
F r o m
T h e E d i t o r s

4	 Copublished by the IEEE CS and the AIP	 1521-9615/12/$31.00 © 2012 IEEE� Computing in Science & Engineering

F r o m
T h e E d i t o r s

A s always happens, I’m learning a lot from the bright summer

students who have been invited to spend a couple of months

at our lab. And I’m also learning about them. This year’s surprise

is how many students majoring in mathematics or computer

engineering aren’t required to take—early in their
training—any courses introducing what I consider to be
essential computer fundamentals. Examples include basic
ideas regarding stored program instructions, arithmetic
logic unit (ALU) registers, computer arithmetic, and stor-
age. Nor is there any requirement to learn about what I think
of as “real” programming in C, C++, Fortran, or CUDA.

Why does this matter? After all, a significant fraction of
all science and engineering problems can be attacked using
only wonderfully expressive software such as Mathematica
and Matlab. And do we really need to know how a com-
puter works to use one? All of this is true, of course, but
I can think of two counterarguments—one cultural and
the other quite practical.

On the cultural side, we have the fact that the stored-
program computer is one of the most important inventions
in the history of the human race. The notion that compu-
tation is an essentially mechanical activity is, of course, as
old as civilization itself, if not older. But the idea that the
instructions themselves are data that could and should be
processed mechanically is a quite recent realization, dat-
ing only from the late 1930s. This is the concept for which
we honor Alan Turing’s memory, and it’s this concept that
really gave birth to the information age. No educated
person, least of all one trained in science or engineer-
ing, should be unacquainted with the idea of the stored-
program computer.

As for more practical issues, consider the fact that the fun-
damentals I’m talking about explain in a general way how a
computer actually works. A rudimentary understanding
of this is still essential to making efficient use of computa-
tional resources. Because of decades of the development of
things such as optimizing compilers and scripting languages
that find and correct our most egregious programming er-
rors, we’ve become pretty lax about good programming.
But, if there’s to be any hope for bench scientists to make
good use of multicore, highly parallel, hierarchical-memory,
heterogeneous architectures, our casual attitude must
change. Simply put, unless the atomic theory of matter is
false, switching gate speeds won’t get much better; so un-
less we’re prepared to pay the electric bill for a large city,
we must learn how to do parallel computing. And a funda-
mental prerequisite for writing better programs is at least a
schematic notion of how a computer does what it does.

C iSE would be delighted to hear from our readers on
this important matter. Those who are truly sincere

can send me an email written using a text editor that you
design and develop yourself, coded in assembler.�

Counting on Today’s Students
By Isabel Beichl, Editor in Chief

stay connected.

Keep up with the latest IEEE Computer Society
publications and activities wherever you are.

| IEEE Computer Society
| Computing Now

| facebook.com/IEEEComputerSociety
| facebook.com/ComputingNow

| @ComputerSociety
| @ComputingNow

TM

| youtube.com/ieeecomputersociety

CISE-14-5-EIC.indd 4 8/14/12 5:16 PM

