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Abstract
A decision problem frequently occurring in metrology is that of compatibility of data obtained
by two (or several) different laboratories, methods or instruments. One laboratory can be a
prestigious national metrology institute whose data are considered to be a gold standard or a
certified reference material interval. When each laboratory presents its results in the form of a
coverage interval for the measurand, several statistical approaches to this conformity
assessment problem are reviewed including the classical ‘equality of means’ hypotheses tests.
A new compatibility hypothesis is formulated in terms of consistency of laboratory results and
compliance with a maximum permitted uncertainty. The power functions of these tests are
compared numerically. The Kullback–Leibler information number is suggested as a
directional (asymmetric) interchangeability index.

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of establishing equivalence, conformance or
compatibility of several measurement sets is an important
area of statistical metrology. The recent survey [1]
discusses about thirty publications in this field over the
last fifteen years. It overviews standards organizations’
current approaches to formal conformity testing, defining
methodologies for assessing the compliance degree of user
measurement/uncertainty with a specification standard.

The standard’s nominal acceptability region is defined by
a range contained between a lower limiting value (TL) and an
upper limiting value (TU). Clearly acceptable user’s coverage
intervals are those falling entirely in the interval between TL

and TU. Unacceptable results are those falling way below the
TL or considerably above the TU. When user’s interval overlaps
with the acceptability interval, decision rules are required to
judge whether the result is conformant or not. A common
approach to deal with this case is to adopt a guard band which
is an offset from the specification limits (TL, TU), extending
or restricting them further to formal acceptance/rejection
region boundaries. ‘Simple’ acceptance/rejection rules take
the acceptance zone to be the specification zone. ‘Relaxed’
acceptance/rejection rules inflate the specification zone by

use of an added (outward) guard band. ‘Stringent’ rules
deflate the specification zone by use of an inward subtracted
guard band.

Prominent among the publications on conformity testing,
‘the most useful tools’ [1] are the guidelines of ISO 10576-
1 [2] and EURACHEM/CITAC [3] which follow principles set
out in ASME [4]. Current recommendations of [2] take into
consideration the effect of the user’s interval on any decision
rule in terms of producer’s risk and user’s risk. The most
recently issued set of guidelines [3] endorses more relaxed
(broader) acceptance zones and more stringent (narrower)
rejection zones via mentioned guard bands. It extends the
rule construction using probability (e.g. Gaussian) models for
specification limits with and without the guard band regions.

These guides seem to refer to a statistical hypothesis
testing situation. Indeed, the acceptance zone and the
rejection zone are formulated as components of a decision rule.
However, the null hypothesis which mathematically describes
the compatibility in terms of population parameters is not
formulated. An attempt to do so is presented in this paper
which suggests that in addition to the equality of means, the
relevant hypothesis restricts the ratio of uncertainties involved
(or imposes the minimum for the measurement capability
index).
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2. Formulation

We discuss the conformance testing problem in the context
of two labs each providing its summary data in the form of
coverage intervals for the measurand. The issues related to
the testing of compliance with imposed legal or regulatory
limits involving inspection and the quality control process are
not considered here. To fix the notation, let lab 1 report µ1

for the mean and σ1 for its uncertainty. It is assumed that
this lab is in better agreement with SI units and/or with the
standards established by national metrology institutes. In some
cases the degrees of freedom ν1 (typically large, if not infinite)
is also provided. Under the normality condition, this lab’s
(1−α)100% coverage interval for a measurand is µ1 ±zα/2σ1.
Here for an error probability α, 0 < α < 1, zα denotes (1−α)th
quantile of standard normal law with the distribution function
�, 1 − �(zα) = α. This quantity should be replaced by a
percentile of a t-distribution if the degrees of freedom ν1 is
small.

The expansion factor 2, which approximately corresponds
to α = 0.05, is commonly used in metrology in the absence of
other information about effective degrees of freedom. Then µ1

is the certificate value, 2σ1 is the expanded uncertainty. In the
motivating examples, lab 1 may be a gold standard providing
specification limits TL = µ1 − 2σ1, TU = µ1 + 2σ1 or it
may provide the certified reference material (CRM) coverage
interval µ1 ± 2σ1 for a measurand.

The data of lab 2 result in summary statistics, say, the
sample mean x̄ and its uncertainty, u = u(x̄), which are lab’s
best estimates of its true mean µ2 and of the standard deviation
of x̄. If lab 2 had performed n independent measurements,
the degrees of freedom ν = ν2 = n − 1 is typically smaller
than ν1. Then u2 unbiasedly estimates σ 2

2 /n, where σ 2
2 is the

variance of lab 2 measurements. Under normality assumption
the distribution of u2 is that of σ 2

2 χ2(ν)/ν where χ2(ν) denotes
a χ2 random variable with ν degrees of freedom. Then the
(biased) maximum likelihood estimator of σ 2

2 /n is νu2/n. The
unknown bias of lab 2 is � = µ2−µ1, and its coverage interval
is x̄ ± tα/2(ν)u with tα(ν) denoting the (1 − α)th percentile of
a t-distribution with ν degrees of freedom.

Classical statistics offers only limited guidance on
assessing conformity. The next section reviews the
methodology available for testing the equality of two means in
the normal model. Our focus is on two-sided alternatives:µ2 �=
µ1 or � �= 0, although in some engineering or environmental
applications alternatives of the form µ2 � µ1 − 2σ1 or
µ2 � µ1 + 2σ1 are of interest.

3. Non-overlapping intervals and the
Behrens–Fisher problem

In the notation of section 2, assume that lab 2’s sample mean x̄

is normal N(µ2, σ
2
2 /n), and u2 is a multiple of a χ2(ν) random

variable, u2 ∼ (σ 2
2 /n)(χ2(ν)/ν). Then one can use a simple

t-test of the equality of the means: µ2 = µ1 for some value
of the normal variance σ 2

2 . Under this hypothesis, the ratio
(x̄ − µ1)/u has a t-distribution with ν = n − 1 degrees of

freedom. Conformity is rejected when

(x̄ − µ1)
2

u2
� t2

α/2(ν). (1)

However, σ1 does not enter in this procedure which
consequently ignores the some of available information.

ISO 10576-1 [2] explicitly states that user intervals should
not be employed in the official designation of TL and TU,
so that the tolerance is set for operational reasons and the
decision process that follows from a result is intended to
guarantee acceptable conformity of true values with the stated
tolerance. Such a setting could lead to a frequent rejection
of the compatibility hypothesis. Indeed, fairly often lab
2’s interval, x̄ ± tα/2(ν)u, does not even intersect the CRM
interval. A standard interpretation of two non-overlapping
coverage intervals is that the two labs do not conform. Of
course overlapping intervals do not imply that the hypothesis,
µ2 = µ1, is to be accepted. See [5] for a well justified
critique of studies that judge the significance of differences
by examining the intersection of two intervals, and section 8
for numerical results on the power of this procedure.

Still, compliance testing performed on the basis of the
intersecting intervals is promoted in metrology [6]. Such a
test rejects conformity, i.e. the two intervals do not overlap,
when

|x̄ − µ1| � 2σ1 + tα/2(ν)u. (2)

It is possible that (1) holds, but (2) does not. However, (2)
implies (1).

The null hypothesis: µ2 = µ1 for some unspecified values
of σ1 and σ2, can be interpreted as the Behrens–Fisher problem
[7]. This is a notoriously difficult theoretical question. The
fact is that there is no unique ‘optimal’ test in this situation
especially when n is not large. One has to specify the constant
f to employ the critical or rejection region,

(x̄ − µ1)
2

σ 2
1 + u2

� f. (3)

Rather embarrassingly for statistical theory, the known
approximate solutions for f in (3) do not always agree. The
classical solution leads to an awkward combination of the
degrees of freedom both of which must be provided. When
ν1 = ∞, this Welch–Sattherthwaite’s formula gives f =
t2
α/2(νeff), with νeff = ν(1 + σ 2

1 /u2)2, which may result in a
poor approximation if σ 2

1 is large [8].
One can argue that treating two labs symmetrically, as

in (3), is not appropriate in our situation. Formally, test (3)
with f = t2

α/2(ν) can be also derived from a Bayesian model
suggested in the next section.

4. Bayesian approach

Here the unknown measurand µ is supposed to have a (prior)
probability distribution, either because it is random according
to the Bayes theory tenets or because it is a fixed unknown
constant assigned a prior distribution reflecting the current state
of knowledge. The situation described above suggests the prior
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distribution for µ which is normal with the mean µ1 and the
variance σ 2

1 . Indeed, in the CRM context, this is a classical
model for the summary of extensive measurement work done
to establish the certificate value which is encompassed in an
interval of half-width zα/2σ1 so that the CRM certificate gives
an approximate (1 − α)100% confidence interval.

Assume that the measurements xi, i = 1, . . . , n, of lab 2
can be represented as xi = µ + � + εi where � is the
non-random bias of this lab, µ is the random measurand
discussed above, and εi represents zero mean independent
measurement error with some variance σ 2

2 . Then the sample
mean of lab 2’s measurements has expectation µ1 + � and
its variance is σ 2

1 + σ 2
2 /n. Thus, this variance cannot be

smaller than σ 2
1 , which may have some appeal to metrologists

who believe that by combining results of their measurements
with another coverage interval, one hardly can diminish the
overall uncertainty. The maximum likelihood estimator of the
variance of the user’s sample mean is now max(σ 2

1 , u2).
Under the hypothesis, µ2 = µ1, in the decomposition∑

i

(xi − µ1)
2 =

∑
i

(xi − x̄)2 + n(x̄ − µ1)
2,

the first sum has the distribution of σ 2
2 χ2(n−1) and the second

of (σ 2
2 + nσ 2

1 )χ2(1). In this situation the statistic (x̄ −µ1)
2/u2

is distributed as (1 + nσ 2
1 /σ 2

2 )t2(n − 1). Thus to test the
conformance hypothesis in this situation using (1) would lead
to an unacceptably high number of rejections especially when
the ratio σ2/σ1 is small. Estimating the factor 1 + nσ 2

1 /σ 2
2 by

1 + σ 2
1 /u2 results in a critical region (3) with f = t2

α/2(ν).
A better test (the so-called Wald test) is based on the above

mentioned maximum likelihood estimator of the variance of
x̄. The two means are declared to be different when

(x̄ − µ1)
2

max(σ 2
1 , u2)

� t2
α/2(n − 1). (4)

Unlike the existing body of subjective or non-informative
Bayesian techniques, we suggested here an informative
objective prior distribution. Indeed, this prior reflects that
certified values are based on averages of many repeated
experiments, rather than on a subjective opinion about the
measurand’s distribution. Operationally the Bayes approach to
compatibility testing coincides with the random-effects model
[9]. In this context σ 2

1 + σ 2
2 plays the reproducibility error role

while σ 2
1 represents the repeatability error [10].

The next section discusses a procedure motivated by
the classical divergence (asymmetric ‘distance’) between
probability distributions. This characteristic and the following
null hypothesis involve the uncertainties ratio, σ2/σ1.

5. Information divergence and measurement
capability index

Information theory and probability theory developed several
concepts of divergence (or separation) between two probability
distributions P and Q (or two densities p and q). The best
known is the (Kullback–Leibler) information number,

K(Q, P ) = EQ log
[dQ

dP
(X)

]
=

∫
log

[ q

p
(x)

]
q(x) dx.

In general, K(Q, P ) �= K(P, Q). However K(Q, P ) � 0,

and equality holds if and only if Q = P . This divergence
plays an established important role in statistics, in particular,
for testing goodness of fit, where P (theoretical model) and Q

(empirical distribution) are not supposed to be exchangeable.
The confidence regions covering two normal parameters are
also based on the Kullback–Leibler number [11]. The widely
used entropy of random variable X with density q(x) is
−EQ log q(X) = − ∫

[log q(x)]q(x) dx.

If P = N(µ1, σ
2
1 ) and Q = N(µ2, σ

2
2 ) are two Gaussian

distributions,

K(Q, P ) = 1

2

[
(µ1 − µ2)

2

σ 2
1

+ log
σ 2

1

σ 2
2

+
σ 2

2

σ 2
1

− 1

]
. (5)

In the setting of section 2, assume that the parameters µ2, σ
2
2

are estimated on the basis of lab’s data by their maximum
likelihood estimators x̄ and νu2/n, while µ1, σ1 are treated as
given. Then the estimated version of the information number is

K̂(Q, P ) = 1

2

[
(x̄ − µ1)

2

σ 2
1

+ log
nσ 2

1

νu2
+

νu2

nσ 2
1

− 1

]
. (6)

When testing the null hypothesis: µ2 = µ1, σ
2
2 /n = σ 2

1 , (6)
is closely related to the likelihood ratio test statistic, which
has approximate χ2-distribution with 2 degrees of freedom
[7, theorem 12.4.2]. This test rejects when

(x̄ − µ1)
2

nσ 2
1

+ log
nσ 2

1

νu2
+

νu2

nσ 2
1

− 1 � χ2
α(2)

n
.

Here and below χ2
α(ν) denotes the (1 − α)th percentile of χ2-

distribution with ν degrees of freedom.
The boundary of this rejection region is depicted by the

dotted line in figure 1 when n = 4, α = 0.05, µ1 = 0,
σ1 = 1. The acceptance zone which can be interpreted as a
confidence region for two normal parameters µ1, σ

2
1 , is centred

at x̄ = µ1, u = √
n/ν. It looks nearly elliptic (although it is

not symmetric about the line u = √
n/ν). In quality control an

approximation of this region by a (rescaled) circle is used [12].
The main difficulty is that the hypotheses like the equality

of the means:µ2 = µ1, or the equality of distributions:Q = P,

hardly address the right question when testing compliance.
This author believes that a relevant version of the compatibility
hypothesis is µ2 = µ1 and the unknown σ2 (or rather σ2/

√
n)

is not considerably larger than σ1. When assessing compliance
with any standard, very large values of σ2/σ1 are not acceptable
as they lead to poor performance of virtually all available
procedures. For large u tests (1), (2), (3) or (4) cannot reject
the null compatibility hypothesis no matter how far apart are
x̄ and µ1. For example, as is well known to metrologists, by
claiming a large uncertainty u, lab 2 can always accomplish
overlap of its interval with lab 1’s interval.

Therefore the assertion, µ2 = µ1, has little meaning
unless it is accompanied by a restriction σ2 � Bσ1. Here B

(B � 1) is the maximum allowable upper bound on the relative
uncertainties of two labs’ measurements. This bound can be
defined through the measurement capability index which is
defined here as the ratio of expected widths of two coverage
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Figure 1. Boundaries of the acceptance regions for the likelihood ratio test of the equality of normal distributions (the dotted line) and of the
null hypothesis: H0: µ2 = µ1, σ2 � Bσ1 when B = 2.5, n = 4, α = 0.05, µ1 = 0, σ1 = 1. The Mood’s test boundary is shown as the
dashed–dotted line.

Table 1. CRM intervals for SRM 1944 in µg kg−1 units and the test results.

Analyte µ1 2σ1 (1) (2) (3) (4) (7) (8)

Phenanthrene 5270 220 9 5 5 8 10 6
Fluoranthene 8920 320 6 3 3 5 10 7
Pyrene 9700 420 7 4 4 6 12 10
Benz[a]anthracene 4720 110 8 6 6 5 12 11
Benzo[ghi]perylene 2840 100 3 1 1 4 5 6
PCB 52 79.4 2.0 9 6 6 9 9 8
PCB 118 58.0 4.3 13 5 4 7 13 5
PCB 153 74.0 2.9 11 6 7 8 10 8
PCB 180 44.3 1.2 9 4 5 8 9 8
PCB 209 6.81 0.33 6 3 3 6 6 5
Hexachlorobenzene 6.03 0.35 5 3 3 6 7 6
cis-chlordane 16.51 0.83 8 8 8 8 10 9
trans-nonachlor 8.20 0.51 8 7 7 6 11 10
4,4′-DDT 119 11 6 4 4 5 8 6

intervals, Cm = 2
√

nσ1/[tα/2(ν)σ2]. Indeed, for the desired
measurement capability index Cm, B = 2

√
nC−1

m /tα/2. See
[13] for the discussion of other capability characteristics in
quality control problems where the traditional definition of
the index is (TU − TL)/(6σ2) with the recommended value
exceeding 1.5.

In some cases, B can be ascertained on the basis of
the physical/chemical nature of the measurand, on validation
data, on previous repeatability and reproducibility studies, or
possibly on proficiency level of a particular lab. When testing
compliance with legal or regulatory specification limits, fairly

large values for Cm are anticipated. Czaske [14] indicates that
in this situation ‘the usual values of Cm are between 2 and 5’.
However, when testing conformity with the CRM, one may
encounter smaller values of this characteristic.

Thus we formulate the following null hypothesis as the
conformance testing problem, H0: µ2 = µ1, σ2 � Bσ1 for a
givenB. An implication of this hypothesis is that even identical
values µ2 and µ1 are not acceptable if σ2 is considerably larger
than σ1. Figure 1 shows the boundary of the acceptance region
for the likelihood ratio test of H0 when B = 2.5, n = 4,

α = 0.05, µ1 = 0, σ1 = 1.
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Figure 2. The significance level of test (1) (solid line on the top), of (2) (line marked by squares), of (4) (line marked by ∗), and of test (3)
(line marked by +) (left panel) when n = 5, α = 0.05, µ2 = µ1, σ2/σ1 � 4. The same characteristic is shown for test (7) (line marked by ∗),
and for test (8) (solid line) in the right panel.

If the unknown variance of x̄, σ 2
2 /n, is estimated by νu2/n,

H0 will be rejected when

min
0<b�B

[
(x̄ − µ1)

2 + νu2

b2σ 2
1

+ log

(
bσ1√
νu

)2

− 1

]
� χ2

α(2)

n
.

This fact can be seen from the general form of the rejection
region for a null hypothesis which is a union of sub-hypotheses
(the so-called intersection-union test) [15]. This rejection
region can be written as

(x̄ − µ1)
2

νu2
� eχ2

α (2)/n − 1, if (x̄ − µ1)
2 + νu2 � B2σ 2

1 ,

(7)

(x̄ − µ1)
2 + νu2

B2σ 2
1

+ log

(
Bσ1√

νu

)2

− 1 � χ2
α(2)

n
,

if (x̄ − µ1)
2 + νu2 > B2σ 2

1 .

The acceptance region of (7) is a balloon-shaped figure in
figure 1 which contains the acceptance region for the likelihood
ratio test of the hypothesis of equality of normal distributions.
Small u’s are not included in this region if (x̄ − µ1)

2/σ 2
1 is

large.
An alternative procedure, which is an analogue of Mood’s

test [11], accepts the null hypothesis H0 for the values of x̄

and u such that (x̄ − µ1)
2/σ 2

1 � B2χ2
α1

(1)/n and νu2/σ 2
1 �

B2χ2
α2

(ν), with (1 − α1)(1 − α2) = 1 − α. Thus, its rejection
region is

(x̄ − µ1)
2

σ 2
1

�
B2χ2

α1
(1)

n
or

νu2

σ 2
1

� B2χ2
α2

(ν).

(8)

In figure 1 the acceptance region of Mood’s test is a
rectangle whose side lines and the lower boundary coincide
with the plot boundary, and whose upper boundary is the
dashed–dotted straight line. We took α1 = α2 = √

0.95.

6. Non-conformity testing and interchangeability
characteristics

In the notation of section 2, the compliance probability is
defined as

Pc = P
(|X − µ1| < zα/2σ1

)
= �

(
µ1 − µ2 + zα/2σ1

σ2

)
− �

(
µ1 − µ2 − zα/2σ1

σ2

)
(9)

with X representing the random normal measurement of the
lab 2, X ∼ N(µ2, σ

2
2 ). As was alluded to earlier, this

probability is quite small when σ2 > σ1. Perhaps for this
reason, the ASME Guidelines [4] make reference to a common
decision rule for industrial application, the so-called N : 1 rule.
This procedure mandates that the user interval cannot exceed
1/N of the specification zone. This procedure corresponds to
Cm ≈ N , and N is typically taken to be 3 or 4, which may
require a fairly substantial number n of repeats.

Motivated by the fact that (9) takes its largest values
when |µ1 − µ2|/σ2 � c0, Wang and Iyer [16] suggested to
test the validity of the claim, |µ1 − µ2|/σ2 � c0, which is
a non-conformance hypothesis. Designating non-conformity
as a null hypothesis is commonly suggested when testing
bioequivalence where a generic drug (which has to establish
itself) must be compared with the brand name drug. A similar
non-compliance null hypothesis with σ2 replaced by σ1 has
been advocated in metrology as well [6].

The main argument in favour of non-conformance as the
null hypothesis is that a statistical test can offer evidence
only against it. Indeed, in a hypothesis testing situation,
large p-values do not necessarily affirm the validity of the
null hypothesis but merely the lack of evidence to the
contrary. It is also believed that once the null hypothesis
is rejected, one cannot alter this declaration. See [6] for a
further discussion and [17] for a review of available statistical
techniques.
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Figure 3. The power function of test (1).

0

1

2

3

4

0.5
1

1.5
2

2.5
3

3.5
4
0

0.1

0.2

0.3

0.4

0.5

n1/2|µ
1
 –µ

2
|/σ

2
σ

2
/σ

1

po
w

er
 fu

nc
tio

n

Figure 4. The power function of test (2).
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Figure 5. The power function of test (3).
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Figure 6. The power function of test (4).
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Figure 7. The power function of test (7) with B = 1.5.
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Figure 8. The power function of the Mood test (8) with B = 1.5.
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Figure 9. The power function of test (10) with c0 = 2.

A mathematical difficulty related to testing of null non-
conformity hypotheses is that the Type I error is to be
controlled over a large subset of the parameter space. Indeed,
by definition, the alternative then is a small subset of this
space. The complicated form of test statistics (if such
are available) makes evaluation of p-values much more
difficult.

Because of the presumption of innocence principle, such
a null hypothesis cannot be used in legal metrology. Arguably,
asserting incompatibility to be a null hypothesis is less
natural in other metrology applications where both labs are
supposed to measure the same measurand. Instead of non-
conformity hypothesis, one can put forward the conformance
null hypotheses,

√
n|µ1 − µ2|/σ2 � c0 or |µ1 − µ2|/σ1 � c1.

The first of these hypotheses is rejected when

(x̄ − µ1)
2

u2
� t2

α(ν, c0, ν), (10)

where t = tα(ν, c0, ν) is the solution of the equation

1 − nctcdf (t, c0, ν) + nctcdf (−t, c0, ν) = α.

Here nctcdf (t, c0, ν) denotes the distribution function
of the non-central t-distribution with the non-centrality
parameter c0 and ν degrees of freedom [7, section 6.4].
The shape of this region is similar to that in (1), but the
threshold constant is larger, so this test rejects less frequently
than (1).

The rejection regions of the second hypothesis,
(x̄ − µ1)

2 � g1u
2 or (x̄ − µ1)

2 � g2σ
2
1 , cannot have a

guaranteed type I error. None of these two hypotheses uses
all parameters, and they may be less attractive than our
H0 described in section 5 while sharing with it the task of
specifying the needed constant (c0 or c1).

With X1 denoting the measurand of lab 1, Willink [18]
suggested to use E(X − X1)

2 as a symmetric measure of
compatibility of labs 1 and 2. Wang and Iyer [16] addressed
the same issue and proposed a directional (asymmetric)
interchangeability characteristic A12 of two labs as Willink’s
coefficient normalized by 2σ 2

1 . When these variables have
normal distributions,

A12 = 1

2

[
(µ1 − µ2)

2

σ 2
1

+
σ 2

2

σ 2
1

+ 1

]
, (11)

which looks similar to (5) except that the important log-ratio
term is missing. Because of that, the smallest value of A12,
which is equal to 0.5, is attained when σ 2

1 → ∞, no matter
how different µ1 and µ2 are. Thus, one can argue that the
classical by now Kullback–Leibler information number better
serves the purpose of assessing asymmetric interchangeability
in the context of interlaboratory comparisons. This statement
is supported by the examples considered in the next
section.

7. Examples

The environmental standard reference material (SRM), SRM
1944 New York/New Jersey Waterway Sediment [19] was
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issued by the National Institute of Standards and Technology
(NIST) in 1995 as a fresh frozen homogenate to meet the needs
of laboratories analysing bivalve tissues. The focus of the study
was to assess the interlaboratory and temporal comparability
of data and to improve methods for the monitoring of organic
contaminants. It was characterized at NIST using multiple
analytical methods.

The data for this SRM came from 16 laboratories
participating in a performance-based study over a period of
several years. The SRM interval for 14 selected compounds is
given by the first two columns of table 1. The test data (number
of rejections) for tests (1), (2), (3), (4), (7) and (8) when
α = 0.05 are provided by the six right-hand columns of table 1.
Overall out of 215 data points, there are 65 instances of non-
overlapping CRM and labs intervals (which is the total of the
column corresponding to (2)). As an example, lab 15 reported
in the PCB 118 a value of 50.23 µg kg−1 with the standard
deviation u = 1.39 µg kg−1. The corresponding CRM
interval is 58.0 µg kg−1 ± 4.3 µg kg−1, and the intervals do not
overlap.

Test (1) rejected 108 times, test (4) 93 times, while the
results of (3) were quite similar to those of (2) with 66
rejections. Test (7) is more stringent rejecting 132 times, while
(8) rejected 105 times (B = 4).

Some of these rejections seem to be due to clerical
or registration errors, but most demonstrate the reported
uncertainties which are unrealistically small and/or sample
means which are too far from the certificate value.
For example, in the case of cis-chlordane whose SRM
interval is 16.51 ± 0.83 in µg kg−1 units, lab 9 states
an unrealistically small standard deviation of 0.0577; lab
14’s reported value x̄ = 1.38 probably should have been
13.8.

As an example of interchangeability index evaluation,
consider lab 1 reporting in the fluoranthene x̄ = 8924, u = 348
(in µg kg−1 units). Then all conformance tests considered
so far accept the equality of means (and even the equality
of uncertainties), with K̂(Q, P ) = 0.0075. However, the
estimated interchangeability index, A12 = 1.0914 looks to
be too large, especially when compared with smaller values
of (11) for other analytes. As another example, lab 7 in
the PCB 153 reported a value x̄ = 73.433 µg kg−1 with
standard deviation u = 5.312 µg kg−1. Then K̂(Q, P ) =
0.5917, but A12 = 1.917 is more than three times
larger.

8. Power comparisons: numerical results

The invariance property shows that the power of all considered
tests (i.e. the probability to reject the null hypothesis) is a
function of |µ2 −µ1|/σ2 and σ2/σ1. For a good test, the power
function is about equal to α, the type I error (significance level),
when the null hypothesis holds, and this function assumes large
(close to one) values on the alternative.

Figure 2 shows the plot of significance level (expected
rejection rate) of tests (1), (2), (3) and (4) when µ2 = µ1, i.e.
when their null hypothesis is true. Clearly (1) has its type I
error, chosen to be 0.05, exactly at this level, but other tests

Table 2. The maximum power of tests (1), (2), (3), (4), (7), (8) and
(10) when n = 5, α = 0.05 in the region

√
n|µ2 − µ1|/σ2 � 4,

σ2/σ1 � 4.

(1) (2) (3) (4) (7) (8) (10)

0.8443 0.5866 0.7685 0.8428 0.9999 0.9997 0.5972

are too conservative with the rejection rate well below 0.05.
A similar plot for tests (7) and (8) demonstrates superiority of
(7) in this regard.

Figures 3–9 depict the plots of power functions for the tests
(1), (2), (3), (4), (7), (8) and (10) (along with their contours
when seen) for α = 0.05, ν = 4 in the region

√
n|µ2 −

µ1|/σ2 � 4, σ2/σ1 � 4. These functions were evaluated
via numerical integration involving the standard normal
distribution and χ2(ν) distribution. Actually, calculations for
(1), (8) and (10) do not even require numerical integration as
the power functions of these tests can be expressed through
the classical distribution functions (including the non-central
t-distribution).

Clearly, tests (1) and (4) outperform (2) and (3) (with
f = t2

α/2(ν)) but all of these tests have insufficient power
if the ratio σ2/σ1 is small even when |µ2 − µ1| is large. Their
power is close to 0.05 when σ2/σ1 is large while a perfect
test should have it close to one. These facts alone are a good
reason to employ test (7) which demonstrates a fairly good
performance helped by the fact that large values of σ2/σ1 now
belong to the alternative. The Mood’s test is competitive, but
(10) does not gain enough power as |µ2 − µ1|/σ2 increases
beyond c0.

The situation does not change for the better when the null
hypothesis is that of non-conformity as the power function
remains small on the alternative. The power function of the
test of |µ1 − µ2|/σ2 � c0 = 2.35 according to [16] does not
exceed 0.16 even when ν = ∞.

The maximum power of the considered tests is
summarized in table 2.

9. Conclusions

The exact mathematical formulation of a conformity
hypothesis may not be so important in metrology applications.
However, without such a formulation it is impossible to
evaluate the test performance or to compare two different
tests.

Table 3 presents a summary of available compatibility
testing methods. This table along with the results of section 8
amply demonstrate the difficulties of testing the classical
‘equality of means’ hypotheses. Out of these, tests (1) and
(4) have the best power function and test (2) based on the
intersecting intervals is the worst. It should not be used by
metrologists indeed.

There is no test whose power would depend only on
|µ2 − µ1|/σ2. Equally absent are tests whose significance
level is equal to α when µ2 = µ1, and whose rejection

region has the form |x̄ − µ1|/
√

σ 2
1 + u2 � g(u/σ1) with

a smooth function g [20]. The power of all tests of the
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Table 3. Summary of existing compatibility testing procedures.

Hypothesis Rejection region Advantages Disadvantages

µ2 = µ1 for some σ2 |x̄ − µ1| > tα/2(ν)u Simplicity σ1 not used
poor power for large σ2/σ1

µ2 = µ1 for some σ1, σ2 |x̄ − µ1| > 2σ1 + tα/2(ν)u Geometric appeal Poor power
Behrens–Fisher problem |x̄ − µ1| >

√
f (u2 + σ 2

1 ) Classics Labs exchangeable
f non-unique

Bayes setting |x̄ − µ1| > tα/2(ν)
√

max(u2, σ 2
1 ) Better uncertainties Poor power for large σ2/σ1

µ2 = µ1, σ2 � Bσ1 (7) or (8) Good power B assessment
|µ2 − µ1| � c0σ2 See [16] c0 difficult

hypothesis µ2 = µ1 is close to the significance level α

when σ2/σ1 is large while a perfect test should have it close
to one.

The logical implication is to remove the troublesome
values of σ2/σ1 from the null hypothesis and to formulate a
compatibility hypothesis as the joint statement H0 suggested
here with the rejection region in (7). The paper argues that
this null hypothesis H0: µ2 = µ1, σ2 � Bσ1 is a reasonable
statistical expression for testing compliance, conformity or
compatibility. The presence of the constant B (which can
be determined from a desired measurement capability index)
is an advantage inasmuch as it allows greater flexibility in
applications.
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