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Current methods of critical evaluation of wave-
lengths, energy levels, and transition probabilities for
atoms and atomic ions at the National Institute of Stan-
dards and Technology are summarized.

I. INTRODUCTION

At the National Institute of Standards and Technol-
ogy (NIST), we are carrying out a systematic program of
critical compilation of wavelengths, energy levels, and
transition probabilities of atoms and atomic ions.

For the most part, the evaluated data on wavelengths
and energy levels are experimental values based on lab-
oratory observations. In some cases, such as for H-like
and He-like ions, the data are derived from calculations
with sophisticated atomic structure codes that include
relativistic and quantum electrodynamic effects. For tran-
sition probabilities, the situation is reversed. Most of the
data come from theoretical calculations, but some are
experimentally measured in laboratory or astrophysical
spectra.

The process of producing a critical compilation re-
quires retrieval of all data from the literature for a par-
ticular ion. It is important to have a complete bibliography
for the considered spectrum. For this purpose, we use the
NIST Atomic Energy Levels and Spectra Bibliographic
Database! and the NIST Atomic Transition Probabilities
Bibliographic Database.? Both of these databases are main-
tained up-to-date. In addition to these databases, it is
worthwhile to query the BIBL database? of the Institute
of Spectroscopy, Troitsk, Russia. This database is up-
dated twice a year and is independent of the NIST data-
bases. Quite often, some papers missed in the NIST
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database may be present in the BIBL database. For com-
pleteness, these bibliographic searches should be com-
plemented by examining the references in the papers found
and by searching in other available Internet resources.

In many cases the data must be extracted from more
than one paper. For neutral and moderately ionized atoms,
it is not uncommon for 10 or more papers to be used.
Often the data from different papers are inconsistent, and
possibly contradictory. Where possible, we attempt to
resolve these conflicts by use of isoelectronic compari-
sons, analysis of Rydberg series, and ab initio or semi-
empirical calculations. In some cases level identifications
given in the literature are incomplete in their specifica-
tions, and new calculations are needed to obtain appro-
priate names. If available, we tabulate the percentage
compositions for the observed levels. In many cases these
compositions are taken from our own calculations.

When data from two or more papers are blended
together to form a single list of lines and levels, it is
usually necessary to derive a new set of levels and to
optimize their values so that the Ritz wave numbers (dif-
ferences of the level values) best reproduce the observed
spectrum. This is usually done with a computer code that
weights the wave numbers according to their uncertain-
ties and minimizes the differences between the observed
wave numbers and those derived from the levels in an
iterative procedure. The final Ritz wavelengths are usu-
ally more accurate than those that were observed.

To provide a complete description of the energy struc-
ture of an atomic spectrum, it is often necessary for us to
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determine an ionization energy (IE) from the observed
data. Several methods have been developed for this pur-
pose as well as for other aspects of the compilation process.

Since experimental data on wavelengths and energy
levels are usually of high precision, several strict numer-
ical procedures exist that allow us to detect inconsisten-
cies in the data and select the best available data that fit
together in a coherent picture. The process of critical
evaluation of such data is well structured and developed.

On the other hand, the data on transition probabili-
ties are usually much less accurate and more difficult to
analyze. The process of critical evaluation of these data
strongly depends on the methods used to produce them
and on availability of other independently obtained data
for comparison. At NIST, we have developed several
methods that can be used for evaluation of transition
probability data.

The methods we use are briefly reviewed in the fol-
lowing sections.

1l. CRITICAL EVALUATION OF WAVELENGTHS AND
ENERGY LEVELS

Figure | schematically illustrates the process of crit-
ically compiling wavelength and energy level data. This
is a somewhat updated version of the procedure previ-
ously described by Reader.* As can be seen, our indepen-
dent calculations play an important role in nearly all
aspects of the process. The example shown in Fig. 1 is for
a case where two literature sources are being consulted.
Although in practice there may be only a single source
that is needed, more often there are many more that have
to be blended together to form the final compilation.

Il.LA. Evaluation of Wavelengths

For each data source, the measured wavelengths have
to be examined and, if necessary, corrected. The first
thing to consider is the wavelength standards used. For
old publications, the standard wavelengths may have been
revised. If so, this revision has to be applied to the mea-
sured values. One of the many examples is the In II
spectrum measured by Karlsson and Litzén? using Fou-
rier Transform spectroscopy (FTS). In this work, the wave
number scale was calibrated by means of Ar II lines
previously measured by Norlén.® Nave and Sansonetti’
recently found that Norlén’s wave number scale has a
multiplicative calibration error. To correct for this error,
all wave numbers from the Karlsson and Litzén? paper
have to be increased by 6.7 parts in 103,

In many cases the number and quality of reference
wavelengths is insufficient, and there remain some sys-
tematic shifts. They can often be eliminated by using, as
internal standards, Ritz wavelengths based on indepen-
dently derived accurate values of energy levels. As an
example, Fig. 2 shows relative deviations of the original
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Fig. 1. Process of critical evaluation of data on wavelengths
and energy levels.

Ag I wave numbers measured by Rasmussen® from Ritz
wave numbers based on FTS measurements of Kalus
et al.? plotted against the wave number.

As seen from Fig. 2, systematic shifts in Rasmussen’s
measurements are comparable to or exceed statistical un-
certainties estimated from the scatter of data points around
the smooth fitted curve. Removal of these systematic
shifts leads to a more accurate determination of wave-
lengths corresponding to highly excited energy levels
that were observed in the work of Rasmussen® but were
not observed by Kalus et al.’

Other systematic effects, such as pressure shifts and
Stark shifts caused by external electric fields, have to be
carefully considered, as was done, for example, in the
recent work'? on '®Hg L.

I1.B. Evaluation of Intensities of Spectral Lines

Observed relative intensities of spectral lines are usu-
ally only qualitative. They depend on the registration
setup and on the light sources used. Nevertheless, they
FUSION SCIENCE AND TECHNOLOGY
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Fig. 2. Relative deviations of wave numbers measured by
Rasmussen® from Ritz wave numbers based on mea-
surements of Kalus et al.? The smooth curve is a cubic
polynomial fit to the data points.

are important, because they provide a widely used qual-
itative criterion for line identification: Lines theoreti-
cally predicted to be strong should be strong in the
observed spectrum. In many cases the wavelength mea-
surement accuracy is insufficient to uniquely identify an
observed line with a transition between a certain two
energy levels, since there may be many possible transi-
tions close to the observed wavelength. Comparison of
observed relative intensities with theoretically modeled
ones helps make a definite identification.

To facilitate comparisons of relative intensities ob-
served with different registration equipment and differ-
ent light sources, these intensities have to be reduced to
a uniform scale. Such reduction is not always possible,
but often it is. Effective excitation temperatures of the
light sources can be derived from Boltzmann plots built
using theoretical values of radiative rates. Approximate
spectral response curves of the registration equipment
can be derived by plotting the ratios of observed inten-
sities and those calculated assuming the local thermo-
dynamic equilibrium (LTE) in the light source. Then all
observed intensities, corrected for the variation of sensi-
tivity with wavelength, can be reduced to a common
effective excitation temperature. These procedures were
successfully applied to line intensities in the Ne II-1V
(Ref. 11), In II (Ret. 12), and Ag II (Ref. 13) spectra.
They are explained in detail in Ref, 12,

Of course, there exist more accurate methods of theo-
retical modeling of line intensities for non-LTE plasmas
that take into account such aspects as level population
kinetics including excitation/de-excitation, detailed ion-
ization balance, self-absorption of radiation, etc. How-
ever, experimental details such as the intensity response
calibration of the registration equipment and the precise
geometry and excitation conditions of the light sources
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are most often unavailable, making the application of
such methods impossible. In addition, theoretical param-
eters required for such modeling (radiative rates and col-
lisional cross sections) in most cases are not accurate
enough to justity the effort. The approximate method
outlined above usually gives relative intensities consis-
tent with the assumption of LTE to within a factor of 3 on
average.

11.C. Evaluation of Consistency of Analysis

The most important and easily implemented crite-
rion of consistency of analysis is provided by the Ritz
combination principle. It simply means that for each ob-
served spectral line classified as a transition between two
energy levels, the observed wave number must be equal
to the Ritz value, which is the difference between the two
energy levels within the stated measurement uncertainty.
Some observed wave numbers may deviate from the Ritz
values by more than one uncertainty, but the number of
such outliers should not exceed ~30% of the total num-
ber of observed lines (assuming the uncertainties are given
in terms of 1o). Special considerations should be given
to blended lines, including multiply classified lines. For
such lines, deviations of observed wave numbers from
Ritz values may be significantly greater.

One example of an inconsistent analysis recently has
been found!'? in the Ag II vacuum ultraviolet (VUV)
spectrum reported by Benschop et al.'"* These authors
reported 64 newly identified spectral lines of Ag II be-
tween 1027 and 2034 A. Half of these lines were asso-
ciated with the previously unknown 4d®9s configuration
and 4d85s2 'Sy level. Although only the newly identified
lines were listed, the authors claimed that they confirmed
and refined all levels previously reported by other au-
thors, and they gave a complete revised level list. Since
two coauthors of that paper, Y. N. Joshi and Th. A. M.
Van Kleef, are respected spectroscopists who published
several hundred papers on analyses of various atomic
spectra, the results of this work were widely accepted
and used by many authors (see, for example, Campos
et al.'® and Morton!©).

The measurement uncertainty stated by Benschop
etal.'* for strong unblended lines was 0.005 A. However,
when the measured wave numbers are compared with the
Ritz values derived from their energy levels (see Fig. 3),
a striking inconsistency is revealed.

Normally, one would expect most of the observed
wave numbers to differ from the Ritz values by no more
than two times the measurement uncertainty. However,
Fig. 3 shows the opposite: Most of the measured lines are
outside this range. If the level values derived by Benschop
et al.!* are replaced with much more accurate ones re-
ported later by Kalus et al.,” inconsistencies become even
more drastic (see Fig. 4).

From Figs. 3 and 4, it is seen that deviations of ob-
served wave numbers from Ritz values cannot be reduced
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Fig. 3. Deviations of observed wave numbers from Ritz values
for Ag I1 lines reported by Benschop et al.,'* with their
energy levels. The horizontal axis is the wave number
of the line. The error bars correspond to the measure-
ment uncertainty of 0.005 A. The smooth solid curves
represent a difference from zero by two times the mea-

surement uncertainty.
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Fig. 4. Deviations of observed wave numbers from Ritz values
for Ag II lines reported by Benschop et al.,}* with en-
ergy levels from Kalus et al.® Uncertainty bars and
solid curves are the same as in Fig. 3.

to the level of measurement uncertainties by applying
any calibration correction function smoothly varying with
wavelength.

In addition, the observed line intensities reported by
Benschop et al.'* have no correlation with radiative rates,
which I calculated!® using a parametric fitting with
Cowan’s codes.!” This can be seen in the Boltzmann plot
shown in Fig. 5. No straight line with a negative slope
can be fitted to data points on this plot, which means that
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Fig. 5. Boltzmann plot of Ag II line intensities observed by
Benschop et al.!*

if the identifications are correct, the level populations
cannot be approximated by LTE with any reasonable ef-
fective excitation temperature. This contradicts observa-
tions made with similar light sources in other spectra. (A
sliding spark, triggered vacuum spark, and helinm-filled
hollow cathode discharge were used by Benschop et al.)
No reasonable assumption about a smooth variation of
the registration sensitivity with wavelength can rectify
this Boltzmann plot.

Because of the above considerations, I concluded
that the entire analysis of Benschop et al.'# is incorrect,
and all their results must be discarded. This shows that
even an established good reputation of the authors is
insufficient for accepting their results.

Another important part of the evaluation of the con-
sistency of analysis is comparison with independent theo-
retical calculations of reasonably high quality. Such
calculations can be used not only in the analysis of line
intensities illustrated above, but also in a more general
view. For example, the number of energy levels assigned
to a certain configuration should not exceed the number
of possible levels predicted by quantum mechanics. If the
coupling conditions are sufficiently pure (e.g., close to
pure LS or JJ coupling), the splittings of levels within
terms should conform to well-known rules. Observation
of transitions that are normally strongly forbidden or that
involve a simultaneous change of state of two or more
electrons should be justified. For example, forbidden tran-
sitions can be observed in absorption or emission if their
lower or upper levels, respectively, are metastable and
accumulate a high population at the conditions of the
experiment. Intercombination transitions and transitions
involving two-electron jumps can be possible due to strong
level mixing. This can be revealed by a theoretical cal-
culation. If such calculations are unavailable in the liter-
ature, one should make them using available resources
FUSION SCIENCE AND TECHNOLOGY
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and computer codes. In my practice, Cowan’s codes !’
were almost always sufficient for these purposes.

11.D. Level Optimization

Once a complete list of observed and identified spec-
tral lines is built, it can be used to derive a set of energy
levels that best fit the observed wave numbers. This is
done in a procedure called least-squares level optimiza-
tion. In this procedure, the observed wave numbers are
weighted by squared reciprocal uncertainties. For this
purpose, I recommend using my computer code LOPT.!#
Although seemingly straightforward, level optimization
has many subtleties and pitfalls. Some of them are ex-
plained in the paper cited above, along with recipes for
avoiding them and practical examples.

The crucial factor in any level optimization is the
validity of all line identifications. Incorrect identifica-
tions invalidate the entire procedure.

The most important subtlety is in the difference be-
tween the notions of transition and spectral line. The
quantities that must be used in the input of the level
optimization procedure are transition wavelengths or wave
numbers along with their measurement uncertainties.
However, the quantitics actually measured are wave-
lengths or wave numbers of centers of spectral lines. A
spectral line does not necessarily arise from a single tran-
sition but can be a blend of several transitions. Thus, for
the purpose of level optimization, measurement uncer-
tainties of blended lines must be greatly increased, be-
cause an individual transition assigned to such a line can
be located anywhere within the profile of the line. Some-
times blended line profiles can be decomposed into in-
dividual components; this could possibly remove the
requirement of increased uncertainties.

Another important point is that the least-squares level
optimization procedure is statistically rigorous only in the
absence of systematic effects such as calibration errors.
Thus, all known systematic effects should be removed from
the measured values prior to deriving the energy levels.
In many spectra there are ladderlike systems of energy
levels having multiple transitions in the visible or infra-
red regions of spectra where wavelengths can be mea-
sured with high precision. In such spectra, transitions from
highly excited levels to the ground configuration usually
lie in the VUV and rarely can be measured with accuracy
comparable to that of the long-wavelength regions. It is
common to use the Ritz wavelengths of such transitions
as VUV wavelength standards. However, if there are any
residual systematic shifts in the long-wavelength mea-
surements used to determine the energy levels, these sys-
tematic shifts add up with each step of the ladder connecting
highly excited upper levels to the ground configuration.
The LOPT code has an effective way of estimating such
systematic effects.

An important diagnostic parameter of the least-
squares optimization is the residual sum of squares (RSS).
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If the problem is posed statistically correctly (i.e., all
input wavelengths are statistically independent, imply-
ing the absence of systematic effects), the ratio of RSS to
the number of degrees of freedom of the problem (DF =
number of measured transitions minus number of energy
levels involved) must be close to unity. Another consis-
tency test can be made by counting the number of outli-
ers, i.e., the number of transitions for which the measured
wavelength deviates from the Ritz value by a given mul-
tiple of the measurement uncertainty. For example, for a
normal statistical distribution, the fraction of lines devi-
ating from the Ritz values by more than one measure-
ment uncertainty should be close to 32%; the fraction of
lines deviating by two or more uncertainties should be
about 5%, etc. If the number of outliers significantly
exceeds these values, it is an indicator of some problems,
cither with identifications of transitions or with the mea-
sured wavelengths. In such cases the outliers should be
carefully examined, and the problems resolved either by
discarding the wrong identifications or by adjusting the
wavelengths or their uncertainties. Such analysis should
be made for each subset of data coming from separate
experiments.

ILE. Deriving the lonization Energy

Once the energy levels are firmly established and
their uncertainties are assessed, they often can be used to
derive spectroscopic values for the ionization limits. Such
derivation can be made, for example, by using a series of
levels converging to the same limit. For this purpose, I
often use the nonlinear least-squares fitting computer
code RITZPL developed by Sansonetti.!® This program
fits a series of levels to the quantum-defect expansion
formulas of the following types:

8,=cotc,/(n—28,)*+c,/(n—6,)*
+co3/(n—68,)°%+ ... (la)

or

8, = co+ i /(n—co)? + cy/(n — cy)*
+oy/(n—co)®+..., (1b)

where ¢; are the fitted constants and §, is the quantum
defect describing an empirical correction to the principal
quantum number n required for the excitation energy E,
to satisfy the hydrogenic formula:

E,—E,=RZ%(n-35,)? , (2)
where
E; = ionization energy
Z = charge of the ionic core

R = Rydberg constant.
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The quantity n* = n — §, is often referred to as the
effective quantum number. Equation (1a) is called the
extended Ritz formula, and Eq. (1b) is called the modi-
fied Ritz formula.

In highly ionized atoms, it is rare to have experi-
mental values for many series members. In such situa-
tions, it is often possible to extrapolate some known
values of the effective quantum number n* from a sim-
ilar well-known spectrum to the spectrum of interest
and find a semiempirical value for the ionization limit
from Eq. (2).

The quantum defect expansion Egs. (1) and (2) are
applicable only if the series is not perturbed by inter-
actions with other series. Presence of such perturba-
tions can be revealed by plotting the quantum defects
along the series of n. If the dependence is not smooth,
the series is perturbed. In such cases the limit can be
found by using the multichannel quantum defect theory,?°
which is significantly more complex. Detecting pertur-
bations and identifying their source is not always sim-
ple. Sometimes a deviation of a quantum defect from
the smooth curve along the series indicates errors in
line identifications or line blending. Theoretical ab ini-
tio or semiempirical calculations are essential in series
analysis.

A good example of application of several different
methods to derive an IE of a highly ionized atom was
given by Reader et al.?! These authors derived the IE of
Kr VIII from observed level series [3d'°ns, np, nd, nf,
ng, and ni. Quantum defect Egs. (1) and (2) were used for
series with low orbital quantum number (s, p, d). For the
two observed members of the uf series (n = 4, 5), the IE
was determined using a calculated value for the change
in the effective quantum numbers of the two series mem-
bers. This calculation was made ab initio with a multi-
configuration Dirac-Fock (MCDF) method. For the high—
orbital momentum series (ng and ni), a polarization
formula discussed below was used.

If a series of levels with nonpenetrating external elec-
tron is known, then there is an alternative way of deriving
the ionization limit, by using the polarization formula
(see, for example, Sansonetti et al.??):

E,=E — Ty(nl1)— AT, (n1) , (3)

where Ty(n,!) is the hydrogenic term value:

Z?R a’Z? n 3 @
1+ - = ,
n? n? \I/+1/2 4
where « is the fine-structure constant.
The polarization contribution can be written as

Ty(n,l) =

AT, (1) = Raglay/{r~*(n, 1)) + a(r—*(n.1))] .

(5)
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where

1 ’

aya,

effective dipole and quad-
rupole polarizabilities of
the core

ag = Bohr radius

(r~*(n,1)),{r=%(n,1)) = expectation values to be de-
termined for the appropri-
ate hydrogenic state using
formulas given by
Bockasten.??

The polarization formula does not include fine-
structure splitting but can be applied to the centers of
gravity of terms.

Fitting of the polarization formula expressed by
Egs. (3), (4), and (5) was implemented in a computer
code POLAR by Sansonetti.?* It is as easy to use as the
RITZPL code for the quantum defect formulas. All one
has to do is specify the energies for the series levels,
appropriate quantum numbers, and weights for each se-
ries member.

Another type of polarization formula was suggested
by Schoenfeld et al.?> It can be used for deriving ioniza-
tion limits of complex spectra such as Fe I1.%°

The series formulas can be used to interpolate and
extrapolate energy levels along the series. In this way it
1s often possible to derive more accurate values than the
experimental ones and to detect incorrect identifications.
Of course, interpolations and extrapolations give correct
results only in the absence of perturbations in the series.

Besides the series formulas, there are other semi-
empirical methods of deriving the IE. One example is the
method of semiempirical adjustment of Cowan code cal-
culations developed and applied to deriving IE for all
stages of ionization of tungsten by Kramida and Reader.2’

IL.F. Theoretical Interpretation of the Energy Levels

An important requirement for a critically evaluated
set of energy levels is consistency of the level notation.
In many cases various parts of the level system are ana-
lyzed by different authors using different naming con-
ventions and different coupling schemes. In the final
critically evaluated data set, a proper coupling scheme
should be chosen that best describes the physical nature
of the levels. Sometimes different subsets of electronic
configurations are best described in different coupling
schemes. For example, in Ne 11 the 2s?2p*n/ configura-
tions with / = s, p, d are best described in the LS coupling,
while for the 2s22p*n/ configurations with [ = f, g, h, the
JK coupling is the best.?® However, giving one part of a
configuration in one coupling scheme and another part in
a different scheme is not physically meaningful. To find
a proper notation, one has to perform atomic structure
calculations.
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For this purpose, I and other members of the NIST
Atomic Data Center most often use Cowan’s atomic struc-
ture code package.!” Although it is based on a nonrela-
tivistic Hartree-Fock approximation with some relativistic
corrections accounted for as perturbations, it has an im-
portant capability of semiempirical adjustment of effec-
tive Slater parameters by means of least-squares fitting
(LSF) of known energy levels. It can account for the
main configuration interactions, which are also intro-
duced as perturbations. This approach has a proven record
of success in atomic spectroscopy. Ab initio calculations
with Cowan’s codes are admittedly less accurate than
some other existing approaches, such as the many-body
perturbation theory (MBPT), relativistic configuration-
interaction (RCI), and MCDF methods, to name a few.
However, compared with these advanced methods, Cowan
codes are much simpler and faster, and Cowan’s LSF
procedure!” in most cases yields an accuracy of energy
levels with which no other presently available method
can compete.

The LSF procedure is also effective in detecting spu-
rious level identifications. Cowan’s codes can calculate
percentage compositions of eigenvectors in several cou-
pling schemes, which is essential for choosing a correct
notation for the energy levels.

I1.G. Isoelectronic Comparisons

Isoelectronic interpolations or extrapolations are
widely used to evaluate correctness of the analysis and
sometimes can provide more accurate data than experi-
mental measurements. The most accurate interpolations
can be obtained by plotting the differences of experi-
mental values from accurate theoretical calculations along
an isoelectronic sequence. For example, in Ref. 29 I
used the differences of observed energies of the 2s;,-
2p1,, transition in Li-like ions from theoretical values
calculated by Yerokhin et al.*® to obtain an accurate
wavelength for this transition in W7+, 64.140(12) A.
Isoelectronic interpolations are safe only if the depen-
dence of the interpolated quantity on the nuclear charge
is known to be smooth. For example, level crossings,
which often occur in isoelectronic sequences, destroy
the smoothness of energy intervals and make interpola-
tions unsafe. In such cases, it is often possible to inter-
polate other quantities that do behave smoothly along
the sequence, for example, ratios of Slater parameters
fitted by LSF to their Hartree-Fock values. This method
was used, for example, in Ref. 31 to accurately predict
energy levels of Be-like Si XI and to detect several
errors in line identifications in Be-like ions.

lll. CRITICAL EVALUATION OF TRANSITION
PROBABILITIES

An excellent review of methods of critical assess-
ment of transition probabilities (TP) was given earlier by
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Wiese.?? He discussed in detail the following four main
criteria used in this assessment:

1. consideration of the critical factors of a method
by the authors

2. the authors’ estimates of the uncertainty of their
measured or calculated data

3. the degree of agreement with other reliable data,
based on tabular or graphical comparisons

4. the fit of the data into systematic trends, or devi-
ations from them.

I discuss below some additional aspects important for
data assessment.

III.LA. Matching Calculated TP with Experimental
Energy Levels

As pointed out by Wiese,?? the majority of TP data
come from theoretical calculations, while the majority of
energy level data are experimental. The accuracy of the
TP calculations greatly depends on the accuracy with
which the model used approximates the experimental
energy levels. In complex spectra, the density of levels is
often so great that even the most elaborate theoretical
calculation cannot reproduce the level separations or their
ordering. Thus, it becomes nontrivial to establish a cor-
respondence between the calculated and observed quan-
tities. In this context, the crucial factor is the choice of
characteristics defining the identity of a quantum state.
As mentioned above, energy is not a good criterion of
identity. For spectroscopists, an identity of a quantum
state is defined by transitions in which it participates and
by intensities of these transitions.

I recently discussed an example of this problem oc-
curring in the Na II spectrum.*? In this spectrum, some of
the levels of the 2p>3d and 2p>4s configurations are very
close to each other. They are highly mixed, and their
ordering in theoretical calculations strongly depends on
the approximation used. In this situation, comparison of
relative intensities of lines originating from the same
upper level with calculated transition probabilities pro-
vided a decisive criterion for identifying the experimen-
tal levels with theoretical ones. Such comparison is reliable
in this case because it does not depend on modeling of the
level populations and the relevant spectral lines are in a
relatively narrow spectral range, where variation of the
spectral response of the registration equipment is ex-
pected to be small.

Figure 6 illustrates this comparison for the case
of the two levels with / = 1 at 333107.74 and
333162.94 cm™! (see the recent NIST compilation3*).
These levels were designated by Wu?3 as 2p>(?P° /»)3d
2[3/2], and 2p>(®P° ,5)4s 2[1/2];, respectively. In cal-
culations of transition probabilities by Hibbert et al.,’®
these two levels are designated in LS coupling as 2p>3d
3D° and 2p34s 1P°;, but the correspondence is uncertain
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Fig. 6. Plots oflog(A) versus log () for transitions from the
two experimental Na II levels with J = 1 at 333 107.74
and 333 162.94 cm ™. The A values were calculated by
Hibbert et al.3¢ for transitions from the 2p33d D%
level to all 2p33p levels. (a) Assumption that the 3d
D°; level is the upper of the two experimental levels:
(b) assumption that it is the lower level. Adapted from
Ref. 33.

because of the closeness of the levels. The two panels of
Fig. 6 test the two possible assumptions about the level
ordering. In Fig. 6a, the theoretical 3d *D°, level is as-
sumed to correspond to the upper of the two experimen-
tal levels, while in Fig. 6b it is assumed to be the lower
one. The correct identification should be the one for which
the observed line intensities are proportional to the cal-
culated A values.

Comparison of Fig. 6a and Fig. 6b leads to an un-
ambiguous conclusion that the upper of the two experi-
mental levels is the 3d one. This means that Wu’s
assignment of this level to the 2p4s configuration> was
incorrect.

An essential detail of Fig. 6 is the use of the loga-
rithmic scales for both the calculated A values and the
observed line intensities. This use of the logarithmic
scale is a rule for such comparisons, as well as for
comparisons of different calculations of transition prob-
abilities with each other. It is dictated by statistical prop-
erties of both theoretical calculations and measurements
of line strengths. Even in a very accurate calculation,
there are usually a large number of weak lines for which
the calculated line strengths can deviate from the true
values by orders of magnitude. For weak lines, experi-
mental measurements greatly suffer from many factors,
such as the uncertainty of the base line in the determi-
nation of the intensities. Thus, for both theory and ex-
periment, statistical distributions of the values are far
from normal. For the logarithms of line strengths and
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intensities, statistical distributions of the values are much
closer to normal.

I11.B. Matching Different Theoretical Calculations
with Each Other

Another property that is a good identifier of a quan-
tum state is the eigenvector. In quantum mechanical
calculations of line strengths, the amplitudes of the ei-
genvector components are the main contributing fac-
tors. Thus, it is natural to use eigenvectors to identify
atomic states in theoretical models.

To calculate different atomic properties, it is usually
necessary to use different theoretical approaches. For ex-
ample, to accurately predict the energy levels, the best ap-
proach is often the LSF with Cowan’s codes.!” However,
the approximations used in these codes lead to large er-
rors in calculations of transition probabilities. Therefore,
the latter quantities are usually obtained with much better
accuracy using more sophisticated methods such as
MBPT, multiconfiguration Hartree-Fock, MCDF, or
RCI. Thus, it is often necessary to merge together results
of calculations that use very different atomic models. This
poses a task of establishing the correspondence between
the eigenvectors produced by different models. It is not
always possible to establish such correspondence in a
unique and meaningful way, because the approximations
of the models may be too different. However, a partial cor-
respondence usually exists and can be established. The
method for this, used in my version of Cowan’s LSF code
RCE.! is based on calculating the distance between the
eigenvectors in the multidimensional space of the basis
set. In the LLSF, each iteration produces a different set of
values for the Slater parameters, which means that the
atomic model changes. This requires establishing a cor-
respondence between the eigenvectors obtained before and
after each iteration. My method is illustrated in Fig. 7.

Suppose we have two sets of eigenvectors V; and
V/' produced by two close models in the same set of
basis states. Each of V; and V' are defined by the set of
their projections on the axis, which are the amplitudes
of the corresponding basis states in the vector. The task
is to decide which index i corresponds to each j. To do
that, we calculate the squared distances d,% = 3(Vy —
V)%, where Vi and V,; are the amplitudes of basis state
k in the two eigenvectors, and the summation is over all
basis states. The best choice of correspondence between
the two sets of eigenvectors should minimize the sum
of all d;% In general, for an arbitrarily large size N of
the basis set, a brute force solution of such a minimiza-
tion problem by considering every possible combina-
tion (i,j) is technically impossible, because it would
involve an exponentially large number of operations, on
the order of N¥. However, in practice we can quickly
find a reasonably good solution, assuming that the two
models are not too far from each other. We start by
considering only the relatively pure eigenvectors, i.e.,
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Fig. 7. Establishing correspondence between two sets of eigen-
vectors V; (blue solid lines) and V' (red dashed lines)
produced by two close theoretical atomic models. The
correspondence is established by minimizing the sum
of squares of distances dj; (green double-headed ar-
rows) between each pair of eigenvectors (see text).

those that have >50% contribution of one basis statc.
Establishing correspondence between these pure eigen-
vecetors is easy and straightforward. Eliminating these
pure eigenvectors effectively reduces the size N of the
problem. Then we proceed with each of the highly mixed
eigenvectors V' by finding the closest of the remaining
unassigned V;, i.e., the one that minimizes the squared
distance d;. Once the closest match is found, V; and V//
are removed from the unassigned set, again reducing
the size of the remaining problem. This step is repeated
until all eigenvectors V/ are uniquely assigned to V.
The algorithm actually implemented in my version of
RCE!7 is somewhat more complicated. For example, it
accounts for a possible change of sign of all compo-
nents of V' after the LSF iteration.

As noted above, comparing the eigenvectors is phys-
ically meaningful, because the amplitudes of the eigen-
vector components are the quantities determining the
observable properties of quantum states, such as radia-
tive and collisional rates and Landé factors. For human
observers, these properties, along with the excitation en-
ergy and the J value, are the characteristics that consti-
tute the identity of a quantum state.

The procedure described above can easily be ex-
tended for the case when the two basis sets have different
dimensions. Then only a subset of the smallest dimen-
sion is used to identify the eigenvectors.

HI.C. Selecting the Best Values for Transition
Probabilities

Wiese*? discussed several crucial factors for estimat-
ing the validity of calculated transition probabilities, such
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as consideration of configuration interaction, near coinci-
dences of energy levels, cancellation effects, relativistic
corrections, and convergence of results and of the dipole
length and velocity forms. For experimental measure-
ments, he discussed such crucial factors as the validity of
the plasma model, absence or good account of self-
absorption, and accuracy of intensity calibration. For life-
time measurements, important factors are selective
excitation, proper account of collisional effects and ra-
diation trapping, absence of line blending, and, for some
types of experiments, account of polarization effects and
quantum beats. Once the available data are checked for
these crucial factors and unreliable data are eliminated, it
is not uncommon to be left with several partially over-
lapping sets of data, from which the best ones have to be
chosen, and their uncertainties have to be assessed.

In my practice, I have found the following procedure
to be very productive: One starts with selecting the best
available experimental data with well-defined uncertain-
ties. For example, if available, one should use experi-
mental A values derived from spectrally calibrated
measurements of branching fractions normalized to the
absolute scale by using well-measured radiative life-
times. This set of data should be used for comparisons
with other, less-reliable data sets. When comparing cal-
culated A values with the reference data, one should dif-
ferentiate the data by the line strength. It is commonly
observed that both calculations and measurements are
much more accurate for strong lines than for weak ones.
Thus, it is usually possible to select a threshold value for
the line strength below which the calculations are totally
unreliable (have uncertainties on the order of orders of
magnitude) and to find certain ranges of line strengths
for which the uncertainty of the calculations can be rea-
sonably estimated by deviations from the reference val-
ues. These ranges of line strengths are different for each
method of calculation and for each atomic spectrum. Once
the uncertainties are estimated for the limited set of com-
pared values, they can be extrapolated to other data within
the same range of line strengths from the same calcula-
tion. If the uncertainties are small enough, these data can
be included in the reference set and used for estimating
the remaining data sets. The final selection should be
based on the choice of data having the smallest estimated
uncertainties.

The above procedure is illustrated in Fig. 8 for the
case of Cowan code calculations for Ag I1.1* The shaded
region of extremely weak transitions is unusable because
of too large uncertainties of the calculation.

It is not uncommon to have a need to recalibrate
some previously published results using more recent ref-
erence data than available to the original authors. For
example, Ferrero et al.’’ calibrated their measurements
of radiative branching fractions in Ag I by their own
single-configuration Hartree-Fock calculations of life-
times, which they assumed to be accurate within 5%.
Later, beam-laser measurements of lifctimes by Biémont
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Fig. 8. Selection of A values based on line strength S.

et al.*® proved that this estimate was far too optimistic.
However, the measurements of Ferrero et al.37 still can be
used to obtain accurate A values, if they are recalibrated
with experimental lifetimes from Biémont et a].8

111.D. Checking for Regularities

It is often possible to spot errors in transition prob-
ability data by checking for known regularities along line
series or along isoelectronic sequences. For example, as
noted in Ref. 33, transition probabilities given by Froese
Fischer et al.* for high members of the 2p®3p-2p®ns and
nd series of neutral sodium are incorrect. This is easily
revealed by looking at the trend of the A values along the
series. In such simple single-electron spectra with no
significant perturbations, transition probabilities in a
Rydberg series of lines should monotonically decrease
with increasing principal quantum number. The data of
Ref. 39 do not follow this trend.

IV. ERROR CHECKING

The last step before inserting the critically evaluated
data into a reference database is the error checking. Al-
though the journal publishing process already involves
extensive error checking, the requirements for database
error checking are essentially different. For example, pub-
lished papers on atomic spectroscopy often use some
shortened notation for energy levels in order to save space.
In the database, the notation should be expanded to con-
form to general standards that can be easily formulated
for all spectra so that there should be no need to make
special notes for each spectrum. Many procedures, such
as the verification of the correspondence between the
labels used in the level and line tables, uniqueness of the
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level names used, and their conformity to conventions
used in similar spectra, are easier to implement with a
database than with document-based software. Very often,
at the stage of inserting data into the database, many
misprints missed in the publication process are revealed.
If a database is intended to store several million data
pieces, having erroneous data imposes severe mainte-
nance problems. Correcting one small error in the data-
base can easily take half an hour of labor, because changing
one datum may require additional consistency checking
and should be documented. I estimate that an error rate
acceptable for such large databases is <0.01%. If there
are more errors, their correction would require unaccept-
ably large amounts of maintenance work.

In addition to the data checking points mentioned
above, it is necessary to verify the correctness of vacuum-
to-air conversion for wavelengths,® correspondence of
wavelengths to wave numbers, correspondence of A val-
ues to the oscillator and line strengths for each type of
transition (E1, M1, E2, etc.), and correctness of biblio-
graphic references. Different databases may require dif-
ferent error checking, depending on their structure and
contents.

V. CONCLUSIONS

This paper summarizes current methods of critical
evaluation of wavelengths, energy levels, and transition
probabilities for atoms and atomic ions at NIST. The
general workflow and basic steps of critical evaluation of
such data are described, and several practical examples
are given.
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