

Mapping Evidence G raphs to A ttack G raphs
*Changwei L iu, §Anoop Singhal and *Duminda Wijesekera

cliu6@gmu.edu, anoop.singhal@nist.gov, dwijesek@gmu.edu
*Department of Computer Science, George Mason University, Fairfax V A 22030.

§National Institute of Standards and T echnology, 100 Bureau Drive, Gaithersburg M D 20899.

Abstract--A ttack graphs compute potential attack paths from a
system configuration and known vulnerabilities of a system.
Evidence graphs model intrusion evidence and dependencies
among them for forensic analysis. In this paper , we show how to
map evidence graphs to attack graphs. This mapping is useful for
application of attack graphs and evidence graphs for forensic
analysis. In addition to helping to refine attack graphs by
comparing attack paths in both attack graphs and evidence graphs,
important probabilistic information contained in evidence graphs
can be used to compute or refine potential attack success
probabilities contained in repositories like CVSS. Conversely,
attack graphs can be used to add missing evidence or remove
irrelevant evidence to build a complete evidence graph. In
particular, when attackers use anti-forensics tools to destroy or
distort evidence, attack graphs can help investigators recover the
attack scenarios and explain the lack of evidence for missing steps.
We illustrated the mapping using a database attack as a case study.

Keywords-attack graphs; evidence graphs; attack success
probabilities; evidence probabilities; mapping algorithm

I. INTRODUCTION
Currently, attack graphs and evidence graphs are used in

security analysis. Attack graphs are used to analyze security
vulnerabilities in enterprise networks. An attack graph
represent system states as nodes by using a collection of
security-related predicates, such as vulnerability on a particular
host in a network, and edges as an exploit that takes the system
from one state to another [4]. In the attack graphs model,
composition of exploits is considered as an attack. Evidence
graphs model intrusion evidence in a network, where host
computers that interest forensic investigation (i.e. potential
evidence) are represented as nodes, and dependencies between
such evidence are represented as edges [1].

Many papers address how to construct evidence graphs
from collected evidence after an intrusion attack or attack
graphs from software vulnerabilities of specific networks.
Based on these papers, many researches discuss how to use or
refine the two graphs. However, to the best of our knowledge,
none of them provides a formal mapping between attack graphs
and evidence graphs, which is our contribution in this paper. In
particular, we take both kinds of graphs from the same-
networked environment and enrich them with quantitative
metrics to model the mapping. We show its utility by a
database attack case study.

In general, the probability of the potential attack on a
specific node in an attack graph decorated with quantitative
measures is calculated based on scores from NVD [9] and the
corresponding network configurations, which may not
accurately reflect the specific QHWZRUN¶V� DWWDFN� SUREDELOLW\�� ,I�
attack path deviates from an actual attack scenario, it may
mislead investigators. [1] shows how to create evidence graphs
from evidence, which can help refine such an attack graph. In
addition, when evidence is not enough to construct an evidence
graph to assist forensics analysis, an attack graph that combines

expert knowledge database can help to recover the attack
scenario. In this way, our mapping can be used to combine
both graphs in helping forensic investigators.

The rest of the paper is organized as follows. Section II
describes related works. Section III provides basic definitions.
Section IV provides the mapping algorithm. Section V is our
case study, showing how to map the constructed evidence
graph to attack graph. Lastly, we finish the paper with a
conclusion in section VI.

II. RELATED WORK
Many forensics tools are used to analyze data in networked

systems. Some are image tools that extract data from physical
memory or disk sectors for live or dead analysis [19]. While
live analysis has the risk of changing data, dead analysis
requires terminating all system processes [20], where neither in
itself is complete. Network forensics tools obtain data from
capture files of network traffic. In addition, Intrusion detection
systems (IDS) data are also used for forensics analysis, which
consists of anomaly detectors [21] with false positives and
pattern-based detectors that may not be able to capture attacks
with unknown patterns.

While forensics tools cannot solely solve network forensics
analysis, attack graphs help with this issue. Sheyner et al.
defined attack graphs and used them to model multi-stage,
multi-host attack paths in a network [17]. Ammann et al.
proposed to use the monotonicity assumption to simply the task
of modeling attacker actions [7]. Other works, such as a TVA
tool [22], use an exploit dependency graph to represent the pre
and post-conditions of vulnerable states. Ingols et al. proposed
to create a network model using firewall rules and network
vulnerability scans, and showed the effect of countermeasures
on the system [18]. MulVAL [3,15] generates attack graphs
from system configurations and bug-reports. This tool reduces
attack graph complexity and shows which system
configurations may facilitate attackers to escalate their
privileges. Combing attack graphs, the attempts of measuring
network security risk have been proposed. NVD by NIST
standardizes vulnerability metrics that assign success
probabilities to exposed individual vulnerabilities [5,15],
which have been used in attack graphs to compute success
probabilities of attacks that exploit a series of vulnerabilities [4,
10, 25].

Evidence graphs correlate attack evidence by using network
configuration, time stamps and expert systems with fuzzy rules
to reconstruct potential attack scenarios from large amount of
noisy data [1,13]. Decorated by evidence probability as
quantitative values, a probabilistic evidence graph attaches
quantitative measures to an evidence graph.

III. BASIC CONCEPTS
This section describes the basic concepts used in the rest of

the paper, which are attack graphs and evidence graphs with
quantitative metrics.

1

mailto:dwijesek@gmu.edu
mailto:anoop.singhal@nist.gov
mailto:cliu6@gmu.edu

1. Attack G raphs together are prerequisites to launch exploit 4. The cumulative
probabilities are given in the figure (Assume p(c) =1 here). For There are many definitions on attack graphs, of which we
P(e4)=P(c1)×P(c2)×p(e4) because P(c1)=P(e1) and use 2X¶V�ORJical attack graph definition [3].
P(c2)=P(e2)+P(e3)±P(e2)×P(e3), P(e4)=P(e1)×(P(e2)+P(e3)±P(e2)Definition 1(Attack graph): A=(Nr,Np,Nd,E,L,G) is a logical ×P(e3))×p(e4).attack graph, where Nr, Np and Nd are three sets of disjoint

nodes (namely derivation, primitive and derived fact nodes
), L is ar×Nd(N׫)Nd)×Nr׫p((Nؿrespectively) in the graph, E

LV� DQ� DWWDFNHU¶V� dNؿmapping from a node to its label, and G
final goal [3].

An example is shown in Figure 1(Appendix has a bigger
figure). Primitive fact nodes in boxes include network
configuration and vulnerability information on hosts. A
derivation node in an oval represents a successful application
of an interaction rule, where all facts are its preconditions that
are satisfied by its child, a derived node in diamond. That is,
the derived nodes are the result of applying interaction rules
iteratively on the input facts. The edges in a logical attack
graph can only go from a fact node to a derivation node or
from a derivation node to a derived fact node. The labeling
function maps a fact node to the fact it represents, and a
derivation node to the rule used for the derivation.

Figure 1: An Example Attack Graph

Definition 2 (Probabilistic Attack G raph)[10]: Given an
acyclic attack graph A=(Nr,Np,Nd,E,L,G,P), and two functions
p:EÆ[0,1] and p:NdÆ[0,1] assigning probabilities of success
of an individual exploit (e) and exploiting a condition (c)
respectively, the cumulative functions for exploits and sets of
conditions P:eÆ[0,1] and P:cÆ[0,1] are defined as follows.
1. P(c)= p(c) LI�WKH�FRQGLWLRQ��F��ZDVQ¶W�H[SORLWHG�EHIRUH�

Figure2: Example Probabilistic Attack Graph

2. Evidence G raphs

Definition 3(Evidence G raph)[1]: An evidence graph is a
tuple E=(N,E,N-Attr,E-Attr,L,T), where N is a set of nodes

N) is a set of directed ×(Nؿ representing host computers, E
edges consisting of a particular data item of activity between
the source and target machines, N-Attr is a set of labels that
indicate the attributes of nodes, and E-Attr is a set of labels that
indicate the attributes of edges. L:NÆ2N-Attr or T:EÆ2E-Attr are
an assignment of a set of attribute-values pairs to a node or an
edge respectively. The following host labels are used in an
evidence graph.

(1) Host ID: Identification of a suspicious host.
(2) States: States of the host nodes are one or many of the
DWWULEXWH� YDOXHV� ³VRXUFH´�� ³WDUJHW´�� ³VWHSSLQJ� VWRQH´� DQG�
³$IILOLDWHG´�� :KLOH� RWKHU� DWWULEute value nomenclature is
VWDQGDUG�� ³$IILOLDWHG´� KRVWV� DUH� WKRVH� WKDW� KDYH� VXVSLFLRXV�
interactions with an attacker, victim or stepping-stone. For
example, if a victim host that was compromised in an attack is
used as a relay to transfer stolen files is an affiliated host.
(3) Time stamps: Tactivate and Tlatest time stamps record the
initial and latest state of a machine.
(4) Value: The value between 0 and 1 indicates the importance
of a specific host in a network.

Following edge labels are used in an evidence graph.

(1) General attr ibutes: Commonly used attributes of evidence,
including the initiator host of event, the target host of the event,

Otherwise, and)eP(ْ.)c)=p(cP(2.
S is the state of a j.S×iSڲك�where e }iS�3�H� S�H��Ȇ^3�F��F 3.

is ْ . The operatordhost after an attack that corresponds to N
EאeP(e)=P(e)ْrecursively

2Sْ.1Sْí2Sْ+1Sْ)=2S1׫(Sْ
E.2ك,S1empty sets S

defined for any and as
for any disjoint and non- the event description and time stamp(s) of the event.

(2) Weight (w): A value between [0, 1] is used to represent the
impact of evidence on the attack. For example, port-scan
evidence gets less weight than buffer overflow evidence.
(3) Relevancy(r): Measure of impact on attack success.
False/ irrelevant true positive = 0, Unable to verify = 0.5 and
Relevant true positive =1

For example, IE6-aurora attack for a Linux machine has
relevancy 0, because Linux does not support IE explorer that is
the prerequisite of a successful IE6-aurora attack.
(4) Host Importance (h): This is a decimal value that
categorizes the importance of a host for an attack plan.

�Definitionڲ 2 captures the probability p(e) of an exploit e
S, which can be computed from an existing×SڲكWR� belonging

metrics, such as CVSS metric vector etc. [4, 5]. The likelihood
of satisfying the pre-conditions (c) of an exploit is p(c), which
is always 1 if it is network configuration and less than 1 only
when the condition is obtained from prior attacks that have a
less than 1 attack success probability. P(e) is the cumulative
attack probability computed using a vulnerability that allows
accessing a host.

Figure 2 shows a probabilistic attack graph satisfying
Definition 2. In this graph, exploit 1 on host 1 results in a state
validating post-condition c1. Either exploit 2 or exploit 3 on
host 2 results in a state satisfying post-condition c2. c1 and c2

2

In order to evaluate how much investigators are confident
DERXW� D� KRVW¶V� DWWDFN-related states, we use the following
definition for a probabilistic evidence graph.

Definition 4 (Probabilistic Evidence Graph): In an 3. Building G raphs
acyclic graph E=(N,E,N-Attr,E-Attr,L,T),

[0,1] is defined as follows. אprobability assignment function p
1. p(e) = cxw(e)xr(e)xh(e), where ³e´ is a particular edge

evidence the
As stated, we use MulVAL [15] to build our attack graph. We
normalize all evidence using the five components (1) id, (2)
source, (3) destination, (4) content and (5) time stamp in order
to build our evidence graphs. Time order is taken as evidence and ³w´, ³r´ and ³h´ are the weight, relevancy and host

importance respectively [1]�� ³F´� LV� D coefficient that
indicates the categories of evidence, which are primary
evidence, secondary evidence and hypothesis testing from
expert knowledge. They are assigned as 1, 0.8 and 0.5
respectively in this paper as examples.

eh.in)], where eout are all edges that ׫(׫out) .eh ׫p[(=p(h) 2.
initiate from host h with a particular attack-related state,

(primary or secondary) dependencies to connect all hosts as
nodes and evidence as edges to create an evidence graph. IDS
alerts, suspicious activity log information closer to attack time
and any information that directly reveals attack activities are
considered as primary evidence. Secondary evidence may
include various general-purpose sensor data [1], which include

and ein are all edges whose target computer is h with the
and)2ŀH1)-p(e2)+p(e1)=p(e2e1׫p(e

false positives triggered by benign activities and irrelevant

same state. We use
attacks that are not part of the foreground attack scene of

p(e1ŀH2)=p(e1) ×p(e2).
The probability of a single edge p(e) represents the overall

importance of a piece of intrusion evidence, that is calculated
by multiplying the edge attributes weight, relevancy and host
importance. These three values can be obtained from NVD [14]

interest, or the tainted data from memory or hard disk images.

as well as LQYHVWLJDWRUV¶�MXGJPHQW�RQ�WKH�Sarticular attack.
Evidence graphs have two kinds of data, primary and

secondary. Primary evidence is explicit and direct, and
secondary evidence is implicit or circumstantial. We assign a
primary evidence edge a higher value, and a secondary
evidence edge a lower value. Additionally, sometimes, e.g.
when attackers used anti-forensics tools or techniques to
destroy evidence, expert knowledge is used to add an evidence
edge, to which we attach a smaller probability than secondary

Because secondary evidence is not as explicit and tangible as
primary evidence, it is used only when primary evidence is
insufficient to prove an attack activity.

Hypothesis testing is used in evidence graph construction.
Sometimes, IDS may not be triggered by attacks, perhaps due

evidence, resulting in our choice of 0.8, 0.6 and 0.5 that are for
the three weights. p(h) in Definition 3 is the probability of all

to either not setting up the IDS properly or the attack activities
do not seem malicious. In addition, the evidence might be so
tainted that the investigators may make a wrong diagnosis.
Also, attackers may actively destroy all evidence for the anti-
forensic purpose. As a solution, [11] proposes to use a valid
attack graph with a combination of expert knowledge database
and anti-forensic database to implement the evidence graph.
However, the hypothesis testing based on this must not
contradict existing evidence that represents the attack truth,
unless investigators are certain the existing evidence left by
attackers is for obfuscation purposes [2].

evidence whose source or target host is h, since investigators
may find several pieces of evidence between two host
computers.

Figure 3 is a probabilistic evidence graph, where there are
two pieces of evidence IURP�³���������������´�WR workstation
with probabilities p(e1) and p(e2) respectively. The evidence of
an attack going from the workstation to the database server has
a probability p(e4). e4 is second evidence that is represented as
a dotted line, which has a coefficient 0.8. With these values, for
example, the probability assigned to the probability of the

a stepping stone
)2p(e׫)1p(e). 4p(e x0.8 x))2p(e׫)1)-(p(e4p(e x)+0.82p(e׫)1p(e

is =
is

IV. MAPPING EVIDENCE GRAPHS TO ATTACK GRAPHS

We propose to map attack paths in an evidence graph to
their corresponding paths in the attack graph. Both attack
graphs and evidence graphs are directed acyclic graphs with
the final victim hosts as sink nodes [16]. We reverse the edge
direction in both graphs and take one of the final victim hosts
as a source node to do the mapping (for simplicity, in the
following mapping algorithm, the evidence graph and attack
graph refer to direction-reversed graph and attack graph
respectively). Because both graphs reflect the same network
configuration and the evidence graph generally has fewer hosts
including victim hosts, the evidence graph has a simpler
structure than the attack graph (ideally, the evidence graph is a
subset of the attack graph). As such, we take this final victim
host in the evidence graph as its source host, from which we
map the evidence graph to the attack graph. In the mapping,
Breath First Search (BFS) [16] is iteratively used to find
adjacent nodes, and the unique host ID combining evidence or
vulnerability information is used for the node mapping between
two graphs. During the process, exploitation information from
the attack graph is compared against evidence from the
evidence graph, and the probability values on the
corresponding edge and nodes in both graphs are compared.

In the mapping algorithm we color nodes to mark if a node
has been discovered on either side. All nodes are initially
colored white. A node is colored gray when it is discovered but
its children have not been fully examined, then black after all
children are examined. After mapping, the edges between all
black nodes construct attack paths in the attack graph.

ZRUNVWDWLRQ¶V� EHLQJ� p(h2)

the conjunctive probability of two pieces of attack evidence
IURP�³���������������´�WR�ZRUNVWDWLRQ.

Figure 3: Example Probabilistic Evidence Graph

3

Algorithm 1: M apping evidence graph to attack graph
Input: Direction-reversed evidence graph E = (N , E , N-Attr , E-
Attr , L , T) with NVictim as the node with victim state;
Direction-reversed attack graph: A =(N r,Np, Nd, E ,L ,G ,P), where
Np includes vulnerability information, Nd indicates the particular state
on a host after a vulnerability is exploited
Output: Marked attack path in both E and A
Algorithm:

.ĸe1׎ ĸa; Q׎ Q
A]ሾא� } and u Victim@�í�^1V[Eאeach node u For 2.

Line 1 initializes two empty queues. Qe holds gray nodes
for evidence graph, and Qa holds the last mapped nodes in the
attack graph. Lines 2-4 paint every host node in evidence
graph and derived node in attack graph white, and set the
parent of each of those nodes to be NIL. The reason why we
use derived nodes in attack graph is that they correspond to
host nodes in evidence graph. Line 5 paints the victim node in
the attack graph gray, since we consider it to be discovered first
when the procedure begins. Line 6 pushes the victim node to

3. Do color[u@�ĸ�:+,7(the queue because it has been discovered. The while loop in
4�������������ʌ>u@�ĸ�1,/ lines 7±16 iterates as long as there remain gray nodes in the
5. color[NVictim@�ĸ�*5$<�������� queue Qe. Those gray nodes are discovered nodes that have not 6. ENQUEUE (Qe, NVictim) yet had their adjacency lists fully examined. In this while loop,)׎�eQ(eWhil 7.

line 8 takes out the first gray node in the queue, and lines 9-12 8.
9.
10.

Do u ĸ�'(48(8(�Qe)
Adj[u] in E= (N, E, N-Attr, E-Attr, L, T) א each v For

 ĸEvidence[] Do׎
11. If color[v] == WHITE
12. Then color>Y@�ĸ�*5$<��

examine all its white color neighbor nodes, and paint them as
gray color. Because there may be many, the array evidence[] is
initialized to hold evidence for a mapping later. Once an
adjacent node v is found, line 13 pushes it to the queue and 13. ENQUEUE(Qe, v); ʌ>Y@�ĸ�u

14. Evidence[]. add(E-Attr)
15. Pe ĸ�P(e); Pp ĸ�P(u); Pc ĸ�P(v)

assigns its parent as u. The evidence (E-Attr) between u, v and
probabilities of u, v and e (e as collection of all evidence E-Attr

16. Mapping(u, v, evidence[],Pe, Pp,Pc) between u and v) are saved in lines 14-15, where Pe is the
17. color[u@�ĸ�%/$&. probability of the evidence e, Pp is the target host probability,

and Pc is source host probability (p=parent, c=child). The Mapping (u, v, evidence[],Pe,Pp, Pc)
 .aQ(eWhil 18 ==׎(

19.
mapping function is called in line 16 with the above saved

false ĸFound ;׎ĸtQ
V[A]א�each derived node d Do For

parameters, which are discovered parent node u, child node v,
20. evidence[] between u and v and their corresponding
21. If d.Id == u.id A ND color[d] == white

Adj[Adj[d]] א each primitive fact v n For eTh
probabilities for conjunctive evidence and two nodes u, v.
Lastly, when node u¶V�DOO�QHLJKERU�QRGHV have been examined, 22.

23. Do If (evidence[]. Contains(v))
24. Then FRORU>G@�ĸ�%/$&.
25��)RXQGĸ�true
26. Compare P(d) with Pp

it is marked as black in Line 17, which will not be examined
any more. If all connected nodes are marked black, the
algorithm terminates, and an attack path could be constructed

27. ENQUEUE(Qp , d)
28. Break
29. Else &RORU>G@�ĸ�*5$<
30. ENQUEUE(Qt ,d)
31. E lse Add a node n with u.Id to Graph A
32. Color[n] ĸ�EODFN; New[n] ĸ�7UXH
33. Q�9XO�ĸ�(YLGHQFH>@

�3�Q@�ĸ3S<������������������������������3׎>Q�9XO@�ĸ�3H��4Dĸ�
35. ENQUEUE(Qa,n)
36. Foundĸ�WUXH
37. If (Not Found)
38. Then ENQUEUE(Qa, DEQUEUE(Qt))

 .�a(QeWhil 39׎(
40. Do Pĸ�'(48(8(�Qa)

Adj[Adj[m]] א For each n 41.
42. Do If n is a derived node
43. Then Id =n.ID
44. If n is a primary fact node
45. Then Vul=n.Content
46. If Id==v.Id AND evidence[].contains(Vul)
47. Then FRORU>Q@�ĸ�%/$&.
48������������������������������������)RXQG�ĸ�WUXH

n)a,; ENQUEUE(Q 4׎Dĸ� p; ������������������������������������ʌ>Q@�ĸ�49
50. Compare p(Vul) with Pe
51. Compare P(m) with Pp
52. Compare P(n) with Pc
53. break
54. E lse If Id==v.Id
55. Then FRORU>Q@�ĸ�*5$<; ENQUEUE(Qt , n)

) .Qa== If 56)׎(
57. Then Add a node a with u.Id to Graph A
58. Color[a] ĸ�EODFN; New[a] ĸ�7UXH
59��������������������������D�9XO�ĸ�(YLGHQFH>@; 3>D�9XO@�ĸ�3H

a)a,; ENQUEUE(Q4׎Dĸ� p;ʌ>D@�ĸ� 60.
61. Return

by linking those black nodes.
The mapping function traverses all nodes in the attack

graph, trying to find the derived nodes that correspond to nodes
u and v from the evidence graph and compare the
corresponding evidence, vulnerability and probabilities
information.

Lines 18--38 find the corresponding host in the attack graph
that corresponds to victim node in the evidence graph. We do
so by searching all derived nodes that has host ID information
in the attack graph. The reason why we did not only focus on
victim nodes in attack graph is that the attach path in attack
graph might be longer than the corresponding path in the
evidence graph. Line 18 checks if Qa, the queue that holds last
mapped derived node, is empty or not. If it is empty, we have
not started any mapping, and we search for the first node that
corresponds to source node in evidence graph. Lines 21--28
checks every derived node that has same ID as u --victim node
from evidence graph and same vulnerability information as

evidenceא attached to u (The vulnerability is primitive fact v
Adj[Adj[d]]). Once such a derived node is found, it is colored
black and pushed into Qa, which will be used as the parent
node to search child derived nodes in next mapping steps. Once
the searching on the child derived nodes have been successful,
the black node will be de-queued (in line 40) so that new parent
nodes will be en-queued to Qa for an iterative search. Lines
29²30 use gray color to mark all derived nodes that have
same ID as node u from evidence graph but have no matching
vulnerability information as the evidence attached to u. These
derived nodes are pushed into queue Qt temporarily, which is

4

http://en.wikipedia.org/wiki/Not_equals_sign
http://en.wikipedia.org/wiki/Not_equals_sign
http://en.wikipedia.org/wiki/Not_equals_sign
http:Id==v.Id
http:Id==v.Id

initialized in line 19. Once all searching finishes, if there are
only gray color nodes (i.e. no matching black node is found),
they will be de-queued from Qt and en-queued into Qa as
pDUHQWV�IRU�QH[W�VWHS¶V�VHDUFK. This is on lines 37²38 (Because
of multi-vulnerability in a particular host, there might be
several derived nodes with same host ID in attack graph). We
call these gray nodes half matched because the host ID is
matched to node in evidence graph but there is no
corresponding matched vulnerability to the evidence. In this
case, we use all gray nodes with the same host ID for the next
step in the search. Consequently, the attack paths in the attack
graph may include gray nodes and black nodes. Lines 31²36
add a new node to the evidence graph if there is no matched or
half match node. This happens when the attack graph does not
include a host computer with vulnerability exploitable for this
attack. For later attack graph refining purpose, corresponding
evidence and probabilities from the evidence graph are added
to the newly added node in the attack graph.

Lines 39²60 are similar to line 18²38, which seek a
derived node n in the attack graph that corresponds to X¶V child
node v in the evidence graph. The only difference between
39²60 and 18²38 is that, before searching for the child
derived node n in 39²60, the algorithm have found Q¶V
mapped parent/ancestor node in the attack graph, which has
been saved in Qa(Line 39).

V. CASE STUDY
A. Experiment Network

We implemented a small-scale multi-state attack in an
experimental network as shown in Figure 4 to construct two
graphs and experiment with the mapping. The external firewall
controls network access from the Internet to the enterprise
network, where the Apache Tomcat webserver hosts a webpage,
wKLFK� DOORZV� ,QWHUQHW� XVHUV¶� YLVLW� WKURXJK� SRUW� ������ 7KH�

this machine. Our external attacker uses social engineering to
trick the workstation user to click on a malicious web link,
which enables the attack machine to control the workstation
that has direct access to the database.
B. The Attack Graph

We use MulVAL [15] to generate the attack graph in
Figure 5. The 25 steps of the attack scenario are explained in
Appendix 2.

Figure 5: Experiment Probabilistic Attack graph

Table 1 holds all probabilities of single exploits in the network
obtained from CVSS [5] and human factors in a network.
Number 2 is a human factor, which varies from user to user.
We assign it 0.8, because it is easy to trick an employee to click
on a well-disguised link [4]. Using Table 1 and Definition 2,
we calculated the probabilities of exploits that are in derivation
nodes and the cumulative probabilities of attack success in
derived nodes. These values are shown in Figure 5.

TABLE 1: EXAMPLE NETWORK VULNERABILITY/ACCESS PROBABILITY

internal firewall controls the access to the MySQL database
server, where the databases can be accessed by the webserver
and workstations through a default port 3306.

Number Configuration/Vulnerability Probability

1 Direct Network Access 1
2 Social Engineering 0.8
3 CVE-2009-1918 1
4 CWE89 0.75
5 Access to database from workstation 1

C . Evidence Graph

TABLE 2:ROLE CONFIGURATION IN THE ATTACKS

Attacker 129.174.128.148
Step Stone Workstation
Step Stone/Affiliated Web server
Victim Database server

Our forensic analysis uses the attacker roles stated in Table

Figure 4: Experiment Network

In this network, the webserver is configured to record all
incoming IP addresses with timestamps. The database server is
configured to record all query information, and the IDS is used
to catch network traffic from the Internet.

'''

Our attack objective is to gain access to database tables as 2, corresponding to the following scenario.
an Internet user. Our attack plan is to launch a SQL injection (1) An un-sanitized string was entered into the password text
attack that exploits a java servlet code that does not sanitize input field of the web server Webpage��ZKLFK�LV�³�DQ\WKLQJ¶�RU�
input values: theStatement.executeQuery("select * from profiles where µ�¶ ¶� ´�� � 7KLV� FDXVHd a SQL injection attack to a database

" " " This exploitname= Alice ' AND password= assWord+);.+p QDPHG�³SURILOHV´�LQ�GDWDEDVH�VHUYHU�
corresponds to CWE89 in NVD [12]. The workstation that runs
Windows XP SP3 operating system with IE6 with the
vulnerability (CVE-2009-1918 [9]) enables executing any code on

(2) Internet Explorer "Aurora" Memory Corruption was
launched from attacker machine to the Windows workstation
with IE6 browser. This was done by tricking a windows

5

workstation user to click on a link sent from the attacker
machine.

(3) After the workstation has been hijacked, a tool like
TightVNC [8] is uploaded to the workstation, which could
remotely control the workstation to access the database.

Evidence was divided into two categories. Because the
suspicious SQL injection query ³select * from profiles where
name='Alice' AND password='alice' or '1' = '1' ´has obvious injection
feature that is µ�¶ ¶�¶[23], we categorized it to primary evidence.
By using its time stamp, ³120416 15:32:51´, we investigated other
machines connected to this database, which are webserver and
workstations. According to the above time stamp, suspicious
log information was found on the webserver, which was
³129.174.92.32 - - [16/Apr/2012:15:32:51 -0400] " POST /lab/Test
H TTP/1.1 " 200 980´(129.174.92.32 is workstation¶V IP).
2EYLRXVO\��WKH�,3�DGGUHVV�³�������������´ that does not belong
to this network is the attacker. Now, an attack path can be
constructed.

Because of the small size of our experiment, it was easy to
find evidence in the workstation by investigating browser
history DQG�³ORFDO�VHWWLQJ�WHPS´�IROGHU�WR�VHDUFK�IRU suspicious
links or executable file (The executable file is TightVNC [8] in
our case) sent or uploaded by the attacker. However, in a real
scenario, there must be many workstations connected to a
database server. Under this situation, an expert knowledge
database such as the one in >��@� RU� LQYHVWLJDWRUV¶� HPSLULFDO�
experiment should be used to reduce the investigation scope.

Because the compromised workstation has direct access to
the database server, it is difficult to ascertain if the access
record is that of an attacker. Consequently, this attack step
from the workstation to the database server was added by using
expert knowledge, which completed another attack path
³attacker ĺ workstation ĺGDWDEDVH�VHUYHU´�in the evidence graph.

:H�QRUPDOL]HG�WKH�DERYH�HYLGHQFH�LQWR�D�IRUP�³(1) id, (2)
source, (3) destination, (4) content (5) time stamp´�DQG�XVHG�D�
Java program to reason the evidence dependency in a time
order, which was converted into an evidence graph in Figure 6
by using Graphviz[6]. The solid edge represents primary
evidence. The dotted line from ³workstation´ to ³dbServer´
was added by using expert knowledge.

Figure 6: Experiment Network Evidence Graph

D . Mapping Evidence Graph to Attack Graph

We mapped our evidence graph to attack graph using
Algorithm 1. Our result shows that the attack paths in the
attack graph are almost the same as those in evidence graph,
except that the attack graph shows that the attack from the
compromised workstation to the database server uses SQL

injection (Node 25), while evidence graph shows a direct access.
According to this information, we re-checked the attack graph
and found that node 25 should be attached to node 4 instead of
node 2. Having fixed this by changing Prolog rules, the attack
graph was changed to have the same attack paths as evidence
graph in Figure 6, but with changed probabilities. Now, the
probability of attack from the webserver to database server is
0.75 using the SQL injection vulnerability, and the probability
of an attack from workstation to the database server is 0.8,
because the prior social Engineering attack success is 0.8. The
cumulative probability on the database server is 0.8+0.75-
0.8×0.75 = 0.95, which is closer to the real world scenario than
the one before we made the corresponding change.

By reading mapped graphs, the corresponding forensics or
network defense tools should be taken in the network so that
they can serve a better forensics analysis. In our network, two
places should be enhanced. They are webserver and the access
from workstations to database server, because the analysis
showed that they provided the attack paths to the database,
which was not configured for forensics analysis.

We also did an anti-forensics experiment on this network,
where the workstation was fully compromised using root
privileges that allowed us to totally remove the evidence that
LQGLFDWHV� ZRUNVWDWLRQ¶V� EHLQJ� FRPSURPLVHG� E\� our attacker.
With anti-forensics tools�� WKH� DWWDFN�SDWK� ³attacker ĺ workstation
ĺGDWDEDVH´ would be missing in the evidence graph. In this case,
the attack graph implemented with anti-forensics activity nodes,
which we proposed in [11], has to be used to recover the attack
scenario, helping in reconstructing the complete evidence
graph.

VI. CONCLUSION
Based on the formal definition of probabilistic attack

graphs and evidence graphs, we showed how to map the
evidence graph to the attack graph. This mapping helps in
adjusting the attack graph and find what is missing in the
evidence graph, which would assist in forensic investigations
and reconfigure the network to defeat attacks. Furthermore, by
using this mapping algorithm, investigators could find out if
attackers have used anti-forensics. Therefore, corresponding
measures, such as the method proposed in [11], would be used
to recover an attack scenario in order to have a complete
forensic analysis.
R E F E R E N C ES
>�@�� :�� :DQJ� DQG� 7�� 'DQLHOV�� ³%XLOGLQJ� HYLGHQFH� JUDSKV� IRU� QHWZRUN�
IRUHQVLFV� DQDO\VLV´�� 3URFHHGLQJV� RI� WKH� 7ZHQW\-First Annual Computer
Security Applications Conference, pp. 254±266, 2005.
>�@�� %�� '�� &DUULHU� DQG� (�� +�� 6SDRUG�� ³$Q� (YHQW-Based Digital Forensic
,QYHVWLJDWLRQ�)UDPHZRUN´�� ,Q� 3URFHHGLQJV� RI� WKH� �WK� 'LJLWDO�)RUHQVLF�
Research Workshop, 2004.
>�@�� 2X�� ;��� %R\HU�� :�)��� 0F4XHHQ�� 0�$��� ³$� VFDODEOH� DSSURDFK� WR� DWWDFN�
graph gHQHUDWLRQ´�� ,Q� ��WK� $&0� &RQIHUHQFH� RQ� &RPSXWHU� DQG�
Communications Security(CCS), pp. 336±345 (2006).
>�@�$��6LQJKDO�;��2X�³6HFXULW\�5LVN�$QDO\VLV�RI�(QWHUSULVH�1HWZRUNV�8VLQJ�
3UREDELOLVWLF�$WWDFN�*UDSKV´��1,67�,QWHU$JHQF\�5HSRUW��6HSWHPEHU������
[5] CVSS--A Complete Guide to the Common Vulnerability Scoring System
Version 2.0, http://www.first.org/cvss/cvss-guide
[6] Graphviz-Graph Visualization Software, http://www.graphviz.org/
>�@�3��$PPDQQ��'��:LMHVHNHUD��6��.DXVKLN���³6FDODEOH��JUDSK-based network
YXOQHUDELOLW\�DQDO\VLV´��,Q�3URFHHGLQJV�RI��WK�$&0��&RQIHUHQFH�RQ�&RPSXWHU�
and Communications Security, Washington, DC, November 2002

6

mailto:�@�3��$PPDQQ��'��:LMHVHNHUD��6��.DXVKLN����6FDODEOH��JUDSK-based
http:http://www.graphviz.org
http://www.first.org/cvss/cvss-guide
http:0.8�0.75
http:0.8+0.75
http:980�(129.174.92.32
http:�129.174.92.32

7

[8] TightVNC Software,
http://www.tightvnc.com/.
[9] National Vulnerability Database, http://nvd.nist.gov/.
[10] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-
based probabilistic security metric. In Proceedings of The 22nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security
�'%6(&¶�����������
[11] C. Liu, A. Singhal�� '�� :LMHVHNHUD�� ³8VLQJ� $WWDFN� *UDSKV� LQ�)RUHQVLF�
([DPLQDWLRQV´�� ����� 6HYHQWK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� $YDLODELOLW\��
Reliability and Security, August 2012
[12] http://nvd.nist.gov/cwe.cfm
>��@�1��/LDR��6��7LDQ��7��:DQJ��³1HWZRUN�IRUHQVLFV�EDVHG�RQ�IX]]y logic and
H[SHUW� V\VWHP´�� &RPSXWHU� &RPPXQLFDWLRQ�� YRO�� ���� QR�� ���� SS�� ����±1892,
2009.
[14] National Vulnerability Database, http://nvd.nist.gov/.
[15] MulVAL V1.1, Jan 30, 2012, http://people.cis.ksu.edu/~xou/mulval/.
[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, MIT University Press, Cambridge, 2001.

APPE NDI X

1. Attack graph in F igure 1

[17] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.Wing. Automated
generation and analysis of attack graphs. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pages 254±265, 2002.
>��@�.�� ,QJROV��0��&KX��5��/LSSPDQQ�� 6��:HEVWHU� DQG�6��%R\HU�� ³0RGHOLQJ�
0RGHUQ� 1HWZRUN� $WWDFNV� DQG� &RXQWHUPHDVXUHV� 8VLQJ� $WWDFN� *UDSKV´��
Proceedings of ACSAC Conference 2009.
>��@�6$16� ,QVWLWXWH� ,QIR6HF�5HDGLQJ�5RRP��³DQ�2YHUYLHZ�RI�'LVN� ,PDJLQJ�
7RRO�LQ�&RPSXWHU�)RUHQVLFV´�������
>��@� %�� &DUULHU�� ³)LOH� 6\VWHP�)RUHQVLF� $QDO\VLV´�� $GGLVRQ-Wesley
Professional, March 2005.
[21] H. Debar, M. Becker, D. Siboni, A neural network component for an
intrusion detection system, Proceedings of IEEE Symposium on Research in
Computer Security and Privacy, 1992.
>��@� 6�� -DMRGLD�� 6�� 1RHO�� %�2�¶%HUU\�� ³7RSRORJLFDO� $QDO\VLV� RI� 1HWZRUN�
$WWDFN� 9XOQHUDELOLW\´�� ,Q� 0DQDJLQJ� &\EHU� 7KUHDWV�� ,ssues, Approaches and
Challenges, V. Kumar, J. Srivastava, A. Lazarevic (eds.), Springer, 2005.
[23] W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL-Injection
Attacks and Countermeasures. In Proc. Of the Intern. Symposium on Secure
Software Engineering (ISSSE 2006), Mar. 2006.

2. Predicates used in F igure 3
1 execCode(dbServer,user)
2 RULE 2 (remote exploit of a server program)
3 netAccess(dbServer,tcp,3306)
4 RULE 5 (multi-hop access)
5 hacl(webServer,dbServer,tcp,3306)
6 execCode(webServer,apache)
7 RULE 2 (remote exploit of a server program)
8 netAccess(webServer,tcp,8080)
9 RULE 6 (direct network access)

10 hacl(internet,webServer,tcp,8080)
11 attackerLocated(internet)
12 networkServiceInfo(webServer,httpd,tcp,8080,apache)
13 vulExists(webServer,'CWE89',httpd,remoteExploit,privEscalation)
14 RULE 5 (multi-hop access)
15 hacl(workStation,dbServer,tcp,3306)
16 execCode(workStation,user)
17 RULE 3 (remote exploit for a client program)
18 accessMaliciousInput(workStation,secretary,'IE')
19 RULE 22 (Browsing a malicious website)
20 hacl(workStation,internet,httpProtocol,httpPort)
21 inCompetent(secretary)
22 hasAccount(secretary,workStation,user)
23 vulExists(workStation,'CVE-2009-1918','IE',remoteClient,privEscalation)
24 networkServiceInfo(dbServer,mySQL,tcp,3306,user)
25 vulExists(dbServer,'SQLinjection',mySQL,remoteExploit,privEscalation)

http://people.cis.ksu.edu/~xou/mulval/
http:http://nvd.nist.gov
http://nvd.nist.gov/cwe.cfm
http:http://nvd.nist.gov
http:http://www.tightvnc.com

