method. Each iteration of this method
requires the solution of a linear system. The structure of the coe�cient matrix of
this linear system is dependent on the interconnectivity of the rooms. Consider an
example in which four rooms are side by side with a vent connecting rooms 1 and 2, a
vent connecting rooms 2 and 3, a vent connecting rooms 3 and 4, and a vent from room
1 to the outside. In this case, the coe�cient matrix will have a band structure and the
band solver provided with DASSL can be used. The minimum band width will occur
when the rooms are in a \chain" as in this example. If each room is interconnected
with all other rooms, this coe�cient matrix will be full. Consequently, there is no
easy way to exploit the structure of this coe�cient matrix without making a priori
assumptions about the interconnectivity of the rooms. On the other hand, each wall
segment contributes a tridiagonal block to this coe�cient matrix. Perhaps it would
be possible to create a special solver that would be able to exploit this feature of the
matrix. If CONRAD2 is later found to have limitations, then creating a special solver
to use with DASSL in CONRAD1 might be worthwhile.

5 Future Work

The use of a DAE solver to solve a DFE system appears to be a new and useful devel-
opment in the application of mathematics. The theoretical basis and the limitations

14



of this method will be further explored. This is a mathematical analysis issue, not a
programming issue.

The subroutine CNDUCT in CONRAD2 which solves the heat equation for a wall
segment can be rewritten based on a piecewise cubic Hermite expansion approach
instead of the current �nite di�erence approximation approach. This change has
several advantages. The order of accuracy of the spatial approximation is increased,
and consequently, fewer breakpoints and less memory are required. The expansion
approach provides a natural method for interpolating the temperature pro�le between
breakpoints, and it provides the gradients at the endpoints directly without the need
for an additional approximation. The expansion approach should also be less sensitive
to poorly chosen breakpoint spacing. The resulting linear system that must be solved
is now pentadiagonal instead of tridiagonal, but the size of the system is cut in half.

The breakpoint heuristic in CONRAD2 can be improved. The current heuristic
is based on the �nal time t�nal. As an alternative, three di�erent sets of breakpoints
could be generated based on three times tshort < tmid < t�nal. Subroutine CNDUCT
could be rewritten to use the set based on tshort for 0 < t � tshort, the set based on tmid

for tshort < t � tmid, and the set based on t�nal for tmid < t � t�nal. This would amount
to a crude moving mesh strategy. When the set of breakpoints is changed, the current
temperatures at the new breakpoints must be computed. This is especially easy with
the expansion approach since it provides a natural interpolation formula.

Currently, the ceiling and 
oor in a room are each treated as wall segments and
the vertical walls are divided into two segments, one above the layer interface and one
below the layer interface. Consequently, the two segments of the vertical walls have
surface areas which change with time. The temperature distribution in the vertical
walls can be more accurately modeled by using more than two segments with �xed
surface areas, or by moving to a 2-d conduction model in the vertical walls. Currently,
the exterior surfaces of the wall segments in CONRAD1 and CONRAD2 exchange
heat to ambient. The model could be improved by allowing neighboring rooms to
exchange heat via conduction through ceilings, walls, and 
oors. A simple �rst step
would be to implement this for the room(s) of �re origin.

6 Summary

Two standard methods, time splitting and the method of lines, were presented for
coupling the partial di�erential equations that arise when modeling heat conduction
with the ordinary di�erential equations that arise in zone �re modeling. E�ective time
splitting implementations rely on the assumption that the time split phenomenon
changes over a signi�cantly longer time scale than other phenomena of interest. This
assumption breaks down when wall materials are thin and/or highly conductive since
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they react more quickly to changing boundary conditions. The method of lines does
not have these problems. However, e�cient implementations are di�cult to attain
due to the large number of extra ordinary di�erential equations that are introduced.

A third heat conduction coupling method, gradient matching, was introduced to
address the above de�ciencies. This method couples only the surface wall tempera-
tures with the other gas solution variables. These are the temperatures that are of
primary concern since only the wall surface temperatures (not the interior wall tem-
peratures) interact with the gas layers (via convective and radiative heat transfer).

Numerical experiments were performed that demonstrated that the new scheme
was not only more e�cient (as implemented in CONRAD2) but agreed with estab-
lished numerical methods (using the method of lines as implemented in CONRAD1)
to within the numerical solver tolerance error of .1 per cent.
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Nomenclature

c speci�c heat wall segment material

K thermal conductivity of wall segment material

mU(mL) mass of upper (lower) layer

P room pressure

q00 net heat 
ux

t time

Tamb ambient temperature

tfinal �nal simulation time

u(x; t) temperature in a wall segment

x position in wall segment

xp penetration depth

y layer interface height

� thermal di�usivity, � = K

�c

�t time stepsize

�xi breakpoint spacing

� density of wall segment material
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A Modeling Heat Conduction Using the Method

of Lines

The standard MOL approach for solving the heat equation is to discretize the spatial
variable by either replacing the spatial derivatives with �nite di�erence approxima-
tions, or by expanding the unknown function as a linear combination of spatial basis
functions with time dependent coe�cients and deriving the ODE's via collocation.
CONRAD1 uses the second approach and CONRAD2, the �rst. The MOL generally
produces a sti� system of ODE's. Although this method was proposed many years
before, it was not until the advent of sti� ODE solvers in the 1970's (see Gear [12])
that implementation of this method was practical.

For each wall segment there is an initial-boundary value problem which is coupled
with the gas ODE's. These equations are

@u(x; t)

@t
= �

@2u(x; t)

@x2
; 0 < x < W; t > 0 (10)

u(x; 0) = Tamb ; 0 < x < W (11)

�K
@u

@x
(0; t) = q00convec(0; t) + q00rad(0; t) (12)

�K
@u

@x
(W; t) = q00convec(W; t) + q00rad(W; t) ; (13)

where u(x; t) denotes the temperature at a distance x into the wall segment at time
t and Tamb denotes the ambient temperature. The terms q00convec and q00rad denote
the convective and radiative 
ux into the interior and exterior surfaces of the wall
segments. Finally, � = K

�c
, where K, c, and �, denote the thermal conductivity,

the speci�c heat, and the density of the segment material. The four gas ODE's are
coupled to the above initial-boundary value problem by the dependencies of q00convec
and q00rad on the gas layer temperatures TL and TU which can be determined from the
gas solution variables. In addition, the energy transfer rates _qL and _qU to the lower
and upper gas layers contain terms to account for the transfer of energy from the gas
layers to the surfaces of the wall seqments via convection and radiation.

A.1 The Method of Lines Using the Piecewise Cubic Her-

mite Collocation Approach, CONRAD1

It is well-known in approximation theory that a function possessing four continuous
derivatives on a closed, �nite interval can be approximated to fourth order accuracy
using piecewise cubic Hermite interpolation. This method of interpolation matches
the function and its �rst derivative at a set of breakpoints. Between the breakpoints,
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Figure 3: Plot of Cubic Hermite Basis Functions

the function is approximated by a cubic polynomial. The resulting approximation
has a continuous �rst derivative (see [13]). Let �i and  i denote the standard basis
functions for piecewise cubic Hermite interpolation with breakpoints x1 < : : : < xnx.
These basis functions have the de�ning properties

 0i(xj) = �i(xj) = �ij

 i(xj) = �0i(xj) = 0

where �ij is the kroneker delta function with value zero unless i = j in which case the
value is one.

For the case where x1 = �1, x2 = 0, and x3 = 1, the basis functions �2 and  2

are plotted in Figure 3 and are given by

�2(x) = (jxj � 1)2(2jxj+ 1)

 2(x) = x(jxj � 1)2

The MOL equations for CONRAD1 are derived by assuming that the wall segment
temperature pro�les have the form

u(x; t) =
nxX
i=1

[ai(t)�i(x) + bi(t) i(x)] : (14)
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Equation (14) is then substituted into equation (10) to obtain

nxX
i

(a0i(t)�i(x) + b0i(t) i(x)) = �
nxX
i

(ai(t)�
00
i (x) + bi(t) 

00
i (x)) : (15)

Next, 2nx�2 ODE's involving the 2nx unknown coe�cients, ai(t), bi(t), i = 1; : : : ; nx,
are derived by requiring that equation (15) be satis�ed at the following two Gaussian
points

p2j�1 = xj +
3�p3

6
(xj+1 � xj);

p2j = xj+1 � 3�p3
6

(xj+1 � xj)

in each subinterval j = 1; � � � ; nx� 1. The boundary conditions (12) and (13) provide
two additional algebraic equations given by

�K[a1(t)�
0
1(0) + b1(t) 

0
1(0)] = q00convec(0; t) + q00rad(0; t);

�K[anx(t)�
0
nx
(W ) + bnx(t) 

0
nx
(W )] = q00convec(W; t) + q00rad(W; t):

These discretizations lead to a system of 2nx � 2 ODE's and two algebraic equations
of the form

A
dy

dt
= �By + F;

where A and B are 2nx � 2nx matrices and y and F are 2nx vectors. Analytic
di�erentiation of the boundary conditions with respect to time, which would lead
to a system of 2nx ODE's, is not practical because the radiation 
ux terms in the
boundary conditions are implicitly de�ned, nonlinear function of the gas variables, P ,
y, mU , and mL, and the wall segment surface temperatures. As a result the boundary
conditions must be treated as algebraic equations. For nx = 4 and q00 = q00convec+ q00rad,
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the vectors y and F have the form

y =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

a1

b1

a2

b2

a3

b3

a4

b4

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

; F =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

q00(0;t)
�c

0

0

0

0

0

0

q00(W;t)
�c

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

and the matrices A and B have the form

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

�1(p1)  1(p1) �2(p1)  2(p1) 0 0 0 0

�1(p2)  1(p2) �2(p2)  2(p2) 0 0 0 0

0 0 �2(p3)  2(p3) �3(p3)  3(p3) 0 0

0 0 �2(p4)  2(p4) �3(p4)  3(p4) 0 0

0 0 0 0 �3(p5)  3(p5) �4(p5)  4(p5)

0 0 0 0 �3(p6)  3(p6) �4(p6)  4(p6)

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

(16)
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and

B =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

�001(p1)  001(p1) �002(p1)  002(p1) 0 0 0 0

�001(p2)  001(p2) �002(p2)  002(p2) 0 0 0 0

0 0 �002(p3)  002(p3) �003(p3)  003(p3) 0 0

0 0 �002(p4)  002(p4) �003(p4)  003(p4) 0 0

0 0 0 0 �003(p5)  003(p5) �004(p5)  004(p5)

0 0 0 0 �003(p6)  003(p6) �004(p6)  004(p6)

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (17)

The DAE solver DASSL by Petzold [7, 8] was chosen for use in CONRAD1 and
CONRAD2. It is the most widely used production code for DAE's at this time. The
following brief description of DASSL is taken from [7]. DASSL is a code for solving
systems of DAE's of the form

F (t; y; y0) = 0 (18)

y(t0) = y0 (19)

y0(t0) = y00; (20)

where F , y, and y0 are N -dimensional vectors. The basic idea for solving DAE systems
using numerical ODE methods is to replace the derivative in (18) by a di�erence
approximation, and then to solve the resulting system for the solution at the current
time tn+1 using Newton's method. For example, replacing the derivative in (18) by
the �rst order backward di�erence, we obtain the implicit Euler formula

F

 
tn+1; yn+1;

yn+1 � yn
hn+1

!
= 0; (21)

where hn+1 = tn+1 � tn. This nonlinear system is then usually solved using some
variant of Newton's method. The algorithms used in DASSL are an extension of this
basic idea. Instead of always using the �rst order formula (21), DASSL approximates
the derivative using the kth order backward di�erentiation formula, where k ranges
from one to �ve. At every step it chooses the order k and the stepsize hn+1, based
on the behavior of the solution. DASSL can solve index zero and one systems. The
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Figure 4: Ceiling Temperature Pro�les at 20, 60 and 120 Seconds

index of the DAE system (18) is the minimum number of times that all or part of
this system must be di�erentiated with respect to t in order to determine y0 as a
continuous function of y and t.

A.2 Graded Spatial Meshes

The MOL chooses the time discretization to maintain accuracy and stability, but
the user must choose the spatial discretization. During the �rst seconds of a �re
simulation, wall segment temperature pro�les typically have steep gradients near the
interior wall segment surfaces. Consequently, uniform meshes are not e�cient. For
both CONRAD1 and CONRAD2, graded meshes were developed with the grading
dependent on the �nal simulation time t�nal. These graded mesh were optimized for
the case when the �re energy release rate takes a step jump at t = 0 and then is
constant thereafter. In this case, the steepest temperature gradients occur near the
interior surfaces of the wall segments. As the simulation evolves, these temperature
pro�les tend to 
atten out. Figure 4 shows the ceiling temperature pro�les at various
times during a one room simulation. The room is 3 m long, 2 m wide, 3 m high
and contains a 1 Mw �re on the 
oor. It has a single 1 m2 vent to the outside. All
conduction nodes are made from gypsum. The four-wall radiation model documented
in [14] was used to model radiation heat transfer. The simulation runs for 2 minutes.
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The general qualitative features of the pro�les in Figure 4 are exhibited by the
semi-in�nite (0 < x <1) rod solution to the heat equation

u(x; t) = Tamb+ (u1 � Tamb)erfc

 
x

2
p
�t

!
; (22)

where u(0; t) = u1, a constant, the initial temperature is Tamb, � = K

�c
, and erfc(x) =

2p
�

R1
x e�t

2

dt denotes the complementary error function. Using this solution as a
guide, a graded mesh was developed to accommodate both short times and times
near t�nal using nx � 3 breakpoints for CONRAD1 and nx � 10 breakpoints for
CONRAD2. In both cases x1 = 0 and xnx = W . It is impossible for a �xed mesh
to be optimum for all times 0 < t < t�nal. The meshes used in CONRAD1 and
CONRAD2 were designed to concentrate most of the breakpoints between 0 and a
breakpoint

xb = min(xp;
W

2
) :

The point xb was chosen to be the smaller of the midpoint of the wall segment,W=2,
and the penetration depth, xp, de�ned by

xp := 2
p
�t�nal erfc

�1(:05) :

Table 2 gives penetration depths for several wall materials with t�nal = 600s. To
obtain penetration depths for a di�erent t�nal, multiply the values in column �ve of
Table 2 by

p
t�nal.

In CONRAD2, 80 percent of the breakpoints are to the left of xb. The breakpoints
on either side of xb are quadratically graded so that they cluster near x = 0 and
x =W .

The breakpoint design for CONRAD2 is somewhat di�erent. For a �xed time t >
0, the heat equation solution in (22) is 
attened out for x > X(t) = 2

p
�t erfc�1(:05).

To resolve the temperature pro�le at this time, a breakpoint should be placed near
X(t). Two of the breakpoints are generated this way. The breakpoint x2 is the
minimum of X(tprint) and

xb
4 with the xb

4 term required to provide short time accuracy
when tprint is not su�ciently small. CONRAD1 and CONRAD2 print out data every
tprint seconds. The breakpoint xnx�1 is set to xb. By the time X(t) has reached
the ceiling midpoint, W

2 , the temperature pro�le for x > W

2 is linear enough so that
breakpoints at W

2 and W su�ce.
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Table 2: Penetration Depths, t�nal = 600s

Material K � c 2
p
� erfc�1(:05) xp

(W=(mK)) (kg=m3) (Ws=(kgK)) (m2=s)

Copper 387 380 8940 2:96 � 10�2 0.72

Oak .17 2380 800 8:28 � 10�4 2:03� 10�2

PMMA .19 1420 1190 9:29 � 10�4 2:28� 10�2

Brick .69 840 1600 1:99 � 10�3 4:86� 10�2

Kaowool .22 128 1047 3:55 � 10�3 8:70� 10�2

Gypsum .16 800 900 1:31 � 10�3 3:20� 10�2

Concrete 1.75 2200 1000 2:47 � 10�3 6:06� 10�2

B Heat Conduction in Multiple Slab Wall Seg-

ments

In this section methods are presented for handling the case of a wall segment composed
of slabs of di�erent materials. For simplicity, a two slab wall segment is examined.

B.1 The Heat Equation

For a two slab wall segment, the initial-boundary value problem de�ned in equations
(3){(6) must be replaced by the following interface problem. Find u(x; t) so that

@u(x; t)

@t
= �(1)

@2u(x; t)

@x2
; 0 < x < L < W; t > 0 (23)

@u(x; t)

@t
= �(2)

@2u(x; t)

@x2
; L < x < W; t > 0 (24)

u(x; 0) = Tamb; 0 � x �W (25)

u(0; t) = f0(t); t � 0 (26)

u(W; t) = f1(t); t � 0 (27)

u(L�; t) = u(L+; t) (28)

�K(1)@u
�

@x
(L; t) = �K(2)@u

+

@x
(L; t) : (29)
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Here, u(L�; t) and u(L+; t) denote left and right hand limits, while @u�

@x
and @u+

@x

denote left and right hand derivatives. Material 1 occupies the interval [0; L], while
material 2 occupies the interval [L;W ]. The interface conditions (28) and (29) re-
quired continuity of temperature and heat 
ux across the interface at x = L. Equation
(29) assumes that there is no heat source embedded in the interface; this equation is
derived from conservation of energy.

B.2 Finite Di�erence Equations

Introduce breakpoints 0 = x1 < : : : < xn = W , with xm = L for some m, 1 < m < n,
and let �xj = xj+1�xj. Let the temperature at breakpoint xj at time t be denoted by
uj(t). Replacing the second spatial derivative in the heat equations (23) and (24) by
a second divided di�erence approximation and the �rst spatial derivative in equation
(29) by a �rst divided di�erence approximation, yields the following DAE system:

u0j = �(1)
uj+1�uj

�xj
� uj�uj�1

�xj�1
�xj+�xj�1

2

; j = 2; : : : ;m� 1 (30)

u0j = �(2)
uj+1�uj

�xj
� uj�uj�1

�xj�1
�xj+�xj�1

2

; j = m+ 1; : : : ; n� 1 (31)

uj(0) = Tamb; j = 1; : : : ; n (32)

u0 = f0 (33)

un = f1 (34)

�K(1)um � um�1
�xm�1

= �K(2)um+1 � um
�xm

: (35)

If the backward Euler method (see equation (21)) is used to advance the solution
from time t to time t+�t, the following tridiagonal linear system arises:

bjuj�1(t+�t) + ajuj(t+�t) + cjuj+1(t+�t) = dj : (36)

The coe�cients are as follows. For j = 2; : : : ;m� 1,

bj =
�2�(1)

�xj�1(�xj +�xj�1)

aj = 1 +
�(1)

�xj�xj�1

cj =
�2�(1)

�xj(�xj +�xj�1)

dj = uj(t) :
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For j = m+ 1; : : : ; n � 1,

bj =
�2�(2)

�xj�1(�xj +�xj�1)

aj = 1 +
�(2)

�xj�xj�1

cj =
�2�(2)

�xj(�xj +�xj�1)

dj = uj(t) :

For j = m,

bj = � K(1)

�xj�1

aj = � K(1)

�xj�1
+
K(2)

�xj

cj =
K(2)

�xj
dj = 0 :

B.3 Cubic Hermite Expansion Equations

An expansion of the form (14) can be used for each slab. Introduce breakpoints

0 = x
(1)
1 ; : : : ; x(1)m = L and coe�cients a

(1)
j ; b

(1)
j for the interval [0; L], and introduce

breakpoints L = x
(2)
1 ; : : : ; x

(2)
n�m+1 = W and coe�cients a

(2)
j ; b

(2)
j for the interval [L;W ].

Two DAE systems arise from applying the cubic Hermite collocation procedure of
Section A.1 to equations (23), (25), and (26), and to equations (24), (25), and (27).
These DAE systems are coupled by the interface conditions (28) and (29) which
discretize as

a(1)m (t) = a
(2)
1 (t)

�K(1)b(1)m (t) = �K(2)b
(1)
1 (t) :
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