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Abstract

A quantum expander is a unital quantum channel that is rapidly mixing, has only a
few Kraus operators, and can be implemented efficiently on a quantum computer. We
consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum
expander. We show that this problem is co-QMA-complete. This has applications to
testing randomized constructions of quantum expanders, and studying thermalization
of open quantum systems.

1 Introduction

A quantum expander is a unital quantum channel that is rapidly mixing. This means
that, with repeated applications of the channel, every quantum state is rapidly con-
tracted to the maximally mixed state, which is the unique fixed point. In addition, a
quantum expander has only a small number of Kraus operators, each of which is de-
scribed by an efficient quantum circuit. Quantum expanders are quantum analogues of
expander graphs, which play a prominent role in computer science and discrete math-
ematics [16]. The idea of quantum expanders was introduced in [13, 4]. Since then,
several explicit constructions of quantum expanders have been discovered, and quan-
tum expanders have found various applications in quantum information theory, such
as constructing quantum states with unusual entanglement properties, and simulating
thermalization in quantum systems [5, 14, 11, 12, 15, 8].

Here we study the problem of estimating the mixing rate of a quantum expander.
Given a quantum channel Φ of the above form (a small number of Kraus operators,
specified by quantum circuits), this problem is to estimate the spectral gap of Φ. This
problem arises in connection with randomized constructions of quantum expanders [8],
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where with high probability one obtains a good expander, but it is not obvious how
to test that a particular instance of the construction is in fact good. In addition, this
problem can be viewed as a special case of a more general question: given an open
quantum system, determine whether it thermalizes, and on what time scale. (The
behavior of a quantum expander is roughly equivalent to that of a quantum system
with a particular weak coupling to a bath of harmonic oscillators.)

Formally, we define the “quantum non-expander problem” (which is the comple-
ment of the above problem), and we give evidence that this problem is computationally
intractable: we prove that it is QMA-complete. Here QMA (Quantum Merlin-Arthur)
is a complexity class that is a quantum analogue of NP (Nondeterministic Polyno-
mial Time) [20, 24, 27]. Proving that a problem is QMA-complete implies that it is
equivalent (up to polynomial-time reductions) to all other QMA-complete problems
[24, 17, 21, 22, 3, 19, 1, 18], a survey of which can be found in [7]. In particular, this
implies that the problem cannot be solved in polynomial time (unless QMA = BQP).
Furthermore, this implies that our original problem, the “quantum expander prob-
lem,” cannot be in QMA (unless QMA = coQMA). In other words, when a channel Φ
is not a quantum expander, there is an efficiently-verifiable quantum proof of that fact;
but when Φ is a quantum expander, there is no way of giving an efficiently-verifiable
quantum proof.

2 Preliminaries

2.1 The quantum non-expander problem

We use the definition of explicit quantum expanders due to Ben-Aroya, Schwartz, and
Ta-Shma [5]. For an N -dimensional Hilbert space H, let L(H) denote the space of
linear operators from H to itself. A superoperator Φ : L(H) → L(H) is admissible if
it is a completely positive and trace-preserving map. An admissible superoperator is
unital if Φ(Ĩ) = Ĩ, where Ĩ = I

N is the maximally mixed state on H (where I is the
identity operator on H). A unital superoperator is D-regular if Φ = 1

D

∑
d Φd, and

for d = 1, . . . , D, Φd(X) = UdXU
†
d where the Ud are unitary transformations on H.

The unitaries Ud are called the operation elements (or Kraus operators) of Φ, and D
is called the degree of Φ. A D-regular superoperator is explicit if each of its operation
elements can be implemented by a quantum circuit of size polylog(N), where N is the
dimension of H.

Definition 2.1 (Quantum expander). A D-regular superoperator Φ : L(H) → L(H)
is a κ-contractive expander if for all A ∈ L(H) that are orthogonal to Ĩ with respect to
the Hilbert-Schmidt inner product, that is, Tr(AĨ) = 0, it holds that

‖Φ(A)‖F ≤ κ‖A‖F . (1)

Here the Frobenius norm is given by ‖A‖F =
√∑

i,j |aij |2, where aij are the entries of

the matrix A. The quantity 1− κ is called the spectral gap of Φ.
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Remark 2.2. The motivation for this definition can easily be seen from the following
argument. A good quantum expander Φ rapidly sends any density matrix ρ to the

maximally mixed state Ĩ. Because Tr[ρ] = Tr
[
Ĩ
]

= 1 we can always write ρ = Ĩ + A

where Tr[A] = 0. The requirement of Eq. (1) therefore formalizes the idea of Φ bringing
ρ towards Ĩ by rapidly killing off the A term. In this context Eq. (1) is equivalent to

demanding that
∥∥∥Φ(ρ)− Ĩ

∥∥∥
F
6 κ

∥∥∥ρ− Ĩ
∥∥∥
F

, which clearly encapsulates the idea of Φ

rapidly sending density matrices towards the maximally mixed state. Note that in this
argument A = ρ − Ĩ is Hermitian; however, it can be shown that if Eq. (1) applies
for traceless Hermitian matrices, it also applies for traceless matrices in general, thus
justifying Definition 2.1.

We consider the problem of estimating the mixing time of a quantum expander.
Formally, we study the following decision problem:

Definition 2.3 (Quantum non-expander problem). Fix some encoding such that each
string x ∈ {0, 1}∗ specifies the following: an explicit D-regular superoperator Φ :
(C2)⊗m → (C2)⊗m, with operation elements U1, . . . , UD, and two parameters α > β.

We will consider instances which satisfy the following promises1: m and D are
upper-bounded by (fixed) polynomials in |x|; the parameters α and β are polynomially
separated, i.e., they satisfy α−β ≥ 1

q(|x|) for some (fixed) polynomial q; and the opera-

tion elements U1, . . . , UD are given as quantum circuits of size at most r(|x|) for some
(fixed) polynomial r.

The “quantum non-expander” problem is the task of deciding which of the following
is correct, given the promise that exactly one of them is correct:

• Φ is not an α-contractive expander (YES case)

• Φ is a β-contractive expander (NO case)

2.2 Thermalization of open quantum systems

To motivate the “quantum non-expander” problem, we now describe a connection be-
tween that problem and the study of thermalization in open quantum systems. We
show an example of a quantum system coupled to a bath, where the system thermal-
izes, and the relaxation time is determined by the spectral gap of a certain quantum
expander.

Let the system consist of m qubits, and fix some unitary transformations Uα (for
α = 1, . . . , D) which act on (C2)⊗m. Let the bath consist of a large number of harmonic
oscillators, with annihilation operators bαk (for α = 1, . . . , D and k ∈ Ω, where Ω is
some large set). Let the total Hamiltonian be

H = HS + εHI +HB, (2)

where the system Hamiltonian is HS = 0, the bath Hamiltonian is

HB =
∑

α

∑

k

ωkb
†
αkbαk, (3)

1Here |x| denotes the length of the string x.
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and the interaction Hamiltonian is

HI =
∑

α

(Uα ⊗ fα) + (U †α ⊗ f †α), (4)

where the operators fα are defined by fα = 1√
|Ω|
∑

k bαk.

In the weak-coupling limit (ε→ 0), the time evolution of the system is described by
a master equation [9]. Suppose the bath is in a thermal state, ρB = (1/ZB) exp(−HB/T ).
Then the master equation takes the following form:

d

dt
ρS(t) = R0

∑

α

(
UαρS(t)U †α − ρS(t)

)
+R1

∑

α

(
U †αρS(t)Uα − ρS(t)

)
, (5)

where ρS(t) is the state of the system at time t, andR0 andR1 are positive real numbers.
Equation (5) has two special features: there is no contribution from a “Lamb shift”
Hamiltonian, and the dissipator is in diagonal form with Lindblad operators which are
unitary. (See Appendix A.1 for the derivation of this equation.)

Now define the quantum channel

Φ(ρ) =
R0

(R0 +R1)D

∑

α

UαρU
†
α +

R1

(R0 +R1)D

∑

α

U †αρUα.

This channel Φ is a (non-uniform) mixture of unitary operations. In the special case
where the set of unitaries {Uα | α = 1, . . . , D} is closed with respect to the adjoint

operation (i.e., for every 1 ≤ α ≤ D, there exists some 1 ≤ β ≤ D such that Uα = U †β),
the channel Φ can be written as

Φ(ρ) =
1

D

∑

α

U †αρUα,

hence Φ is a D-regular superoperator, as described in the definition of a quantum
expander.

The master equation can now be rewritten in terms of Φ:

d

dt
ρS(t) = (R0 +R1)D ·

(
Φ− I

)
(ρS(t)),

where I denotes the identity channel. We can solve for ρS(t):

ρS(t) = exp
(
t · (R0 +R1)D ·

(
Φ− I

))
(ρS(0)).

Thus the system converges to the maximally mixed state as t → ∞, and the rate of
convergence depends on the spectral gap of Φ. More precisely, write ρS(t) = Ĩ + A(t)
where A(t) is traceless. Then it can be verified that

‖A(t)‖F ≤ exp
(
− t · (R0 +R1)D(1− κ)

)
‖A(0)‖F .
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2.3 Quantum Merlin-Arthur

We will show that the quantum non-expander problem is QMA-complete, i.e., it is
contained in QMA, and every problem in QMA can be reduced to it in polynomial
time.

The complexity class QMA consists of decision problems such that YES instances
have concise quantum proofs. The name QMA stands for Quantum Merlin-Arthur,
which is motivated by the following protocol. Given a problem instance x (i.e. a string
of |x| bits), and a language L ∈ QMA, a computationally unbounded but untrustwor-
thy prover, Merlin, submits a quantum state of poly(|x|) qubits as a purported proof
that x ∈ L. A verifier, Arthur, who can perform polynomial size quantum computa-
tions, then processes this proof and either accepts or rejects it. If x ∈ L then there
exists some polynomial size quantum state causing Arthur to accept with high proba-
bility, but if x /∈ L then Arthur will reject all states with high probability. QMA is a
quantum analogue of MA, which is the probabilistic analogue of NP.

Definition 2.4 (QMA(a, b)). A language L is in QMA(a, b) if for each x ∈ {0, 1}∗
one can efficiently generate a quantum circuit V with the following properties:

• V acts on the Hilbert space W ⊗A where

W = (C2)⊗nw , A = (C2)⊗na ,

and the functions nw, na : N→ N grow at most polynomially in |x|
• V consists of s(|x|) elementary gates where the function s : N→ N grows at most

polynomially in |x|
• if x ∈ L (YES case) then there exists a witness state |ψ〉 ∈ W such that

‖PV |ψ〉|0〉‖2 ≥ a (6)

• if x /∈ L (NO case) then for all states |ψ〉 ∈ W we have that

‖PV |ψ〉|0〉‖2 ≤ b (7)

Here W and A are the witness and ancilla registers, respectively, and P = |1〉〈1| ⊗ 1
projects onto the subspace of the first qubit of W ⊗A being in the state |1〉. The state
|0〉 = |00 . . . 0〉 is the all-zeros state on A.

Observe that V,W,A, na, nw and P depend on x; however, to avoid unnecessarily
complicated notation, we do not indicate this explicitly.

Remark 2.5. It is conventional to define QMA = QMA(2/3, 1/3). However, the
complexity class QMA(a, b) is highly insensitive to the particular values of a and b.
In fact, even if a and b are functions of the problem size n, it remains true that
QMA(a(n), b(n)) = QMA provided a(n) − b(n) ≥ 1

p(n) for some polynomial p. It is
always possible to achieve that a = 1− ε and b = ε by increasing the size of the circuit
by a factor polylog(1/ε) and increasing na by polylog(1/ε) qubits, with no change in
nw [25, 26].
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3 Quantum non-expander is in QMA

We now show that the problem defined in Definition 2.3 is in QMA. We first consider
the YES case. In this case, Merlin has to convince Arthur that there exists a traceless
matrix A such that

‖Φ(A)‖F > α‖A‖F . (8)

We may assume w.l.o.g. that ‖A‖F = 1. Clearly, Merlin cannot directly send the
matrix A because it is an exponentially large matrix. Instead, he can send the quantum
certificate

|ψA〉 =
N∑

i,j=1

aij |i〉 ⊗ |j〉

encoding the matrix A. We show that |ψA〉 can serve as a witness making it possible
to convince Arthur that the inequality in Eq. (8) holds.

Arthur’s verification protocol makes use of the following facts:

‖A‖2F = 〈ψA|ψA〉,

Tr[A] =
√
N〈ϕ|ψA〉,

where |ϕ〉 = 1√
N

∑N
i=1 |i〉 ⊗ |i〉, and

‖Φ(A)‖2F = 〈ψA|W †W |ψA〉,

where

W =
1

D

D∑

d=1

Ud ⊗ Ud

and Ud denotes the complex conjugate of Ud.
First, to check whether Tr[A] = 0, Arthur verifies that |ψA〉 is orthogonal to |ϕ〉.

Second, to estimate the contractive factor, Arthur estimates the expectation value
〈ψA|W †W |ψA〉 of W †W . For d, e = 1, . . . , D, define the unitaries

Vd,e = (U †d ⊗ UTd )(Ue ⊗ U e).

Note that Vd,e = V †e,d and Vd,d = 1. The expectation value can be expressed as

〈ψA|W †W |ψA〉 =
1

D2

∑

d,e

〈ψA|Vd,e|ψA〉 =
1

D
+

2

D2

∑

d<e

Re〈ψA|Vd,e|ψA〉.

Arthur can estimate the values Re〈ψA|Vd,e|ψA〉 using the Hadamard test [shown in
Fig. (1)] since it will output 0 with probability Pr(0) = 1

2(1 + Re〈ψA|Vd,e|ψA〉). From
this Arthur can calculate 〈ψA|W †W |ψA〉 = ‖Φ(A)‖2F and ensure it exceeds α2.

Now consider the NO case. In this case, Arthur’s first measurement projects the
state |ψA〉 onto the subspace orthogonal to |ϕ〉; and by definition, all states |ψA〉 in
that subspace must satisfy

〈ψA|W †W |ψA〉 = ‖Φ(A)‖2F 6 β2.
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|0〉 H • H

|ψA〉 Vd,e

Figure 1: Hadamard test for Vd,e

This shows that Merlin cannot cheat, that is make Arthur believe that there exists a
quantum state with contraction greater or equal to α, provided that Arthur estimates
the expected value sufficiently well and with sufficiently high probability of confidence.

As in the original definition of QMA in [24], we may assume that Arthur has
multiple copies of the quantum certificate |ψ〉 so that we can estimate the expected
value sufficiently well. Using the powerful technique of in-place amplification [25], we
can transform a quantum circuit requiring |ψ〉⊗k into one that requires only a single
copy of |ψ〉.

4 Some technical tools

4.1 The Frobenius norm

In the proof that quantum non-expander is QMA-hard we will frequently make use of
the Frobenius norm; we therefore present some useful facts about this norm here. If B
is a matrix with entries bij , then the Frobenius norm is defined as

‖B‖F =
√

Tr[B†B] =

√∑

ij

|bij |2. (9)

We have the following identities: ‖A⊗B‖F = ‖A‖F ‖B‖F , Tr[A⊗B] = Tr[A] Tr[B],
and of course Tr[A+B] = Tr[A] + Tr[B]. If |ψ〉 and |φ〉 are pure states then

∥∥∥ |ψ〉〈φ|
∥∥∥
F

=
√
〈ψ|ψ〉 〈φ|φ〉 =

∥∥∥|ψ〉
∥∥∥
∥∥∥|φ〉

∥∥∥. (10)

Note that
∥∥ |0〉〈0|

∥∥
F

=
∥∥ |1〉〈1|

∥∥
F

= 1.
In this paper we denote the Pauli matrices on one qubit by σi, with σ0 = 1,

σ1 = σx, σ2 = σy, and σ3 = σz. Consider any traceless matrix A that acts on some
space Cd ⊗ C2, where we will refer to the second subspace (i.e. single-qubit subspace)
as the indicator qubit register. Because the Pauli matrices σi form a basis for the
matrices acting on the indicator qubit register, we can decompose A as

∑3
i=0Ai ⊗ σi,

where Ai are matrices on the combined multiqubit subspace (the witness and ancilla
registers that we will see later). Because σi are traceless for i = 1, 2, 3, the traceless
condition on A therefore becomes Tr[A0] = 0. Moreover, because the Pauli matrices
are orthogonal with respect to the trace inner product and all satisfy ‖σi‖2F = 2, we
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have ‖∑iAi ⊗ σi‖2F =
∑

i ‖Ai ⊗ σi‖2F = 2
∑

i ‖Ai‖2F , giving the inequality

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

>
√

2 ‖A0‖F . (11)

A quantum operation G is called a pinching operator if G(B) =
∑

P PBP where
P are non-overlapping projectors with

∑
P P = 1. Pinching operators are trace pre-

serving,

Tr

[∑

P

PBP

]
= Tr[B] , (12)

and moreover, (by the pinching inequality) cannot increase Frobenius norm:

∥∥∥∥∥
∑

P

PBP

∥∥∥∥∥
F

6 ‖B‖F . (13)

It should be noted that a quantum expander E is also norm-non-increasing,

‖E(B)‖F 6 ‖B‖F , (14)

and similarly for any projector P ,

‖PBP‖F 6 ‖B‖F . (15)

4.2 Controlled expanders

The remainder of our paper will make repeated use of controlled expanders, which we
introduce here. If U is a unitary gate, we use the notation ΛU to indicate a controlled-U
operation.

Definition 4.1 (Controlled expander). Let F be a quantum expander with operation

elements {Ui : i = 1 . . .m} so that F(B) = 1
m

∑m
i=1 UiBU

†
i . The controlled expander

ΛF is defined to be the m-regular superoperator whose operation elements are the con-
trolled unitaries {ΛUi : i = 1 . . .m}.

More explicitly, consider two registers, a control register and a target register, and
suppose that an expander F acts on the target register as F(B) = 1

m

∑m
i=1 UiBU

†
i .

Decompose the control register into two orthogonal subspaces, and let Q and P be
projectors onto these two subspaces (so Q + P = 1 and PQ = QP = 0). Suppose
that the controlled operations ΛUi are to be applied when the control register is in
the subspace corresponding to P ; thus ΛUi = P ⊗ Ui + Q ⊗ 1. Consider a matrix
A⊗B, where A and B act on the control and target registers, respectively. Then the
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controlled expander ΛF , with operation elements ΛUi, acts on A⊗B as

ΛF (A⊗B) =
1

m

m∑

i=1

[
(ΛUi)(A⊗B)(ΛU †i )

]

=
1

m

m∑

i=1

[
(P ⊗ Ui +Q⊗ 1)(A⊗B)(P ⊗ U †i +Q⊗ 1)

]

=
1

m

m∑

i=1

[
PAP ⊗ UiBU †i + PAQ⊗ UiB +QAP ⊗BU †i +QAQ⊗B

]

= PAP ⊗ 1

m

∑

i

(UiBU
†
i ) + PAQ⊗

(
1

m

∑

i

Ui

)
B (16)

+QAP ⊗B
(

1

m

∑

i

U †i

)
+QAQ⊗B.

Note that if we impose on F the requirement that

∑

i

Ui = 0 (17)

then we obtain
ΛF (A⊗B) = PAP ⊗F(B) +QAQ⊗B (18)

which is how we would naturally desire a controlled expander to act. Unfortunately,
unlike Eq. (18), Eq. (16) has additional crossterms whose elimination would greatly
simplify our future analysis.

We will, however, freely assume that Eq. (17) is satisfied, justified by the following
observation. If necessary, we may always increase the set of operation elements of F
from {Ui : i = 1 . . .m} to {Ui : i = 1 . . .m} ∪ {−Ui : i = 1 . . .m}. Such a change has

no effect on the original expander F ; the expander F(B) = 1
m

∑
(Ui B U †i ) is invariant

under Ui ↔ −Ui, even though the controlled expander ΛF(B) = 1
m

∑
(ΛUi B ΛU †i ) is

not necessarily invariant under Ui ↔ −Ui. Thus, with only a factor of two overhead in
the number of unitaries, we may satisfy the condition of Eq. (17), thereby eliminating
the undesired crossterms; as such, Eq. (18) may effectively be taken as the definition
of a controlled expander.

A concrete example of a controlled expander – and one of particular importance
in this paper – is the controlled complete depolarizer. Throughout this paper we use
D to denote the complete depolarizing channel on a single qubit, which is normally
defined to apply a unitary from {1, X, Y, Z} with uniform probability 1/4. To ensure
that Eq. (17) is satisfied, we therefore define the effect of D on a matrix σ to be

D(σ) =
1

8

∑

W

WσW = 1
Tr[σ]

2

where the sum is over W ∈ {1, X, Y, Z,−1,−X,−Y,−Z}. Consequently, the con-
trolled complete depolarizer ΛD with a single qubit target and (possibly multiqubit)

9



control / •
target / F

Figure 2: A controlled expander, ΛF

control projectors P (indicating apply D) and Q (indicating do nothing) is the 8-regular
superoperator with operation elements

{Λ(1),Λ(X),Λ(Y ),Λ(Z),Λ(−1),Λ(−X),Λ(−Y ),Λ(−Z)}

having the effect

ΛD(A⊗ σ) = PAP ⊗ 1
Tr[σ]

2
+QAQ⊗ σ. (19)

Although controlled expanders are not actually quantum gates, we will nevertheless
include them in circuit diagrams. If ΛF(B) = 1

m

∑
i(ΛUi B ΛU †i ) then the circuit in

Fig. 2 is to be interpreted as applying an element selected uniformly at random from
the set {ΛUi} (or equivalently, as applying to the target register a unitary selected
uniformly at random from the set {Ui}, but only if the control register is in the appro-
priate state.). As a final remark note that although a controlled expander is a unital
map, it is not itself a good expander (firstly, because depending on the control qubit,
the operator might not do anything at all, and secondly because even when the opera-
tor does act, it only expands on the subspace of the target, not the entire space). For
example, note that |0〉〈0| ⊗ |0〉〈0| is not contracted at all by the controlled complete
depolarizer ΛD, thus indicating that ΛD is not a good expander.

5 Quantum non-expander is QMA-hard

5.1 Outline of the proof

Let L be any language in QMA(2
3 ,

1
3). We show that the quantum non-expander

problem is QMA-hard by reducing L to a quantum non-expander problem. Specifically,
let x be an |x|-bit problem instance whose inclusion in L, or lack-thereof, we wish to
determine. Because L ∈ QMA we have access to a verifier circuit satisfying Eqs. (6)
and (7) acting on a witness space of nw = poly(|x|) qubits and some ancilla space. For
reasons that will become apparent later, we now use QMA amplification to give that
L ∈ QMA(a, b) for polynomially separated a and b where

a > 0.99 and b < (0.1)2−(nw+1).

Note from Remark 2.5 that this can be done without increasing the size of the witness
space of the verifier. Let the resulting QMA(a, b) verifier circuit be called V , which
acts on the same witness space of nw = poly(|x|) qubits and some ancilla space of
na = poly(|x|) ancilla qubits. Merlin can provide Arthur a valid (with high probability)
witness if and only if x ∈ L.

10



nw nw
witness /

V V †
/

Ena na
ancilla / • / /

indicator D D •

ancilla |←− witness −→| controlled E
verifier verifier

Figure 3: The map Φ constructed from the verifier circuit V , the complete depolarizer D,
and the κE -contractive expander E . The first controlled depolarizer is applied only if the
ancillae are not all zero and the second one only if the top output is zero. The controlled
E-expander is applied only if the bottom qubit is one. Note that this figure is not a true
circuit because D and E are quantum expanders, not unitary gates.

Let E be an explicit κE -contracting expander of degree DE acting on nw+na qubits,
where κE < 0.1 and DE is constant (independent of |x|). Such expanders are known
to exist, as we outline in Appendix A.2 using Ref [6]. Using V and E , we create a
quantum expander Φ that is bad if x ∈ L but good if x /∈ L; indeed, we will present
polynomially-separated (in fact, constant) α and β such that Φ is a β-contracting
expander if x /∈ L but is not an α-contracting expander if x ∈ L. The circuit for Φ is
shown in Fig. 3, which we now describe in detail.

The map Φ acts on three registers, which from top to bottom are the witness register
(of nw qubits), the ancilla register (of na qubits), and an additional single-qubit register
we call the indicator qubit register. The circuit is realized by composing the following
three maps:

1. the ancilla verifier

2. the witness verifier

3. the controlled E .

The basic idea is that if x ∈ L then Merlin can provide a valid witness and properly
initialized ancillae that will pass the verifiers and not be mixed by the final controlled
expander (indicating that our quantum expander is bad); conversely, if x /∈ L then
no matter what witness and ancilla qubits Merlin provides, the indicator qubit will
be depolarized and consequently his state will be well-mixed by the final controlled
expander (indicating our expander to be good).

We now provide a detailed description of the three different maps and their pur-
poses.

1. The ancilla verifier is the first gate in Fig. 3. It is the controlled expander ΛancD,
which applies the complete depolarizer D to the indicator qubit register only if

11



witness

ancillae





indicator

/

X • X

X • X
...

X • X

W W †

Figure 4: The controlled expander verifying the ancillae. The unitary W is selected from
{1, X, Y, Z,− 1,−X,−Y,−Z} uniformly at random.

any of the ancilla bits are 1 (i.e. if they are not all 0). More technically, it is

ΛancD(B) =
1

8

∑

W

ΛancW B ΛancW
†

(with W ∈ {1, X, Y, Z,−1,−X,−Y,−Z}), where ΛancW is the gate shown in
Fig. 4. Note that ΛancW requires a controlled-W † gate controlled by na qubits,
which can be implemented with na

2 gates using no extra work qubits [2]. (It is
important that the implementation not require work qubits, because we demand
that there are no internal ancillae; our expander must be an expander on the entire
space, not just a subspace.) Intuitively, if the ancilla qubits are not initialized to
be all 0’s, the verifier will depolarize the indicator qubit, whence the term ancilla
verifier.

2. The witness verifier consists of the next three operations in Fig. 3. First, V oper-
ates on the witness and ancilla registers, with its output on the top qubit (with
|1〉 signifying that the witness is valid, |0〉 signifying that it is invalid); the lower
multiqubit register on nw+na−1 qubits contains the rest of V ’s output (required
by reversibility). A controlled-depolarizer then acts on the indicator qubit, con-
ditioned upon the top qubit being |0〉 (i.e. failing the witness verification). The
effects of V are then uncomputed with V †. At this point, intuitively, the indicator
qubit has been depolarized if and only if the input failed either the ancilla verifier
or the witness verifier (or both).

3. Finally, the last gate, which is the controlled expander Λind E , acts, conditioned
on whether the indicator qubit is |1〉. Intuitively, if the input was |ψ〉 ⊗ |0〉 ⊗ |0〉,
with the indicator qubit initialized to |0〉, with the ancilla qubits initialized to
|0〉 = |00 . . . 0〉, and with |ψ〉 a valid witness (for x ∈ L), then the indicator qubit
will remain |0〉 and nothing will happen; if, on the other hand, the witness/ancillae
failed any of the verifiers, thus depolarizing the indicator qubit to be 1

2 1 =
1
2 |0〉〈0|+ 1

2 |1〉〈1|, then E will act on the top registers, resulting in a highly mixed
output (across all three registers).

12



Note that because E is an explicit DE -regular expander (where DE is a constant), Φ,
being the composition of two explicit 8-regular superoperators and Λ E , is manifestly
explicit and 64DE -regular (i.e. of constant degree). We now proceed to show that Φ is
indeed a good expander if x /∈ L (the NO case) but not if x ∈ L (the YES case).

5.2 Analysis of NO case

First, consider the case in which x /∈ L. We wish to show that Φ is a good expander,
and therefore by Eq. (1), that it sufficiently decreases the Frobenius norm of any input
traceless matrix. As discussed earlier, we may therefore take the input state to be∑3

i=0 Ai ⊗ σi for some matrices Ai with Tr[A0] = 0, where σi are the Pauli matrices on
the indicator qubit register.

Both the witness and ancilla verifiers are controlled depolarizers, and we can analyse
each of them in the same way using projection operators that act on some subspace of
the system; specifically, we will use Q =

∑
φ passes |φ〉〈φ| that projects onto the states

that pass the verifier and P =
∑

φ fails |φ〉〈φ| that projects onto the states that fail it.
For the ancilla verifier, these are Qa = |00 . . . 0〉〈00 . . . 0|anc (more properly written as
Qa = 1wit⊗|00 . . . 0〉〈00 . . . 0|anc⊗1ind) and Pa = 1−Qa =

∑
x 6=00...0 |x〉〈x|anc. For the

witness verifier, Qw = V † |1〉〈1|top V and Pw = V † |0〉〈0|top V (so that Pw + Qw = 1).
Here the subscript top is used to indicate the top qubit register output from V .

Applying Eq. (19) and linearity, the effect of a verifier unit on the input state∑3
i=0Ai ⊗ σi is therefore

F

(
3∑

i=0

Ai ⊗ σi
)

=
3∑

i=0

[
PAiP ⊗ 1

Tr[σi]

2
+QAiQ⊗ σi

]

= PA0P ⊗ 1 +

3∑

i=0

QAiQ⊗ σi.

By linearity, it is easy to see that the effect of two such verifier units – the ancilla
verifier with projectors {Pa, Qa} and witness verifier with projectors {Pw, Qw} – is

Fw ◦ Fa
(

3∑

i=0

Ai ⊗ σi
)

= Fw (PaA0Pa ⊗ 1) + Fw

(
3∑

i=0

QaAiQa ⊗ σi
)

= (PwPaA0PaPw +QwPaA0PaQw + PwQaA0QaPw)⊗ 1 +

3∑

i=0

QwQaAiQaQw ⊗ σi

=
∑

P

PA0P
† ⊗ 1 +

3∑

i=1

QAiQ
† ⊗ σi,

where the first sum is over P ∈ {PwPa, PwQa, QwPa, QwQa} and where Q is the single
product Q = QwQa and Q† = QaQw. Notice that the i = 0 term (involving σ0 = 1)
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in the second sum has been transferred to the first sum, thereby allowing the first sum
to include all possible projection combinations.

We can rewrite this as

Fw ◦ Fa
(

3∑

i=0

Ai ⊗ σi
)

= C(A0)⊗ 1 +
3∑

i=1

QAiQ
† ⊗ σi (20)

where

C(A0) =
∑

P

PA0P
† =

∑

Rw=Pw,Qw

Rw


 ∑

Ra=Pa,Qa

RaA0Ra


Rw = (Gw ◦Ga)(A0)

is the composition of the pinching operators Gj(B) = PjBPj +QjBQj applied to A0.
Since C is the composition of pinching operators, Eqs. (12) and (13), along with

Eq. (11), tell us
Tr[C(A0)] = Tr[A0] = 0 (21)

and

‖C(A0)‖F 6 ‖A0‖F 6
1√
2

∥∥∥∥∥
∑

i

Ai ⊗ σi
∥∥∥∥∥
F

. (22)

We are now ready to apply the final controlled expander, which by Eq. (18), with
P = |1〉〈1| and Q = |0〉〈0|, has the effect

Λ E (B ⊗ b) = E(B)⊗ |1〉〈1| b |1〉〈1|+B ⊗ |0〉〈0| b |0〉〈0| .

Applying this to the state Eq. (20) we conclude that the effect of the map in Fig. 3 on
the initial traceless matrix

∑3
i=0 Ai ⊗ σi is

Φ

(
3∑

i=0

Ai ⊗ σi

)
= C(A0)⊗|0〉〈0|+E (C(A0))⊗|1〉〈1|+QA3Q

†⊗|0〉〈0|−E(QA3Q
†)⊗|1〉〈1| .

To show that Φ is a good quantum expander, we must show that it sufficiently
decreases the Frobenius norm of its traceless input. Since E is a κE -contractive expander
and C(A0) is traceless [see Eq. (21)] we are guaranteed that

‖E (C(A0))‖F 6 κE ‖C(A0)‖F . (23)

Applying the triangle inequality and Eqs. (23), (14), and (22), we therefore have

∥∥∥∥∥Φ

(
3∑

i=0

Ai ⊗ σi

)∥∥∥∥∥
F

6 ‖C(A0)‖F + ‖E (C(A0))‖F +
∥∥∥QA3Q

†
∥∥∥
F

+
∥∥∥E(QA3Q

†)
∥∥∥
F

6 (1 + κE) ‖C(A0)‖F + 2
∥∥∥QA3Q

†
∥∥∥
F

6
1 + κE√

2

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

+ 2
∥∥∥QA3Q

†
∥∥∥
F
. (24)
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Note that we cannot make a claim similar to Eq. (23) for E(QA3Q
†) because QA3Q

†

need not be traceless.
In QMA(1, 0) we are guaranteed that provided the ancillae are initialized to be

all 0’s, no witness can pass the verifier (for a NO instance). Mathematically, this
guarantee is equivalent to saying that Q ≡ 0. Consequently, the QA3Q

† vanishes and
we are done. In QMA(a, b), however, we must upper bound

∥∥QA3Q
†∥∥
F

, which we now
proceed to do.

Because x /∈ L ∈ QMA(a, b) we are assured that for any purported witness |ψ〉,
‖Qw|ψ〉|0〉‖ 6

√
b. (25)

Because Qa projects onto the |0〉〈0| ancilla subspace, we may write

QaA3Qa =
∑

ψ1,ψ2

c(ψ1, ψ2) |ψ1〉〈ψ2| ⊗ |0〉〈0|

where {|ψi〉} is any orthonormal basis of the witness subspace. Note that because
the witness register consists of nw qubits, c(ψ1, ψ2) can be regarded as a matrix with
dimension N = 2nw × 2nw . Thus using the triangle inequality and Eqs. (10) and (25),

∥∥∥QA3Q
†
∥∥∥
F

=

∥∥∥∥∥∥
∑

ψ1,ψ2

c(ψ1, ψ2)Qw|ψ1〉|0〉〈ψ2|〈0|Qw

∥∥∥∥∥∥
F

6
∑

ψ1,ψ2

|c(ψ1, ψ2)|
∥∥∥Qw|ψ1〉|0〉〈ψ2|〈0|Qw

∥∥∥
F

=
∑

ψ1,ψ2

|c(ψ1, ψ2)|
∥∥∥Qw|ψ1〉|0〉

∥∥∥
F

∥∥∥Qw|ψ2〉|0〉
∥∥∥
F

6
∑

ψ1,ψ2

|c(ψ1, ψ2)| b.

The matrix c has (2nw)2 elements, so its 1-norm and 2-norm are related by

∑

ψ1,ψ2

|c(ψ1, ψ2)| 6 2nw

√∑

ψ1,ψ2

|c(ψ1, ψ2)|2 = 2nw

∥∥∥QaA3Q
†
a

∥∥∥
F
.

But by Eqs. (15) and (11),
∥∥∥QaA3Q

†
a

∥∥∥
F

6 ‖A3‖F 6 1√
2

∥∥∥
∑3

i=0 Ai ⊗ σi

∥∥∥
F

; thus we

conclude,
∥∥∥QA3Q

†
∥∥∥
F
6

2nw

√
2

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

b. (26)

Although 2nw is exponential in nw, recall that b was chosen so that 2nw+1b 6 0.1. We
conclude from Eqs. (24) and (26) that Φ is a β-contractive expander,

∥∥∥∥∥Φ

(
3∑

i=0

Ai ⊗ σi

)∥∥∥∥∥
F

6 β

∥∥∥∥∥
3∑

i=0

Ai ⊗ σi

∥∥∥∥∥
F

, (27)

with

β =
1 + κE + 2nw+1b√

2
< 0.85. (28)
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5.3 Analysis of YES case

Now consider the case in which x ∈ L. Since L ∈ QMA(a, b) there exists a valid witness
|ψ〉 such that

‖Qw|ψ〉|0〉‖2 > a. (29)

From this witness we construct the density matrix Ψ = |ψ〉〈ψ|⊗|0〉〈0|⊗|0〉〈0|. Because
Ψ passes the ancilla verifier unchanged and the witness verifier with very little change,
Ψ is almost a fixed point of our expander Φ (and indeed, for QMA(1, 0) it is a fixed
point); intuitively, therefore, Φ is a poor expander. The matrix Ĩ = 1

2nw+na+1 1 is
certainly a fixed point (for any unital map); therefore the traceless matrix

A = Ψ− Ĩ = |ψ〉〈ψ| ⊗ |0〉〈0| ⊗ |0〉〈0| − 1

2nw+na+1
1

is also expected to change very little under Φ. By showing this to be the case, we will
show that Φ is not an α-contractive expander for an α that is polynomially separated
from the β found in the NO case.

Using an analysis similar to the previous case, it is easy to see that the effect of our
circuit on Ψ is

Ψ = |ψ〉〈ψ| ⊗ |0〉〈0| ⊗ |0〉〈0|
Ancilla verifier
−−−−−−−−−→ |ψ〉〈ψ| ⊗ |0〉〈0| ⊗ |0〉〈0|
Witness verifier
−−−−−−−−−→ Pw

(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Pw ⊗

1
2

+Qw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Qw ⊗ |0〉〈0|

Controlled E
−−−−−−−−−→ 1

2
E
[
Pw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Pw

]
⊗ |1〉〈1|

+
1

2
Pw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Pw ⊗ |0〉〈0|

+Qw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Qw ⊗ |0〉〈0| .

Note that the three final terms are mutually orthogonal because |0〉〈0|1〉〈1| = 0 and
PwQw = 0. Consequently, we have

‖Φ(Ψ)‖2F =
1

4

∥∥∥E
[
Pw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Pw

]∥∥∥
2

F

+
1

4

∥∥Pw
(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Pw
∥∥2

F

+
∥∥Qw

(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Qw
∥∥2

F

>
∥∥Qw

(
|ψ〉〈ψ| ⊗ |0〉〈0|

)
Qw
∥∥2

F

= ‖Qw|ψ〉|0〉‖4

> a2 (30)

where we have used Eq. (10) and Eq. (29).

Now, because Ψ is a pure state density matrix, ‖A‖2F =
∥∥∥Ψ− Ĩ

∥∥∥
2

F
= Tr

[
Ψ2
]

+

Tr
[
Ĩ2
]
− 2Tr

[
ΨĨ
]
, using Eq. (9), so that

‖A‖2F = 1− 1

2nw+na+1
. (31)
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Thus, using that Φ is linear and trace-preserving, that Φ(Ĩ) = Ĩ, and Eqs. (30) and (31),
we have

‖Φ(A)‖2F =
∥∥∥Φ(Ψ)− Φ(Ĩ)

∥∥∥
2

F

= Tr
[
Φ(Ψ)†Φ(Ψ)

]
+ Tr

[
Ĩ2
]
− Tr

[
Φ(Ψ)Ĩ

]
− Tr

[
Φ(Ψ)†Ĩ

]

= ‖Φ(Ψ)‖2F + Tr
[
Ĩ2
]
− 2Tr

[
ΨĨ
]

> a2 − 1

2nw+na+1

= ‖A‖2F − (1− a2)

>

[
1− 8

5
(1− a2)

]
‖A‖2F

where in the last inequality we have used from Eq. (31) that for nw > 1 we have
5
8 < ‖A‖

2
F 6 1. Thus we conclude that Φ is not an α-contractive expander,

‖Φ(A)‖F > α ‖A‖F , (32)

with

α =

√
1− 8

5
(1− a2) > 0.98. (33)

Note that α and β are constants, and therefore certainly polynomially separated.

6 Conclusion

We have presented a new computational problem, quantum non-expander, and proved
that it is QMA-complete. This gives some insight into the computational complexity
of estimating mixing rates of quantum channels and open quantum systems.

In contrast to the plethora of natural NP-complete problems, very few problems
have been shown to be QMA-complete. We hope that it may be possible to find new
QMA-complete problems, using reductions from the quantum non-expander problem.
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A Appendix

A.1 Master equation for a quantum system coupled to a
bath

In this section we derive the master equation (5), given the system-bath Hamiltonian
specified in (2), (3) and (4). We follow the arguments of sections 3.3 and 3.4 in [9].

First, define new operators Aασ and Bασ (for α = 1, . . . , D and σ = 0, 1):

Aασ =
1√
2

(−i)σ(Uα + (−1)σU †α), Bασ =
1√
2
iσ(fα + (−1)σf †α).

Then we can write the interaction Hamiltonian in the form

HI =
∑

ασ

Aασ ⊗Bασ.

This form is convenient because Aασ and Bασ are Hermitian.
In the weak-coupling limit (ε→ 0), one gets the following master equation (equation

3.140 in [9], simplified using the fact that HS = 0):

d

dt
ρS(t) = −i[HLS , ρS(t)] +D(ρS(t)), (34)

where HLS is the “Lamb shift” Hamiltonian and D is the dissipator,

HLS =
∑

αβστ

SαβστA
†
ασAβτ , D(ρS) =

∑

αβστ

γαβστ

(
AβτρSA

†
ασ −

1

2
{A†ασAβτ , ρS}

)
,

and the coefficients Sαβστ and γαβστ are given by

Sαβστ =
1

2i
(Γαβστ − Γ∗βατσ), γαβστ = Γαβστ + Γ∗βατσ,

where Γαβστ are the one-sided Fourier transforms (evaluated at frequency 0) of the
bath correlation functions,

Γαβστ =

∫ ∞

0
ds〈B†ασ(s)Bβτ (0)〉, Bασ(t) = eiHBtBασe

−iHBt.

We can evaluate the bath correlation functions, using the fact that the bath is in a
thermal state at temperature T . After some algebra, we get

〈B†ασ(s)Bβτ (0)〉 =
1

2
iσiτ

1

|Ω|
∑

kk′

(
e−isωk〈bαkbβk′〉+ e−isωk(−1)τ 〈bαkb†βk′〉

+ (−1)σeisωk〈b†αkbβk′〉+ (−1)σeisωk(−1)τ 〈b†αkb
†
βk′〉
)

=
1

2
iσiτδαβ

1

|Ω|
∑

k

(
(−1)σeisωkN(ωk) + e−isωk(−1)τ (1 +N(ωk))

)
,
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where N(ωk) = 1
exp(ωk/T )−1 . We take a continuum limit, replacing the sum 1

|Ω|
∑

k by

an integral
∫

Ω dk; this amounts to using a bath with infinitely many modes, and is
necessary to obtain irreversible behavior of the system.

We then substitute the above expression into the definition of Γαβστ :

Γαβστ =
1

2
iσiτδαβ

∫ ∞

0
ds

∫

Ω
dk
(

(−1)σeisωkN(ωk) + e−isωk(−1)τ (1 +N(ωk))
)
.

We can simplify the above formula by exchanging the integrals and using the identity∫∞
0 dse−ixs = πδ(x)− i ·PV ( 1

x), where δ(x) is the Dirac distribution and PV ( 1
x) is the

Cauchy principal value (equation 3.202 in [9]). We then get:

Γαβστ =
1

2
iσiτδαβ

∫

Ω

(
(−1)σN(ωk)

∫ ∞

0
eisωkds+ (−1)τ (1 +N(ωk))

∫ ∞

0
e−isωkds

)
dk

=
1

2
iσiτδαβ

(
(−1)σπN(0) + (−1)σi · PV

∫

Ω

N(ωk)

ωk
dk

+ (−1)τπ(1 +N(0))− (−1)τ i · PV
∫

Ω

1 +N(ωk)

ωk
dk
)
.

In particular, Γαβστ can be written in the form

Γαβστ =
1

2
iσiτδαβ

(
(−1)σQ0 + (−1)τQ1

)
,

where the coefficients Q0 and Q1 are complex numbers with positive real part.
We can now calculate the “Lamb shift” Hamiltonian HLS as follows:

Sαβστ =
1

2i
· 1

2
iσiτδαβ

(
(−1)σ(Q0 −Q∗0) + (−1)τ (Q1 −Q∗1)

)
,

HLS =
Q0 −Q∗0

4i

∑

α

(∑

σ

iσ(−1)σA†ασ
)(∑

τ

iτAατ

)

+
Q1 −Q∗1

4i

∑

α

(∑

σ

iσA†ασ
)(∑

τ

iτ (−1)τAατ

)

=
Q0 −Q∗0

4i

∑

α

√
2U †αUα

√
2 +

Q1 −Q∗1
4i

∑

α

√
2UαU

†
α

√
2

=
Q0 −Q∗0

2i
DI +

Q1 −Q∗1
2i

DI.

So HLS is a multiple of the identity, and it contributes nothing when we substitute it
into the master equation (34).

Finally we can calculate the dissipator D. First,

γαβστ =
1

2
iσiτδαβ

(
(−1)σ(Q0 +Q∗0) + (−1)τ (Q1 +Q∗1)

)
.

We substitute this into the definition of D, and simplify it in the same way as we did
for HLS . This yields

D(ρS) = (Q0 +Q∗0)
∑

α

(
UαρSU

†
α − ρS

)
+ (Q1 +Q∗1)

∑

α

(
U †αρSUα − ρS

)
.

Note that Q0 +Q∗0 and Q1 +Q∗1 are positive real numbers. We substitute this into the
master equation (34). This completes our proof of (5).
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A.2 Controlled expanders

In this appendix, we outline how we obtain the requisite controlled expander Λ E needed
for section 5. We use the results of Ben-Aroya, Schwartz, and Ta-Shma [6], whose
Theorem 4.3 and 4.6 give the following result.

Theorem A.1. There exists an integer D0 such that for every D > D0 and for every
integer t > 0, there exists a explicit λt-contractive expander of degree D2 on a space of

dimension D8t where λt 6 λ+ cλ2 with c a constant and λ = 4
√
D−1
D .

We will additionally use the following result, which follows directly from the defi-
nition. Here we use the notation that Fr denotes the r-fold composition of F .

Proposition A.2. If F is a λ-contractive expander of degree D on a space of size N ,
then for any positive integer r, Fr is a λr-contractive expander of degree Dr on a space
of size N .

In section 5 we require an κE -contractive expander E with κE 6 0.1 on a space of
size N = 2nw+na . Note that N is actually allowed to exceed 2nw+na since we can always
have extra input ancillae that do nothing but are acted upon by the final controlled
expander Λ E .

Fix D to be any power of 2 larger than D0. Then λ = 4
√
D−1
D < 1 is fixed. Let r be

such that (λ+cλ2)r 6 0.1. Let t =
⌈
nw+na
8 log2D

⌉
= nw+na+nextra

8 log2D
for some nextra < 8 log2D.

Using the above theorem we are guaranteed the existance of a λrt -contractive ex-
pander of degree D2r on a space of size D8t = 2nw+na+nextra , where D and r are
constants and λrt 6 0.1.
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