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Statistical Methods for Change-Point Detection in Surface 
Temperature Records 

A. L. Pintar, A. Possolo, and N. F. Zhang 
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Information Technology Laboratory 

National Institute of Standards and Technology 
100 Bureau Drive 

Mail Stop 8980 
Gaithersburg, MD 20899 

Abstract.  We describe several statistical methods to detect possible change-points in a time series of values of surface 
temperature measured at a meteorological station, and to assess the statistical significance of such changes, taking into 
account the natural variability of the measured values, and the autocorrelations between them. These methods serve to 
determine whether the record may suffer from biases unrelated to the climate signal, hence whether there may be a need 
for adjustments as considered by M. J. Menne and C. N. Williams (2009) “Homogenization of Temperature Series via 

Pairwise Comparisons”, Journal of Climate 22 (7), 1700–1717.  We also review methods to characterize patterns of 
seasonality (seasonal decomposition using monthly medians or robust local regression), and explain the role they play in 
the imputation of missing values, and in enabling robust decompositions of the measured values into a seasonal 
component, a possible climate signal, and a station-specific remainder.  The methods for change-point detection that we 
describe include statistical process control, wavelet multi-resolution analysis, adaptive weights smoothing, and a 
Bayesian procedure, all of which are applicable to single station records. 

Keywords: Adaptive Weights Smoothing, Autocorrelation, Bayesian Methods, Bootstrap, Change-Point, Control 
Charting, Temperature Series, Wavelets. 
 

INTRODUCTION 

We describe several graphical, exploratory data 
analytic methods that indicate possible change-points 
in a time series of measured values of surface 
temperature at an observing station, and supplement 
them with statistical methods to confirm the reality of 
change-points, taking into account the natural 
variability of the measurements: all intended to serve 
as complements to the techniques described by [1]. 

We regard the sequence 
1
,...,

nt tx x of measured 

values of temperature made at n epochs 1,... nt t (for 
example, months), typically equispaced in time, as a 
realization of a collection of random variables 

1
,...,

nt tX X , which usually exhibit dependencies, and 
are referred to collectively as a stochastic process. 

A change-point is an epoch kt such that the joint 
probability distribution of 

1
,...,

k m kt tX X
� �

is different 

from the joint probability distribution of ,...,
k k mt tX X

�
, 

for some 1m � .  This difference may take any of 
several aspects, and possibly more than one aspect in 
conjunction, for example: a step change in mean value; 
an increase in variance; a change in the rate at which 

the mean varies with time; an alteration of the auto-
correlation function. 

At most stations, the series of measured values of 
surface temperatures exhibits a strong pattern of 
seasonality. For example, for the record of monthly 
average maximum temperatures at a station at the 
Reno Tahoe International Airport, NV, about 92 % of 
the variability is due to oscillations driven by the 
changing seasons. Therefore, the pattern of 
seasonality, together with superimposed natural 
“noise” (about 5 % of the variability at Reno), may 

easily mask other changes. The section on seasonality 
describes techniques to estimate the seasonal 
component in a temperature record. 

Typically, some of the data are missing, either 
sporadically, or at multiple observation epochs in 
succession: for example, for the Reno station, the 
value for August, 1900 is missing, but the values for 
adjacent months are available; for a station in Decatur, 
IL, the values are missing for all the months from 
November, 1985, until July, 1986.  Since some 
techniques used either to estimate the seasonal 
component, or to detect change-points, can most easily 
be applied if no data are missing, the imputation of 
missing values is also discussed. 

Many of the techniques that have been proposed 
for change-point detection neglect the fact that surface 
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temperature records typically exhibit non-negligible 
autocorrelations, even after removing temporal trends 
and seasonal oscillations – [2] is a notable exception. 
In general, such neglect leads to the identification of 
more change-points than in fact there are.  In [3], a 
similar shortcoming related to the confirmation of a 
trend that has been detected using exploratory data 
analysis is discussed. 

In the following sections we illustrate techniques 
for detecting and removing seasonality, imputing 
missing values, and detecting step changes in the 
mean.  All of the change-point detection procedures 
that we discuss are sensitive to changes in the mean 
level of the process, and they explicitly account for 
autocorrelation. 

SEASONALITY 

Seasonal Decomposition Using Medians 

A very simple, but quite effective estimate of the 
seasonal component reduces to finding the median 
temperature of the values pertaining to each month. 
This may be adapted to address a possibly temporally 
varying seasonality by computing monthly medians 
over a moving window of suitable length. This simple 
estimate can be computed even when there are many 
missing values. 

Seasonal Decomposition Using Local 
Regression 

The method introduced by [4], and implemented in 
the R [5] function stl, decomposes the series of 
observations as t t t tx m s r� � � , where { }tm denotes a 
trend, { }ts a seasonal component, and { }tr a 
“remainder”, and does this by an iterative process 

involving the application of the loess smoother [6]. 
Both the trend and the seasonal component are 

estimated in a way that is resistant to outlying 
observations. The procedure can be implemented to 
tolerate missing data: since the current version of stl 
does not do this, missing values should be imputed 
prior to its application. The seasonal component itself 
may vary throughout the time spanned by the series. 

IMPUTATION 

There are seven missing values in the series of 
maximum monthly temperatures for the Reno station, 
which were imputed using the following procedure: 

 

1. Compute ts , the median of the values 
measured for all the months with the same 
name as the month that t belongs to, in all 
the years in the station’s record; 

2. Fit a local regression model [7, 8] to the 
observations in a  two-year window 
centered at t, (yet that obviously cannot 
extend beyond the beginning or the end of 
the record, if t should be near either of 
them) and let ˆtx denote the value 
predicted by this model for the value at 
epoch t; 

3. If the missing value occurs at epoch t that 
is neither the first nor the last epoch on 
record, and it corresponds neither to the 
warmest month nor to the coldest month 
(as judged by the medians of the 
observations made in the same month of 
all years in the series), then impute the 
missing value by ˆtx ; 

4. Otherwise, impute the missing value by 
ˆ( ) 2t ts x� . 

The procedure just described may produce 
unrealistic imputations when there are runs of missing 
values spanning more than one half of the period of 
the seasonal oscillations, as there are in the record for 
a station in Decatur, IL. In such cases, the safest 
imputation foregoes interpolation and uses medians of 
monthly measured values. 

STATISTICAL PROCESS CONTROL 

To illustrate techniques to be discussed in the 
following sections we will use a fragment of the 
“remainder” component of the record for Reno, 
obtained applying the methods described in the 
sections about seasonality and imputation, modified to 
include three change-points defined by a shift in the 
mean, of sizes � , 2�� , and 2� , where � is the 
standard deviation of the innovations of an auto-
regressive moving average (ARMA) model [9] fitted 
to that “remainder”:  This is depicted in Fig. 1 where 
the vertical lines mark the change-points. 

The EWMA (exponentially weighted moving 
average) chart described in section 6.3.2.4 of [10], 
commonly used in process quality control, can detect 
deviations in the mean of a time series.  The EWMA 
statistics for a time series 

1 2
, ,...t tx x  is a time series 

itself 
1 2
, ,...t tz z  where 

1
(1 )

i i it t tz x z� �
�

� � � for 
2,3,...i � and for some 0 1�� � ( � = 0.2 being a 

common choice). 
Shifts in the mean are detected when the EWMA 

statistic drifts outside of a control strip centered at the 
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FIGURE 1.  Change-Point Example — Data.  This series, 
originally without change-points, was modified to include 
three change-points defined by a shift in the mean, of sizes 
� , 2�� , and 2� , where � is the standard deviation of 
the innovations of the ARMA model fitted to that 
“remainder” series for Reno.  The vertical lines show the 
true change-points. 
 
mean, typically of the form zL�	 
 , where 	
denotes the mean of { }tX and 2

z� denotes the limit that 
the variance of the random variable tZ converges to as 
t grows large. 

The value of z� depends markedly on whether the 
random variables { }tX exhibit autocorrelation.  In 

[11], a practical approximation for 2
z�  is established 

on page 28 assuming the { }tX  form a stationary 
process with 2�  as their common variance and �  as 
their auto-correlation function.  In practice, 2�  and 
� are estimated by a portion of { }tX  that is believed 
to be stationary.  The mean, 	  must be re-estimated 
after each identified change, but the width of the 
control strip will remain the same unless one believes 

2�  and �  have also changed. 
Fig. 2 shows the results of applying this procedure 

to the example series introduced above, with � =0.2 
and 3.3�L  corresponding to a 99.9% normal 
confidence interval.  The series }{ tZ  identifies all 
three change points but with a long delay for the third 
(more than three years).  This delay is not surprising 
since the last change is small relative to the overall 
noise.  The delay for detecting the first two larger 
changes is much shorter (a few months for the first and 
essentially none for the second).  Such delays can be 
influenced by the choice of � , which acts as a 
dampening factor for how the changing mean affects 
the level of }{ tZ . 

 

FIGURE 2.  Change-Point Example — EWMA.  The 
jagged line depicts the data, and the black dots represent the 
values of the EWMA statistic { }

it
z computed using function 

ewma defined in the R package qcc [12].  The vertical lines 
mark the locations of the three change-points that were 
introduced deliberately.  The horizontal dashed lines mark 
the boundaries of the control strip, shifted after each change-
point to facilitate identifying the next one. 
 

MULTI-RESOLUTION ANALYSIS 

Fig. 3 shows the components of an additive 
decomposition, multiresolution analysis (MRA) 
[13],of the example time series introduced in Fig. 1: 
each of these components is a projection of the series 
onto a wavelet basis, and reveals how this time series 
varies at a particular scale. 

The decomposition was computed using the 
function mra of the package waveslim [14] for the 
R environment for statistical computing, and it is 
based on the discrete wavelet transform corresponding 
to the least asymmetric wavelet LA(8) in [15] and 
periodic boundary conditions as described in section 
4.6.3 of [16]. 

Fig. 4 serves as a diagnostic tool for the presence 
of change-points corresponding to shifts in the level of 
the series (it can be suitably adapted to become 
sensitive to other kinds of change-points).  Since the 
MRA segregates such shifts to the “smooth” 

component 5s , we focus on the absolute values of the 
corresponding first differences ,5 1,5{ }t ts s �� .  To 
answer the question of how tall a peak needs to be to 
indicate a change-point with high confidence, we 
employed the following parametric bootstrap [17] 
procedure: 
 

1. Perform a seasonal decomposition of the 
series, and develop a statistical model for 
the “remainder” (as defined in the section 
on Seasonality) — in the case of this 
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example, a Gaussian ARMA(2,2) model 
proved adequate; 

2. Choose a suitably large number m of 
series to be simulated from the fitted 
model — in our case we chose m =1000 
— and for each of them compute the 
MRA, and find the maximum absolute 
value of the first differences of the 
“smooth” component; 

3. The 95th percentile of this sample of m  
maxima is an approximate threshold for 
identification of change-points — 
indicated by the horizontal, dashed (blue) 
line in Fig. 4. 

In Fig. 4, the vertical lines mark the locations of the 
three change-points that were introduced deliberately, 
the dashed line marks the threshold above which first 
differences are considered to be change points, and the 
solid lines depicts the first differences. In this case, 
only one of the three change points is detected. 

 

FIGURE 3.  Change-Point Example — MRA.  The top 
panel depicts the data, and the bottom five depict the 
components of a multi-resolution analysis (MRA) that 
expresses the data as the sum of a “smooth” (s5) and four 

levels of “detail” (d1–d4). All six panels have the same 
vertical scale. The vertical lines mark the locations of the 
three change-points that were introduced deliberately. 

ADAPTIVE WEIGHTS SMOOTHING 

Adaptive weights smoothing (AWS) [18] is a 
procedure that was originally conceived to detect 
discontinuities in digital images, hence to perform 
image segmentation, without blurring those  

 

FIGURE 4.  Change-Point Example — MRA Detection.  
The solid undulating curve depicts the absolute values of the 
first differences ,5 1,5{ }t ts s ��  of the “smooth” component of 

the MRA of the data. The horizontal dashed line indicates 
the 95th percentile of the reference distribution: excursions 
above this threshold indicate change-points.  

 
discontinuities by over-smoothing. The procedure is 
non-parametric (that is, does not make assumptions 
about the probability distribution of the noise 
contaminating the signal that it seeks), and is adaptive 
(that is, its specific definition is driven by the data it is 
applied to). 

The propagation-separation approach to AWS [19] 
is implemented in function aws defined in the R 
package of the same name [20], and can be applied not 
only to two-dimensional images, but also to time 
series.  Fig. 5 depicts the results of applying the AWS 
algorithm to the example time series. 

To assess the presence of a change-point, a 
procedure that is similar to the one used for MRA can 
be applied here, and its results are depicted in Fig. 6, 
which shows that two of the three change-points that 
are present in the example data set are identified.  
Since the MRA approach identified only one of the 
three change-points (see Fig. 4), the AWS approach 
performs better for the example data set.  Actually, it 
is not too surprising that the rightmost change point is 
not be detected for either procedure because its size is 
one half of the typical size of the noise. 

BAYESIAN CHANGE-POINT 
DETECTION 

In [21] a Bayesian approach is developed to 
determine the posterior probability of a mean shift at 
each epoch assuming that { }

it
X is an autoregressive 

process of order p .  More specifically, 
i i it t tX r	� � , 

where 
1i i i it t t t	 	 � 

�

� � and 
1

i i j i

p

t j t t
j

r r a�
�

�

� ��  with the 

}{
it

�  independent and identically distributed binary  
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FIGURE 5.  Change-Point Example — AWS.  The jagged 
thin line depicts the data, and the thick, generally smooth 
line depicts the trend detected by AWS. The vertical lines 
mark the locations of the three change-points that were 
introduced deliberately. 

 

FIGURE 6.  Change-Point Example — AWS Detection.  
The solid, undulating curve depicts the absolute values of the 
first differences 1{ }t ts s �� of the smooth trend estimated by 
AWS. The horizontal dashed line indicates the 95th 
percentile of the reference distribution: excursions above this 
threshold indicate change-points. Note that the vertical axis 
has a logarithmic scale.  
 
random variables with probability �  of being equal to 
1 and the }{

it
a  independent and identically distributed 

Gaussian random variables with mean 0 and standard 
deviation a� .  The autoregressive part of the model is 
found in the definition of 

it
r since 

it
r depends on 

1it
r

�
, 

2it
r

�
, , 

i ptr �
.  The j�  are the dependence parameters 

of this autoregressive process.  The }{
it

�  and }{
it


  
allow for the possibility of a change-point, and they 
are interpreted as follows.  If 

it
� = 1, a change-point of 

size 
it


  exists at time it , and if 
it

� = 0 there is no 

change-point at time it .  Thus, to investigate the 
possibility that a change-point exists at time it , one 
must calculate the probability that 1�

it
�  conditionally 

on the observed data, { }
it

X .  This is exactly the 

posterior expected value of 
it

� , which makes the 
Bayesian paradigm of inference a natural fit.   

By using conjugate forms for the prior distributions 
(see [21]), a Gibbs algorithm [22] can be constructed 
to sample from the joint posterior distribution of all of 
the parameters.  Those samples are then used to 
estimate the properties of any marginal posterior 
distribution that is of interest.  For example, the simple 
arithmetic average of the sampled values of 

it
�  (for 

some it ) is an estimate of the posterior expected value 
of 

it
� .   
There is no set prescription for deciding that a 

change-point exists at time it .  The user is given the 
flexibility to decide what level of evidence (that is, 
how large of a posterior probability) is sufficient to 
claim the existence of one or more change-points for 
some sub-sequence of epochs.  This flexibility is 
important since different situations may call for 
different decision rules.  Note that one also must set 
the confidence level in the EWMA, MRA, and AWS 
approaches. 

Fig. 7 depicts the raw data and results of this 
procedure taking p =1.  The thin jagged line in the top 
panel of Fig. 7 depicts the data, and the smooth line in 
the top panel of Fig. 7 shows the posterior mean of 

it
	  

at all times.  In the bottom panel of Fig. 7, the 
posterior expected value of 

it
�  at each it  is depicted 

by the jagged curve, which provides a graphical way 
to assess the presence of a change-point.  The vertical 
lines depict the actual change-points.  From Fig. 7, it is 
clear that the first two true change-points are identified 
since there is a large rise in the posterior expected 
values of the 

it
�  around them.  This is not necessarily 

the case for the third and final true change-point.  
While there is a sustained noticeable elevation in the 
posterior expected values of the 

it
�  around that 

change-point, the largest spike is not too much larger 
than some other spurious spikes.  The fact that the 
expected values of the 

it
�  remain consistently elevated 

relative to the general baseline speaks more cogently 
in favor of this being a true change-point than does the 
magnitude of these spikes.  Therefore, we conclude 
that the Bayesian methodology identifies all three of 
the change-points. 

CONCLUSION 

In this article, we have explored four methods to 
identify change-points in temperature time series.  

�
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Before employing such methods, it was necessary to 
remove seasonality from the times series and impute 
missing values.  The methods were illustrated using a 
time series that was modified by the deliberate 
introduction of three change-points.  The EWMA chart 
and our graphical approach to identify change points 
for the Bayesian method indicate the presence of all 
three change-points, with the EWMA chart doing so 
with some temporal delay for the third and smallest 
change.  The AWS method did not identify the 
smallest change, but it did identify the two larger ones.  
The MRA identified the largest change-point.  Note 
that at lower levels of confidence, the MRA and AWS 
approaches might also have identified all three change-
points.  A strength and common theme of the detection 
methods we presented in this article is that they are 
applicable to a single series, and they recognize and 
allow for autocorrelation, which is often present in 
temperature time series even after removing 
seasonality. 

 

FIGURE 7.  Change-Point Example — Autoregressive 
Process. The Jagged line in the top panel depicts the data. 
The vertical lines mark the locations of the three change-
points that were introduced deliberately. The thick, generally 
smooth line in the top panel represents the level of the time 
series. The jagged line in the bottom panel depicts the 
posterior probability of a change-point at each epoch.  The 
increases in posterior probability around the vertical lines 
indicate that all three change-points are found. 
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