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Abstract. We show that a character sum attached to a family of 3-isogenies 
defined on the fibers of a certain elliptic surface over Fp relates to the class √ 
number of the quadratic imaginary number field Q( −p). In this sense, this 
provides a higher-dimensional analog of the class number formula given in [6]. 

1. Introduction 

From the days of Diophantus, elliptic curves have long attracted the interest of 
mathematicians. More recently, elliptic curves have found applications in diverse 
areas such as the proof of Fermat’s last theorem, factoring large integers, and in 
cryptography. Researchers have also found reasons to study various character sums 
on the points of an elliptic curve. These reasons include showing the uniformity 
of distribution of certain points on elliptic curves, summing up primes, finding 
generators for elliptic curve groups and determining the structure of that group 
(see, for example, [1], [2], [3], [4], [5], [8], [9], [11]), etc. A new direction in this area 
has been to examine integer-weighted character sums over elliptic curves [6], [7]. 
In this vein we recall two results, whose interplay motivates the main result of this 
paper. 

First, to certain 2-isogenies τ of elliptic curves defined over Fp, Rasmussen and 
McLeman attach an integer-valued character sum Sτ (to be defined shortly). This 
character sum is shown to be divisible by p in [6]. The subsequent analysis of 
the quotient Sτ /p turns out to be of arithmetic significance, providing a new class 
number formula strikingly similar to a classical result of Dirichlet’s. Namely, we 
have 

(1) − 1 Sτ = h ∗ ,p p

where  √ 
h(Q( −p)) if p ≡ 3 (mod 4) 

h ∗ =p 
0 otherwise. 

√ √ 
Here p is a prime and h(Q( −p)) denotes the class number of Q( −p). 

A second family of results from [7], computes the mod-p value of a much larger 
class of analogous character sums attached to isogenies of larger degree, and specif
ically, finds several new classes of character sums which are also evenly divisible by 
p. In light of the above class number formula, it seems of interest to determine the 
analogous quotients. The current article addresses the analysis of such quotients, 
focusing on one particular family of 3-isogeny sums satisfying precisely this divis
ibility condition. We show that when this family of character sums is viewed as 
a single character sum over an elliptic surface, these quotients also compute class 
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numbers of quadratic imaginary number fields. In this sense, this can be viewed as 
a higher-dimensional analog of (1). 

Statement of Results – We begin with some notation. Let p and £ be primes, 
with p ≡ 1 (mod £). Let τ : E → E' be an £-isogeny of elliptic curves defined over 
the finite field Fp. Let ζ = ζc denote a fixed primitive complex £-th root of unity, and 
choose a point Q ∈ E'(Fp) − τ (E(Fp)). From the isomorphism E'(Fp)/τ(E(Fp =)) ∼
Z/£Z, for each P ∈ E'(Fp) we have P − kQ ∈ τ(E(Fp)) for a unique 0 ≤ k ≤ £ − 1. 
We define the character χτ attached to τ by: 

χτ (P ) = ζk , where P − kQ ∈ τ (E(Fp)). 

In particular, χτ (P ) = 1 if and only if P is in the image of τ . 
We adopt the following notation for lifting from Fp to Z: for a ∈ Fp, let {a}

denote the unique integer 0 ≤ {a} ≤ p − 1 such that {a} mod p = a. For the 
remainder of this paper we will use E(Fp) to denote the set of affine Fp-rational 
points on the curve. That is, we do not include the point ∞ in E(Fp). Finally, 
given a point P ∈ E(Fp), let x(P ) be the x-coordinate of P . 

Notation in hand, we turn to more precise formulations of the two aforementioned 
motivating results. The first is the definition of the character sum Sτ appearing in 
(1). Let τ : E → E' be a 2-isogeny defined over Fp, and let χτ be the character 
attached to τ as described above. To such a τ , we introduce the integer-valued 
character sum 

 
(2) Sτ := {x(P )}χτ (P ). 

P ∈E1(Fp )

For a concrete example of a situation in which (1) holds, one can take ([6], 
Proposition 2) E and E' to both be the curve y2 = (x + 2)(x2 − 2) over the finite 
field Fp for any prime p > 3 of good and ordinary reduction, and √τ a degree-2 
endomorphism of E arising from complex multiplication on E (by Z[ −2]). If we 
let p = 131, for example, then it can be checked that Sτ = −655, and indeed √ 
655/131 = 5 is the class number of Q( −131). 

The second motivating result concerns a second class of isogenies τ which give 
character sums divisible by p, but for which we do not know the analogous value 
of Sτ /p. To wit, let p ≡ 1 (mod 3), and let Ed/Fp be the elliptic curve given by 
2 3y = x + d. If we set d' = −27d ∈ Fp, the function 

  
y2 + 3d y(x3 − 8d)

τd(x, y) := , 
x2 x3   

ddefines a 3-isogeny from Ed to Ed1 . Let us further suppose that p = 1 to isolate 

the interesting cases of the character sum1 . Then we have the following divisibility 
result: 

1If d is a non-square mod p, then Ed has a Fp-rational subgroup of order 3 but no Fp-rational 
3-torsion point. The isogeny τ corresponding to this subgroup is now surjective, and the character 
χτ degenerates to the trivial character. 
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Theorem 1. Let p and τd : Ed → Ed1 be as above, with character χτd . Then 

Sτd := {x(P )}χτd (P ) 
P ∈Ed1 (Fp)

is an integer divisible by p. 

This theorem can also be established using the techniques in [7]. We include 
a proof in this work, as it is a stepping stone to prove our main result. Worth 
mentioning is the following corollary of Theorem 1. 

Corollary 2. Since Sτd ∈ Z, we note that Sτd is independent of the choice of the 
point Q ∈ Ed1 (Fp) − τd(Ed(Fp)) used to define χτd . 

Unlike the sum in (1), however, there does not seem to be a direct relationship 
between the individuals sums Sτd and any relevant class number. Instead, we will 
see that class numbers arise as a sum of quotients Sτd /p as d runs over the set of all 
quadratic residues mod p. In fact, the process of summing over all such d permits 
a concise reformulation in terms of elliptic surfaces, which we describe now. We 
begin with the substitution d = z2, so that running over all z ∈ F× is equivalent top 
running over all square d twice. After the substitution, we arrive at the algebraic 
surface E 2 3 2E/Fp : y = x + z . 

More specifically, EE is an elliptic surface, as the projection π : E → A1 from E on toz 
the affine z-line provides the surface with a natural elliptic fibration, with a single 
singular fiber over z = 0. Let E = EE − E0 denote the complement of the singular 
fiber. The above isogenies τd = τz can now be interpreted as maps from one fiber2 

of E to another, namely from the fiber over z to the fiber over −27z. We patch these 
fiberwise-defined isogenies together to give a global endomorphism τ : E → E which 
respects the fibration in the sense that π(P1) = π(P2) implies π(τ (P1)) = π(τ(P2)) 
for points P1, P2 ∈ E(Fp). We simply set 

2y2 + 3z y(x3 − 8z2)
τ (x, y, z) = , , −27z . 

x2 x3 

We also extend the character χτd , defined a priori on each fiber to a global 
function on E : For P = (x, y, z) ∈ E , we have (x, y) ∈ Ez2 , and hence it is sensible 
to write 

χτ (P ) = χτ 2 (x, y). z

Note that, as before, χτ (P ) = 1 if and only if P is in the image of τ . Finally, we 
construct the higher-dimensional character sum. Define 

Sτ = {x(P )}χτ (P ). 
P ∈E

The principal result of this work is the following theorem. 

Main Theorem. Let p ≡ 1 (mod 3), and let E, τ , χτ , and Sτ be as above. Then 

1 − p−1Sτ = h ∗ . p p 2 



  
      

 

  

  
  

4 CAM MCLEMAN AND DUSTIN MOODY 

Our technique for calculating the sum Sτ defined on E is essentially a division 
of labor between two approaches. We will independently sum “vertically” (over 
fibers) and “horizontally” (over sections) over our surface. Section 2 deals with the 
former, analyzing the fiber-wise isogenies τd defined in the introduction, and we 
address the global calculation of Sτ in Section 3. 

2. Fiberwise-sums and the Tate pairing 

We maintain the notation established in the introduction. Namely, we have 
d p ≡ 1 (mod 3), a value d ∈ F∗ with = 1, and the 3-isogeny of Fp-curves p p 

τd : Ed → Ed1 . Note that the conditions on p and d imply 

d −3 −3d 
= = = 1. 

p p p 

We begin with an analysis of the contribution to Sτ coming from a given fiber. Set 

Sτd := {x(P )}χτd (P ), 
P ∈Ed1 (Fp)

p−1p 
so that Sτ = 2 Sτd . As in [6], the first step in evaluating Sτd is to use the 

d=0 
( d )=1 p 

Tate pairing to provide explicit formulas for the computation of χτd . 

Let us briefly recall the construction of the (complex-valued) Tate pairing at
tached to τd, and its connection to the character χτd . Let τTd be the dual isogeny to √ 
τd and consider the point T = (0, 3 −3d), which generates of the group Ed1 [τTd](Fp). 
One begins by finding a pair of functions fT and gT such that div(fT ) = 3[T ]−3[∞] 

3and fT ◦ τd = gT . The Tate pairing 

Ed1 (Fp)
ψτd : × Ed1 [τTd](Fp) −→ µ3(C),

τ (Ed(Fp)) 

is the (bilinear and non-degenerate) pairing given by the composite 

ψ ' ([P ], kT )
ψτd ([P ], kt) = τd , 

p 3 

where [P ] denotes the image of P in the quotient Ed1 (Fp)/τd(Ed(Fp)), and after 
choosing an arbitrary point Q ∈ Ed1 (Fp) − (T ), we set ⎧ ⎨ f(P )k ∈ ([T ])[P ] /
(3) ψ ' ([P ], kT ) := kτd f (P +Q)⎩ [P ] ∈ ([T ]).f (Q) 

· We use µ3(C) to denote the set of cubic roots of unity in C, and to denote p 
3 

the cubic residue symbol mod p. 

Remark 3. The definition of the Tate pairing in (3) actually outputs a value in 
F∗/(F∗)3 , so we compose this version of the Tate pairing with an isomorphismp p

F∗/(F∗)3 ∼ µ3(C). In the proof of Theorem 5, we will choose the isomorphism = 
which forces the Tate pairing to coincide with our character χτd . 
p p
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Proposition 4. Letting Ed, Ed1 , τd, and T as above, we can take 
√ √ y − −3d 

fT = y − 3 −3d and gT = 
x 

in the definition of the Tate pairing. 

Proof. We easily check that fT is of degree 3 and vanishes only at T , so div(fT ) = 
3[T ] − 3[∞]. Now we need only to verify that as functions on Ed1 , fT ◦ τd is the 

3cube of gT . For a point P = (x, y) ∈ E1(Fp) (i.e., satisfying x = y2 − d), we have 

y(x3 − 8d) √ 
f ◦ τ(P ) = − 3 −3d 

x3 
√ 

y(y2 − 9d) − 3 −3d(y2 − d) 
= 

x3 
√ 3 

y − −3d 
= , 

x 

as desired. D 

Theorem 5. With Ed, τd, and T as above, we have the following explicit formulas 
for the character χτd :  −4d 

 k 
p 3 

if [P ] = [kT ], k = 0, 1, 2,
(4) χτd (P ) = ψτd ([P ], T ) =  √  

y−3 −3d otherwise. p 3 

Note in particular that χτd (P ) = 1 if and only if P ∈ τd(E1(Fp)). 

Proof. Let us abbreviate τ = τd for the duration of the proof. For the statement 
that χτ (·) = ψτ ([·], T ), we first show that a point P ∈ Ed1 (Fp) is in the image of τ 
if and only if ψτ ([P ], T ) = 1. By bilinearity, ψτ ([P ], kT ) = ψτ ([P ], T )k . As E2[τ̂ ] 
is generated by T , P pairs trivially with T if and only if it pairs trivially with 
every element of E2[τ̂ ]. By the left non-degeneracy of ψτ , this occurs if and only 
if [P ] represents the trivial class of E2(Fp)/τ (E1(Fp)), i.e., P is in the image of τ . 
This shows that χτ (·) = ψτ ([·], P ) or χτ (·) = ψ−1([.], P ). As in Remark 3, we now τ 
choose the correct isomorphism to achieve equality. 

We proceed to the second equality in the statement of the theorem. Since the 
bottom case is the definition of the Tate pairing for such points (given the calcu
lation of fT from the previous proposition), we only need to address the top case. 

For this it suffices to show that χτ (T ) = 1 if and only if −4d = 1. Let α be a p 
3 
−4dsquare root of −3d in Fp, such that T = (0, 3α). Suppose first = 1, so that p 

3 
we have some δ ∈ Fp with δ3 = −4d. Then 

α2 + 3d α(δ3 − 8d)
τ (δ, α) = ,

δ2 δ3 

−12dα 
= 0, 

−4d 
= T, 

which shows that χτ (T ) = 1. 
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For the converse, we assume there exists x, y ∈ Fp, with τ (x, y) = (0, 3α). This 
2y +3d y(x 3−8d)requires that = 0 and = 3α. From the first of these equations we 2 3x x

2 2 3see that y = −3d. As the point (x, y) is on the curve y = x + d, it follows that 
3 −4dx = −4d, so = 1. D p 

3 

With these explicit formulas for χτd in hand, we now prove Theorem 1. 

Theorem 1. Let p, Ed, Ed1 , and τd be as above. Then 

Sτd := {x(P )}χτd (P ) 
P ∈Ed1 (Fp)

is an integer divisible by p. 

Proof. Since the values of {x(P )} are 0 for P ∈ (T ), they contribute trivially to 
the sum (no matter the value of χτd (P )). This allows us to avoid breaking the sum 
into cases based on the results of the Tate pairing. We have √    y(P ) − 3 −3d {x(P )}χτ (P ) = {x(P )}

p 3P ∈Ed1 (Fp) P ∈Ed1 (Fp)

p−1 p−1  √    y − 3 −3d 
= x

p 3 
x 3≡y 2+27d 

y=0 x=0 

p−1 √  p−1  y − 3 −3d 
= x. 

p 3 
x 3≡y 2+27d 

y=0 x=0 

Now each inner summand here is the sum of the lifts of the mod-p cube roots 
2of y2 + 27d. This sum is necessarily zero mod p since the coefficient of x in the 

polynomial x3 − (y2 + 27d) is trivial. Thus the whole sum is divisible by p, as 
desired. D 

3. The Global Sum 

We recall the global setting from the introduction. The surface E is the com
plement of the singular fiber over z = 0 in the elliptic surface defined over Fp by 
2 3 2y = x + z . As such, E is the union of fibers over z for non-zero z ∈ Fp. For 
P = (x, y, z) ∈ E , we have (x, y) ∈ Ez2 , and we glue together the fiber-wise isogenies 
τd to a global function τ and global character χτ by defining 

χτ (P ) = χτ z2 (x, y). 

The global sum Sτ from the main theorem now decomposes as (twice) the sum 
of the fiberwise-sums addressed in the previous section: 

Sτ := {x(P )}χτ (P ) = 2 Sτd . 
P ∈E d∈Fp 

( d )=1 p 

As an immediate corollary of Theorem 1, we have the divisibility of the global sum. 

Corollary 6. With notation as previously defined, p | Sτ . 
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We now let β denote a fixed square root of −27 (mod p), and introduce the char
acteristic function 

21 if y2 ≡ x3 − 27z (mod p), 
e(x, y, z) := 

0 otherwise 

on points (x, y, z) ∈ F3 . The explicit computation of the Tate pairing, using the p√ 
2function fT = y − 3 −3 z = y − βz in the fiber Ez provides the following formula 

for Sτ . 

p−1 p−1 p−1 
y − βz Sτ = x 

p 3z=1 y=0 x=1 
2 x 3≡y 2 +27z 

p−1 p−1 p−1 
y − βz 

(5) = x e(x, y, z). 
p 3z=1 y=0 x=1 

We re-arrange the orders of summation and use symmetries of the function 
e(x, y, z) to simplify the sum. First, we write the sum as 

p−1 p−1 p−1 
y − βz 

x e(x, y, z), 
p 3x=1 y=0 z=1 

and for a fixed x and y we address the innermost sum 

p−1 
y − βz 

s(x, y) = e(x, y, z). 
p 3z=1 

Note for a fixed x and y, there exists a z (with 1 ≤ z ≤ p−1) such that e(x, y, z) = 1 

if and only if y 2−x 3 

is a square mod p. In this case there are precisely two such z’s,−27 
which we will denote by ±z0. We then have 

y − βz0 y + βz0 
s(x, y) = + 

p p3 3 

y−βz01 + 1 = 2 if p = 1, 
= 3 

ζ + ζ−1 = −1 otherwise. 

y−βz0 y+βz0Here we have used that p and p are multiplicative inverses by the 
3 3 

calculation 

2 3y − βz0 y + βz0 y2 + 27z x0 = = = 1. 
p p p p3 3 3 3  

y2−x3 
Note that z0 = z0(x, y) can be written (only slightly abusively) as −27 , and so  
we have βz0 = ± y2 − x3 . To summarize, the innermost sum s(x, y) evaluates as 
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one of three possible cases depending on x and y: 

(6) s(x, y) = 

⎧ ⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ 

3 y 2−x0 if p = 1 , 
√ 

3 y 2−x y± y2−x3 

2 if = 1 and = 1,p p 
3√ 

y 2−x 3 y± y2−x3 

−1 if  = 1 and = 1. p p 
3

Recall from equation (5) 

p−1 p−1 

(7) Sτ = x s(x, y). 
x=1 y=0 

Before we evaluate the new inner-most sum, we need a technical result. 

Lemma 7. Let x  Then= 0 be a fixed element of Fp.      y ∈ Fp : 
y

 
2 − x3 

= 1
p 

    = 
(p − 1)/2 if x is non-square in Fp, 

(p − 3)/2 if x is a square in Fp. 

Proof. It is easy to see the number of u, v ∈ Fp with uv = x3 is p − 1: for any non
zero u, let v = x3/u. For each such solution, let y = (u + v)/2 and c = (u − v)/2, 
which is equivalent to u = y + c and v = y − c. Thus, the number of solutions 

2 − c2 3to (y + c)(y − c) = y = x is also p − 1. We may rewrite this equation as 
3 2y2 − x = c . 

Now suppose first x is not a square in Fp. Then x3 is not a square, and so there 
are no values of y such that y2 − x3 = 0. As c and −c are distinct and both lead to 
c2, then in this case there are (p − 1)/2 values of y for which y2 − x3 is a (non-zero) 
square. 

3If instead x is square, then so also is x and there will be two values of y for 
3which y2 − x3 = 0. This leaves p − 3 solutions to y2 − x = c2, with c = 0. Again, 

as ±c both lead to the same value of c2, we find there are thus (p − 3)/2 values of 
y for which y2 − x3 is a non-zero square in Fp. D 

With Lemma 7, we can now easily establish the following lemma. 

Lemma 8. For a fixed x  = 0, 
p−1 

x 
s(x, y) = −1 − . 

y=0 
p 

Proof. Suppose first that x is not a square. We can ignore the values of y for which 
y 2−x 3 

= 1, as then s(x, y) = 0 and they do not contribute to the overall sum. So p
2 − x3we assume y is a non-zero square in Fp. We now claim that as we run over 

these values of y, the values y ± y2 − x3 are distinct. If this were not the case, 
then there would exist a y1 and y2 such that 

2 − x3 2 − x3y1 ± y = y2 ± y .1 2 

Squaring both sides of this equation and simplifying, we see 

2 2y1(y1 ± y − x3) = y2(y2 ± y − x3).1 2 
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2As x = 0, then y1 ± y − x3 = 0, and similarly for y2. By assumption, y1 ±1 
2 2y − x3 = y2 ± y − x3, and as this is non-zero we can divide through by it to 1 2 

see that y1 = y2. 
3 y 2−xFrom Lemma 7, there are (p − 1)/2 values of y with p = 1. Substituting 

these values into y ± y2 − x3 will result in p − 1 distinct non-zero values in Fp.√ 
2−x3y± y

It follows that there are (p − 1)/6 values of y such that p = 1 (or ζ or 
3 

ζ2). So in this case, using (6) we see that 

p−1 
p − 1 p − 1 

s(x, y) = 2 − 
6 3 

y=0 

= 0 

x 
= −1 − . 

p 

We similarly examine the case when x is a square in Fp. By Lemma 7 again, 
3 y 2−xthere are (p − 3)/2 values of y with p = 1. These are the only values for 

which s(x, y) = 0. As we run over them, then y ± y2 − x3 will run over p √− 3 
distinct non-zero values in Fp. The two values not obtained are when y = ±x x, 

2 yas then y = x3 and so 
2−x 3 

= 0. But note that then y ± y2 − x3 just equals p √√ y± y2−x3 

y, and y = (± x)3 . In short, the values of will be equidistributed p 
3 

amongst 1, ζ, and ζ2, except for the two values in F∗, both of which have it equaling p

1. So then, 
p−1 

p − 1 p − 1 
s(x, y) = 2 − 1 − 

6 3 
y=0 

= −2 

x 
= −1 − . 

p 

This completes the proof. D 

Finally, we can complete the proof of the main result. 

Theorem 9. We have 
Sτ 

= h ∗ − p−1 
p 2 . p 

Proof. By equation (7) and Lemma 8, we see that 

p−1 
x Sτ = x −1 − , 
p

x=1 

p−1 p−1 
x 

= − x − x, 
p

x=1 x=1 

− p(p−1)= ph ∗ .p 2 
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We have used Dirichlet’s result that 
p−1 

x=1 

x 
x 
p 

= −ph ∗ 
p. 

This completes the proof. D 

4.	 Conclusion 

It would be interesting if other families of elliptic curves (or surfaces) could be 
found which yield class number formulas similar to the results in this paper. We 
searched for other families of elliptic curves with 3-isogenies, but were unsuccessful 

2 3besides families isomorphic to the curves y = x + d. It would also be interesting 
to find analogous formulas for curves with isogenies of degree greater than 3. As 
mentioned in the Introduction, some divisibility properties have been shown in [7], 
however not much is known about the corresponding quotients. Finally, we leave it 
as future work to analyze related character sums, where we weight by other integer 
valued funtions other than x(P ). Preliminary work using y(P ) has been shown to 
have relations with class numbers. 

We acknowledge the contribution of SAGE [10], which facilitated the construc
tion of examples which were helpful in discovering the main theorems of this work. 
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