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We demonstrate a strong dependence of the effective damping on the nanomagnet size and the

particular spin-wave mode that can be explained by the theory of intralayer transverse-spin pumping.

The effective Landau-Lifshitz damping is measured optically in individual, isolated nanomagnets as small

as 100 nm. The measurements are accomplished by use of a novel heterodyne magneto-optical microwave

microscope with unprecedented sensitivity. Experimental data reveal multiple standing spin-wave modes

that we identify by use of micromagnetic modeling as having either localized or delocalized character,

described generically as end and center modes. The damping parameter of the two modes depends on both

the size of the nanomagnet as well as the particular spin-wave mode that is excited, with values that are

enhanced by as much as 40% relative to that measured for an extended film. Contrary to expectations

based on the ad hoc consideration of lithography-induced edge damage, the damping for the end mode

decreases as the size of the nanomagnet decreases. The data agree with the theory for damping caused by

the flow of intralayer transverse spin currents driven by the magnetization curvature. These results have

serious implications for the performance of nanoscale spintronic devices such as spin-torque-transfer

magnetic random access memory.
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The Landau-Lifshitz and Gilbert equations [1–3], both
with purely local formulations of the damping term, are
regarded as the definitive phenomenological descriptions
of dissipative ferromagnetic dynamics. Most micromag-
netic simulations for magnetization dynamics rely on the
local damping formulation in a diverse variety of systems,
e.g. disk drives [4], telecommunications [5], and biomole-
cule sorting [6]. However, an outstanding question is
damped gyromagnetic precession subject to finite size
effects at the nanometer scale: Should one expect damping
to be identical for a 10 nm and a 10 cm body, all else being
equal? The answer to this question is of great technological
significance for a broad range of applications. For example,
the damping parameter � is a critical figure of merit for
the efficient operation of many spintronic devices, e.g.,
spin-torque-transfer magnetic random access memory
(STT-MRAM) devices that are potentially scalable down
to the 22 nm lithography node and beyond [7]. In the case
of STT-MRAM, the switching energy scales quadratically
with switching current, which is in turn proportional to �;
thus, small � is essential for low power operation.

The leading theory for damping in ferromagnetic
conductors is magnon-electron scattering [8,9], whereby
intrinsic damping is purely local at room temperature [10].
To date, spin-pumping, which drives spin current from a
ferromagnet into adjacent nonmagnetic conducting layers,
is the only experimentally confirmed mechanism of ext-
rinsic nonlocal damping [11]. Recent theoretical work
describes intrinsic nonlocal damping due to the dissipative
flow of nonequilibrium intralayer spin currents within
the ferromagnet itself [12–15], which can give rise to

enhanced damping in isolated magnetic nanostructures.
Evidence in support of such theories remains inconclusive.
Experimentally, spin-torque ferromagnetic resonance
(ST-FMR) has been widely used to measure damping in
individual nanoscale devices. While the damping is often
found to be larger than values reported for extended thin
films (measured damping values for Permalloy in nano-
pillars by use of ST-FMR range from 0:010� 0:002 at
room temperature [16] to 0.016 at 4.2 K [17]; the intrinsic
� for thin film Permalloy is only 0:004� 0:001 [18]), this
discrepancy has often been attributed to increased damping
close to the edges of the nanomagnets, the result of dam-
age, redeposition and/or oxidation at the sidewalls [17].
Unfortunately, the interpretation of ST-FMR data is made
difficult by the complexity of the multilayer structures,
Oersted field effects, and the difficulty in isolating the
contributions to damping from interlayer interactions. We
now demonstrate that intrinsic nonlocal effects, moderated
by spin-wave mode confinement, are important contribu-
tors to damping in magnetic nanostructures. Indeed, we
show that both interlayer and intralayer spin pumping are
of comparable magnitude for the nanoscale systems con-
sidered here.
Our approach is to measure the dynamics in individual

nanomagnets with a single ferromagnetic layer. This
allows determination of the intrinsic properties of the
quantized spin-wave modes without influence of other
adjacent ferromagnetic layers. Extraction of � from en-
semble measurements of nanomagnet arrays is not trivial,
both because (a) the resonance frequencies might differ
from nanomagnet to nanomagnet [19,20], and (b) shape
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distortions can give rise to mode splitting [21], both
sources of extrinsic linewidth broadening. Therefore, mea-
surement of the linewidth of individual nanomagnets is
essential. In addition, a more systematic comparison of
data with theory is made possible by examination of the
dependence of damping on various spin-wave modes in
nanomagnets of differing size [12–15].

Measurement of � in individual nanomagnets has been
achieved with the time-resolved magneto-optical Kerr
effect [22–24], but such measurements are challenging
when the diffraction-limited spot size for focused visible
light is much larger than the nanomagnet, adversely affect-
ing the signal-to-noise ratio. The signal-to-noise ratio of
weak optical signals can be enhanced by use of optical
heterodyne detection, where the optical signal is mixed
with a bright local oscillator beam [25]. We developed a
novel heterodyne magneto-optical microwave microscope
(H-MOMM) to measure ferromagnetic resonance (FMR)
in individual, well-separated nanomagnets by use of
heterodyne detection of magneto-optical signals at micro-
wave frequencies. The signal from a spin-wave mode, e.g.
the end modes in the 200 nm nanomagnets, which are
localized in an � 2100 nm2 area, measured with the
H-MOMM is more than 10 times larger than measured
with a conventional magneto-optical Kerr microscope.
(See the Supplemental Material [26].)

Samples were prepared from thin films of
3 nmTa=10 nmNi80Fe20=5 nmSi3N4 on 100-�m-thick
sapphire substrates. Elliptical-shaped nanomagnets with
nominal dimensions of 480� 400 nm2, 240� 200 nm2,
and 120� 100 nm2 were patterned by e-beam and ion-
mill lithography. 20� 20 �m2 squares were also pat-
terned from the same films to facilitate determination of
the blanket-film FMR properties (see Ref. [21] for details).

FMR spectra for two of the 400 nm nanomagnets, and
three each of the 200 nm and 100 nm nanomagnets, were
measured over a wide frequency range. The spectra were
obtained by fixed frequency excitation and by sweeping
the external magnetic field Hext that was applied along the
nanomagnet long axis. The microwave field from the
waveguide was oriented along the short axis. The inset in
Fig. 1 shows an example of a 13.2 GHz spectrum with a
100 nm magnet. As was previously demonstrated in
Ref. [20], we also compared our data to micromagnetic
simulations to confirm the identity of the various reso-
nances as being associated with end- and center-mode
excitations. The identification was both qualitatively and
quantitatively conclusive. Further comparison of the data
with micromagnetic simulations (described below) indi-
cate that the spin-wave mode with the lowest resonance
field (i.e., the ‘‘center mode’’) is distributed throughout the
volume of the nanomagnet, and the two other modes (i.e.
the ‘‘end modes’’) are localized at the ends of the nano-
magnet along the applied field direction [20]. A perfect
elliptical nanomagnet would have degenerate end modes,

but shape distortions can lift this degeneracy, as was
recently demonstrated in Brillouin light scattering mea-
surements [21]. Coupling between the end modes can also
break the degeneracy, but this was determined to be neg-
ligible for the systems studied here, as discussed below.
The measured amplitudes of the end modes in the

100 nm nanomagnet are significantly larger than that of
the center mode. Micromagnetic simulations (see insets in
Fig. 2) indicate that the center mode actually has signifi-
cant amplitude at two ends of the nanomagnet, but the
precession is 180� out of phase with respect to the central
part of the mode. The heterodyne signals from the center
and ends have opposite signs, which leads to partial de-
structive interference. Additional simulations confirm that
the integrated H-MOMM signals from central and end
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FIG. 1 (color online). Measured resonance fields for a 100 nm
nanomagnet: The center mode (red circles) has the lowest reso-
nance field followed by the end mode 1 (green squares) and end
mode 2 (blue triangles). The solid lines are fits to Eq. (1). The
inset shows a spectrum obtained at 13.2 GHz. The solid (red) line
is a fit to Eq. (1) in the Supplemental Material [26].
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FIG. 2 (color online). Linewidths for the center modes (a) and
(c) and end modes (b) and (d) for a 200 nm and a 100 nm
nanomagnet. The insets show the mode profile along the long
axis of the ellipsoid, as determined by micromagnetic simula-
tions. The horizontal red line indicates zero amplitude.
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portions of the center mode for the 100 nm nanomagnet
should be comparable in magnitude, which explains the
weak heterodyne signal from the center mode.

The measured magnitude spectra were fitted with the
magnitude of the complex susceptibility �xy [27] (red line

in inset of Fig. 1); see the Supplemental Material [26]. The

resonance field HðiÞ
resðfÞ for each mode was then fitted with

the Kittel equation to extract global values forHðiÞ
1 andHðiÞ

2 ,

f ¼
�j�j�0

2�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HðiÞ

resðfÞ þHðiÞ
1 �½HðiÞ

resðfÞ þHðiÞ
2 �

q
: (1)

The fits of the resonance field to the frequency for the
center and the two end modes for a 100 nm nanomagnet are
shown in Fig. 1. The center mode has a lower resonance
field and less curvature than the two end modes, while the
frequency dependence of the two end modes is virtually
identical except for a fixed field splitting of � 25 mT for
the 100 nm nanomagnets.

In the case where the two end modes are not degenerate
but are coupled due to magnetostatic interactions, one
might expect that modes with optical and acoustic charac-
ter are excited. We used micromagnetic simulations to
determine the coupling between the end modes for the
100 nm nanomagnet. Simulations yielded a mode splitting
of 5 mT at 10 GHz. Appealing to a classical model of
coupled, lossy harmonic oscillators [28], the effective cou-
pling strength between two end modes is calculated to be
28 mT. Such a coupling strength is close to the experimen-
tally observed spitting of 25 mT for the two end modes in
Fig. 1. This implies that the measured modes are not purely
localized at either of the two ends but instead have a degree
of mixed evenlike or oddlike characters, with the excitation
of one end mode necessarily driving the other end mode
with a fractional amplitude of � 0:08. We interpret the
high field peak to be the oddlike mode and the low field
peak to be the evenlike mode.

The fits of the spectra also yield the frequency depen-
dence of the linewidth for each spin-wave mode. The
linewidth of a localized spin-wave mode for a single nano-
magnet does not have any contributions from inhomoge-
neous linewidth broadening �H0 because the resonance
frequency is necessarily homogenous for a single eigen-
mode.Moreover, extrapolation of theH-MOMM-measured
linewidth data for the 20� 20 �m2 square resulted
in �0�H � 0 mT at f ¼ 0. Thus, we can safely fit the
linewidths with

�H ¼ ð4��fÞ=ðj�j�0Þ: (2)

Using Eq. (2), we extracted � ¼ 0:0074� 0:0001 for
the 20� 20 �m2 square. This value is larger than the
previously reported value of 0.004 in Ref. [18]. We attrib-
ute most of the discrepancy to spin pumping at the
Ni80Fe20=Ta interface [29–31]. To determine the spin-
mixing conductance, we measured nearly identical, unpat-
terned Ni80Fe20=Ta films with thicknesses varying from

5 nm to 20 nm by broadband perpendicular FMR. This
geometry eliminates two-magnon scattering for the unpat-
terned film [32]. The asymptotic intrinsic damping is
� ¼ 0:0050� 0:0001, in good agreement with the
theoretical value � ¼ 0:0046 [33], and the effective spin-
mixing conductance is ð1:48� 0:05Þ � 1019 m�2. Based
on these values, the predicted damping for a 10 nm film is
0:0079� 0:0002, in reasonable agreement with our opti-
cally measured value for the 20� 20 �m2 square.
Given this agreement, we exclude two-magnon scattering
as a significant source of linewidth for the optical
measurements.
The measured linewidth for the nanomagnets does not

exhibit a linear dependence on frequency at the lowest
frequencies. This is understood because the magnetiza-
tion distribution is not uniform at low applied fields. The
dipolar fields near the ends of the nanomagnet are highly
nonuniform, thereby inducing an inhomogeneous magne-
tization configuration if the applied fields are less than or
equal to the dipolar fields. Such a change of the magne-
tization distribution also causes the resonance field for a
particular excitation frequency to decrease with decreas-
ing field. This ‘‘field-dragging‘‘ effect leads to a distor-
tion of the resonance curve, which results in an
anomalous increase in the linewidth at low frequencies.
Micromagnetic simulations confirmed this behavior. To
minimize the influence of the field-dragging effect on the
experimentally determined �, we use a low frequency
cutoff to restrict the range of linewidth data fitted to
Eq. (2). (The cutoff frequency is determined by minimiz-
ing the rms error between the data and the linear fit.)
Figure 2 shows the dependence of �H on f for the
center mode and one of the end modes for a 200 nm
and a 100 nm nanomagnet. The solid black lines are fits
to Eq. (2).
The average values of� for the center and end modes for

an ensemble of three 100 nm, three 200 nm, and two
400 nm individual nanomagnets are plotted in Fig. 3 as a
function of sample size. For reference, the value of � for
the 20� 20 �m2 square is shown as a thick blue line,
where the estimated error in the fitted value is the width
of the line. (See the Supplemental Material [26] for the �
values of all measured nanomagnets.) Of particular note, �
for the end mode decreases by almost 30% as the size of
the nanomagnet is reduced from 400 nm to 100 nm, in stark
contrast to what had been observed previously for the
ensemble behavior of large nanomagnet arrays, where the
end mode damping increased by 20% as the nanomagnet
size in the array was reduced from 200 to 100 nm [20]. This
highlights the advantage of the H-MOMM technique,
whereby we can now extract the damping properties of
individual structures without any obscuration due to
structure-to-structure variations, which can otherwise com-
plicate the process of extricating intrinsic damping from
inhomogeneous broadening effects [21].
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There are several different models that might exp-
lain the dependence of damping on nanomagnet size.
By comparing the measured size dependence of the
extracted damping to that predicted for each of the models,
we show that only an increase due to nonlocal damping
resulting from intralayer dissipative transverse spin cur-
rents is consistent with the experimental data. We explic-
itly show that damage and/or oxidation at the sidewalls of
the nanomagnets cannot explain the experimental data.

Previous work [13] has predicted that longitudinal [14]
and transverse [15] intralayer spin currents can increase
the damping when the dynamics are spatially inhomoge-
nous. The net damping torque density is given by

~Tdamp ¼ �ð�Ms=j�jÞð ~m� @t ~mÞ þ ð�T ~m�r2@t ~mÞ; (3)

where �T ¼ ð@=2Þ2ne�sc=m� is the transverse spin con-
ductivity, ne is the conduction electron density, m� the
effective mass, and �sc is the transverse spin scattering
time, which can have contributions from momentum scat-
tering, e-e interactions, as well as spin-orbit-induced spin-
flip or decoherence processes. The Laplacian operator in
Eq. (3) implies that the damping for a given Fourier
component of a localized spin-wave mode is proportional
to the square of the wave number. Assuming that the
net damping of a given eigenmode is determined by
the integral of the Laplacian for the mode, normalized by
the mode area, we can use simulated mode profiles from

micromagnetics to estimate the enhanced damping due to
intralayer spin currents. In Fig. 3(a) we show the measured
� and in 3(b) the best fit of the data, with the result �sc ¼
49 fs as the sole fitting parameter (see the Supplemental
Material [26] for details). We use ne ¼ k3F=3�

2 ¼ 3:9�
1028 m�3 from the measured Fermi wave number kF ¼
1:05� 1010 m�1 for the majority band in Permalloy [34]
and the free electron mass for m�.
The theory of nonlocal damping due to intralayer spin

currents provides an intuitively appealing explanation for
the decrease in damping observed for the end modes when
the nanomagnet size is reduced from 200 nm to 100 nm.
As the size of the nanomagnet shrinks, the two localized
modes on opposite ends of the nanomagnet merge together.
In doing so, as seen in the insets of Fig. 2, the combined
mode becomes more uniform, thereby decreasing the com-
ponents of damping that are proportional to k2. However,
micromagnetic simulations also show that the opposite is
true of the center mode; shrinking the nanomagnet
‘‘squeezes’’ the mode structure into a smaller area, causing
the mode profile to become less uniform, with the final
result that the damping increases with decreasing spatial
dimension.
Based on reported values for the spin diffusion length of

‘sf ¼ 3 nm–8 nm [35,36] and the Fermi velocity �F ¼
2:2� 105 m s�1 [34] for Permalloy, we estimate the
spin-flip time as T1 ¼ �F‘sf ¼ 13 fs–37 fs. In the degen-
erate limit of T2 ¼ 2T1 where spin-flip causes spin deco-
herence, we estimate the maximum possible spin
decoherence time as T2 ¼ 26 fs–74 fs, which bounds the
fitted value we obtained for �sc.
An alternative explanation is provided by the theory of

lateral diffusion of spin current generated by spin pumping
into an adjacent nonmagnetic layer. However, the calcu-
lated increase in damping obtained by application of the
theory in Refs. [37,38] to our micromagnetic simulation
results is more than an order of magnitude smaller than
what we observed.
Damage and/or oxidation at the sidewalls of a nano-

magnet, which was potentially introduced during ion mill-
ing or after the patterning process, has been proposed as a
source of enhanced damping [17]. To test this hypothesis,
we performed micromagnetic simulations with enhanced

damping at the nanomagnet edges modeled by �ðy; zÞ ¼
0:0074þ �0e�j½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz="Þ2þy2

p
�R�=	j, where �0 is the enhanced

damping at the edge, 	 is the decay length, " is the nano-
magnet ellipticity, and R is the length of the short axis.
We used parameter values �0 ¼ 0:003 and 	 ¼ 20 nm.
The decay length was chosen to match the zone of altered
contrast in transmission electron microscope images of
magnetic nanostructures [39], and �0 was chosen such
that the simulation results match the average measured
damping values for the end and center modes of the
400 nm nanomagnets. We find that the nonuniform damp-
ing profile leads to negligible mode distortions relative to
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FIG. 3 (color online). (a) Experimental damping data: we plot
the dependence of � on nanomagnet size. The black circles (red
triangles) are the average values of the end modes (center mode).
� for the 20� 20 mm2 square is marked with a blue bar, where
the width of the bar indicates the measurement precision.
(b) Intralayer spin-pumping model: the red circles are the fitted
values of � for the end mode and the black circles for the center
mode. �sc was the only fitting parameter. (c) Edge-enhanced
damping model: the red circles are � for the end mode and the
black circles for the center mode.
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those obtained with uniform damping. The effective damp-
ing �eff was determined by simulating swept-field FMR to
determine �H, and then using Eq. (2) to extract �eff , with
resultant values shown in Fig. 3(c). In the case of the
400 nm and 200 nm nanomagnets, the difference in the
values of damping for the end and center modes is easily
accommodated with such a spatial model of edge-
enhanced damping: The end mode is more localized near
the edges; therefore, �eff is significantly enhanced for the
end modes. However, the model breaks down in the case of
the 100 nm nanomagnets. While simulations predict that
�eff increases, the data clearly show that the damping for
the 100 nm nanomagnet end mode is significantly less
than the end mode damping for both the 200 nm and the
400 nm nanomagnets. Thus, edge damage fails to explain
the observed trend for �.

Therefore, we conclude that our measured values for �
for discrete spin-wave eigenmodes in individual, isolated
nanomagnets are well explained by the theory of nonlocal
damping due to intralayer dissipative transverse spin
currents.

We would like to thank Y. Tserkovnyak, M. Schneider,
and M. Donahue for helpful discussions.
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