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Abstract. The main challenge in recognizing faces in video is effectively
exploiting the multiple frames of a face and the accompanying dynamic
signature. One prominent method is based on extracting joint appear-
ance and behavioral features. A second method models a person by tem-
poral correlations of features in a video. Our approach introduces the
concept of video-dictionaries for face recognition, which generalizes the
work in sparse representation and dictionaries for faces in still images.
Video-dictionaries are designed to implicitly encode temporal, pose, and
illumination information. We demonstrate our method on the Face and
Ocular Challenge Series (FOCS) Video Challenge, which consists of un-
constrained video sequences. We show that our method is efficient and
performs significantly better than many competitive video-based face
recognition algorithms.

1 Introduction

Traditional face recognition algorithm recognize faces from still images [1], 2],
[3]. While the advantage of using motion information in face videos has been
widely recognized, computational models for video-based face recognition have
only recently received attention [4], [I]. In video-based face recognition, a key
challenge is exploiting the extra information available in a video. In addition,
different video sequences of the same subject may contain variations in resolu-
tion, illumination, pose, and facial expressions. These variations contribute to
the challenges in designing an effective video-based face recognition algorithm.

Numerous methods have been proposed that approach the problem as a multi-
still face recognition problem [5], or extract joint appearance and behavioral fea-
tures from a video [6],[7], or explicitly model the temporal correlations between
faces in two videos [4]. A major drawback of the frame-based fusion approach is
that it does not exploit the temporal information present in a video sequence.
It has been shown that in a generic video-face recognition algorithm, perfor-
mance can be significantly improved by simultaneously performing recognition
and tracking [7].

To address the challenges of face recognition from unconstrained videos, we
propose a generative approach based on dictionary learning methods, which is
robust to changes in illumination and pose. One major advantage of our method
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Fig. 1. Overview of the proposed approach

is that it is robust to some variations in video sequences. Figure [Il shows an
overview of our approach. From cropped face images extracted from a video
sequence, we first partition the video sequence so that frames with same pose
and illumination are in one partition. This step removes the temporal redun-
dancy while capturing variations due to changes in pose and illumination. For
each partition, a sub-dictionary is learned where the representation error is min-
imized under a sparseness constraint. These partition-specific sub-dictionaries
are combined to form a sequence-specific dictionary. In the recognition phase,
frames from a given query video sequence are projected onto the span of atoms
in every sequence-specific dictionary. From the projection on to the atoms, the
residuals are computed and combined to perform recognition or verification. We
demonstrate the effectiveness of the proposed dictionary approach through com-
parisons with other recently proposed state-of-the-art methods, and with human
performance on the challenging Face and Ocular Challenge Series (FOCS) Video
Challenge.

The rest of the paper is organized as follows: In Section Bl we review some
recent video-based face recognition methods. Section [3] describes the proposed
dictionary-based video face recognition algorithm. In section dl we demonstrate
results on three challenging video datasets. Section [ concludes the paper with
a summary and discussion.

2 Related Work

In this section, we review some of the recent video-based face recognition meth-
ods. In video face recognition, given a test video of a moving face, the first step
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is to track a set of facial features across all the frames of the video. From the
tracked features, one can extract a few key frames that can be used for matching
with exemplars in the gallery. Significant work has been done on face tracking
using 2D appearance-based models [§], [9], [10]. The 2D approaches; however,
do not provide the 3D configuration of the head, and are not robust to large
changes in pose or viewpoint. To deal with this problem, several methods have
been developed for 3D face tracking. Cascia et al. [I1] proposed a cylindrical face
model for face tracking. An extension of this work was proposed by Aggarwal et
al. in [12] that uses a particle filter for state estimation.

Temporal information in videos can be exploited for simultaneous tracking
and recognition of faces without the need to perform these tasks in a sequential
manner. One such method was proposed by Zhou et al. in [6]. Their tracking-and-
recognition approach resolves uncertainties in tracking and recognition simulta-
neously in a unified probabilistic framework. Another method was proposed by
Lee et al. [7], where a model of a subject is represented by a complex nonlinear
appearance manifold. All frames in a video sequence are samples from an ap-
pearance manifold. To simplify the problem, the manifold is approximated by
a collection of linear subspaces. Each subspace consists of nearby poses and is
obtained by principle component analysis (PCA) of frames from training video
sequences. This method is robust to large appearance changes if sufficient 3D
view variations and illumination variations are available in the training set.

In a related work, Arandjelovic and Cipolla [I3] represent the appearance
variations due to shape and illumination on faces by assuming that the shape-
illumination manifold of all possible illuminations and poses is generic for faces.
This in turn implies that the shape-illumination manifold can be estimated using
a set of subjects independent of the test set. It was shown that the effects of
face shape and illumination can be learnt using PCA from a small, unlabeled
set of video sequences of faces acquired in randomly varying lighting conditions
[5]. Given a novel sequence, the learned model is used to decompose the face
appearance manifold into albedo and shape-illumination manifolds, producing
the classification decision using robust likelihood estimation.

Recently, Turaga et al. [14] presented a statistical method for video based face
recognition. These methods use subspace-based models and tools from Rieman-
nian geometry of the Grassmann manifold. Intrinsic and extrinsic statistics are
derived for maximum-likelihood classification applications. An image set classi-
fication methods for video-based face recognition problem was recently proposed
by Hu et al. [I5]. This method is based on a measure of between-set dissimilarity
that is the distance between sparse approximated nearest points of two image
sets and uses a scalable accelerated proximal gradient method for optimization.

3 Proposed Approach

In this section, we present the details of our proposed dictionary-based video face
recognition algorithm. We describe how the video sequence is partitioned into
sub-sequences in section 3.1l and how we build sequence-specific dictionaries in
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section Identification and verification are described in sections 3.3l and B.4]
respectively.

3.1 Video Sequence Partition

For each frame in a video sequence, we first detect and crop the face regions.
We then partition all the cropped face images into K different partitions. We
partition the cropped faces by a k-means clustering type of algorithm that is
inspired by a video summarization algorithm [I6]. Let S = {f1, ..., fn} be the set
of all n cropped faces from a video sequence. The following steps summarize our
video sequence partition approach. One major difference between our method

Algorithm 1. Video sequence partition algorithm

Initialization of sets:

S={f1,., fuhh I={1,2,...,n}, T = ¢.
Procedure:

1. Find (¢*,5%) = argmax || fi — fj|2-

i€ i)
. Update of sets: t1 < i",t2 < 5, T < T \U{t1, t2}, I < I\ {7, 5"}
. Find k* = argmax H1E|1 I fe, — frll2-
kel

. Update of sets: t|p|11 = k™, T < T U{t|rj+1}, L < I\ {k"}.

. Repeat steps 3 and 4 until |T| = K.

6. Given {fi,, ..., ftx }, use the nearest neighbor criterion to partition S into
K partitions, denoted by S(fi,, ..., frxc) = U, Siv S(fir, -y fiy) is the initial
partitions which are followed by N iterations of updating described in step 7
and 8.

7. Randomly select s; from S;, i = 1,2, ..., K, as representatives. Find the
corresponding nearest neighbor partitions which are denoted by

S(s1, 82, ...k ), and calculate the corresponding score M (S(s1, $2,...5K))-

8. Repeat step 7, and keep updating for {s],s3, ..., sk} which gives the
highest score M, until the number of repeating iterations for step 7 reaches
N. In other words,

{s1,85, ..., 8k} = argmax - M(S(s1,82,...5K)).
s;€8,,i=1,2,...,K, In N iterations

Tt W N

Output:
K partitions, S(s7, $53, ..., Sk )-

and [16] is that the overall cost J(S) = ax err(S)+ (1 —a) x (D —div(S)), in [16]

is now replaced with M (S) £ Zi:ggg7 where err(S), div(S) and D are the square

error, diversity and an upper bound of diversity of summary S, respectively [16].
Using this score, there is no need to set the weighting factor «, and the original
cost minimization problem becomes an equivalent score maximization problem.
The other major difference is that we initialize the partitions deterministically
(steps 1 to 6 above). As seen in steps 1 and 3, these K initial representatives
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are chosen so they are separated as far apart as possible. The corresponding ini-
tial K partitions are then determined by the nearest neighbor criterion. Under
the assumption that there exist K exemplars, we expect each of the K initial
partitions determined by finding the nearest neighbor among K initial repre-
sentatives, to contain exactly one exemplar. For all subsequent iterations steps
(7 and 8), K distinct representatives are chosen always from the predetermined
K initial partitions, and are used to calculate the associated score. As long as
each of the K exemplars fall in a distinct initial partition, they can be found
after sufficient number of iterations. The representatives that give the maximum
M(S) among, say N iterations, are recorded as exemplars. The corresponding
final partitions are obtained by the nearest neighbor criterion.

3.2 Building Sequence-Specific Dictionaries

By partitioning the original video sequence, we obtain K separate sequences each
containing images with specific pose and/or lighting conditions. To remove the
temporal redundancy while capturing variations due to changes in pose and il-
lumination, we construct a dictionary for each partition. A dictionary is learned
with the minimum representation error under a sparseness constraint. Thus,
there will be K sub-dictionaries built to represent a video sequence. Due to
changes in pose and lighting in a video sequence, the number of face images in
a partition will vary. For partitions with very few images, before building the
corresponding dictionary, we augment the partition by introducing synthesized
face images. This is done by creating horizontally, vertically or diagonally posi-
tion shifted face images, or by in-plane rotated (by certain degrees with respect
to Z axis) face images.

Let G;'-’k be the augmented gallery matrix of the kth partition of the jth
video sequence of subject 7. In G;k = [g;-,k,lg;-,k,z...], each column is a vectorized
form of the corresponding cropped grayscale face image of size L. Given G; &>

a dictionary D;k € REXK s learned such that the columns of G;k are best

represented by linear combinations of K atoms of D;k This can be done by
minimizing the following representation error

(D}, T ) = argmin IGS = D%, Tl 7 st llvllo < To, VI, (1)

Djwk’rjyk

where =, is the [th column of coefficient matrix 1"; , and Tp is a sparsity param-
eter. The ¢y sparsity measure || - ||o counts the number of nonzero elements in
the representation and | - || denotes the Frobenius norm. One of the simplest
algorithms for finding such a dictionary is the K-SVD algorithm [17] that we
use to obtain D; - The video sequence-specific dictionary is constructed by con-
catenating partition-level sub-dictionaries. In other words, the jth dictionary of
subject 7 is

D; = [Dj; Dj, ... Dj]. (2)

! Here “K” in “K-SVD” equals number of atoms K in alearned dictionary, not number
of partitions K of a video sequence.
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3.3 Identification

Let @ denote the total number of query video sequences. Given the mth query

video sequence Q™) where m = 1,2,...,Q, we can write Q™) = Uszl Q,(gm).
Partitions Q](Cm) are expressed by Q,(gm) = [q,(:}) q,(gg) q,(:;)k], where q,(;jz) is the
vectorized form of the Ith of the total ny cropped face images belonging to the
kth partition. Assuming there are totally P gallery video sequences, we can write

the associated dictionaries D, for p = 1,2, ..., P, where each D, corresponds
to Dé- for some subject ¢ and its jth partition. Image qg?ll) votes for sequence p

with the minimum residual. In other words,

p = argmin |qf} — DD} a7} |2, (3)
p

where D1(Lp) = (D@)D(p))_lDa) is the pseudoinverse of D, and D(p)DZp)qf:;)

is the projection of q,(;?) onto the span of atoms in Dy,).
To make the sequence-level decision, we select p* such that

K
p* = argmax (Z wyC k) , 4)

P k=1
where C), i is the total number of votes from partition & for sequence p, and wy,

is the weight associated with partition Q,(Cm). Finally, using the knowledge of the
correspondence my(-) between subjects and sequences, we assign the query video
sequence Q™) to subject i* = m(p*).

3.4 Verification

For verification, given a query video sequence and any gallery video sequence,
the goal is to correctly determine whether these two belong to the same sub-
ject. The well-known receiver operating characteristic (ROC) curve, which de-
scribes relations between false acceptance rates (FARs) and true acceptance rates
(TARs), is used to evaluate the performance of verification algorithms. As the
TAR increases, so does the FAR. Therefore, one would expect an ideal verifi-
cation framework to have TARs all equal to 1 for any FARs. The ROC curves
can be computed given a similarity matrix. In the proposed dictionary-based
method, the residual between a query Q™ and a dictionary D), is used to fill
in the (m,p) entry of the similarity matrix. Denoting the residual by R("?)  we
have

R(mP) — min R](gm,P)’ (5)
ke{1,2,...,.K}
where (m.p) (m) (m)
R{™P) 2 i ™ DD g™ 6
k le{l{g,l.?,nk}qu’l P (p) A1 2 (6)

In other words, we select the minimum residual among all [ € {1,2,...,n}, and
all k € {1,2,..., K}, as the similarity between the query video sequence Qim
and dictionary D). Our dictionary-based face recognition from video (DFRV)
method is summarized in Algorithm 2
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Algorithm 2. Video-based Face Recognition (DFRV)
Training:
1. Given a sequence - the jth video of subject i, extract all the frames from it.
Detect and crop face regions to form a set S}
2. Separate S into K partitions. Augment each partition by adding artificial
images and obtain the resulting augmented gallery matrix from the kth
partition, G;}k,Vk =1,2,..,K.
3. Use the K-SVD algorithm to learn the partition-specific sub-dictionary
;'-7,@7 Vk =1,2,..., K. Construct the sequence-specific dictionary Dz- as in ([2).
Testing:
1. Partition the mth query video sequence Q™ = Ule ,(Cm)7 where

(m) _ [o(m) _(m) (m)
Q. *[qkﬂ Ai,2 - qk,nk]'

2. (Identification) Use (@) to determine the vote from qg’;%w@ l. Then, use
@) and subject-sequence correspondence m(-) to make the final decision.

3. (Verification) Find the similarity R between Q™ and D, by @)
and (@)). Use R™P) to construct the similarity matrix, from which the ROC
curves can be obtained.

4 Experimental Results

To illustrate the effectiveness of our method, we present experimental results on
three publicly available datasets for video-based face recognition: the Multiple
Biomertic Grand Challenge (MBGC) [18],[19], the Face and Ocular Challenge
Series (FOCS) [20],[21], and the Honda/UCSD datasets [7].

4.1 MBGC Video Version 1

The MBGC Video version 1 dataset (Notre Dame dataset) contains 399 walk-
ing (frontal-face) and 371 activity (profile-face) video sequences recorded of 146
subjects. Both types of sequences were collected in standard definition (SD) for-
mat (720 x 480 pixels) and high definition (HD) format (1440 x 1080 pixels).
The 399 walking sequences consist of 201 sequences in SD and 198 in HD. For
the 371 walking video sequences, 185 are in SD and 186 are in HD. The top

Fig. 2. Examples of MBGC and UT-Dallas video sequences. (a) MBGC walking (top
row) and activity (bottom row) sequences. (b) UT-Dallas walking (top row) and activity
(bottom row) sequences.
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row of Figure Pl(a) shows example frames from four different walking sequences,
where each subject walks toward the video camera with a frontal pose for most
of the time and turns to the left or right showing the profile face at the end. The
bottom row of Figure 2(a) shows example frames from four different activity
sequences, where each subject reads from a paper, and the sequences consists
of non-frontal views of the subject. There exist several challenging conditions
in these videos. The challenging conditions include frontal and profile faces in
shadow, and profile faces sometimes being heavily covered by one’s hair.

Figure 3 shows an example of output from the video partitioning stage. For
results in Figure 3, the number of partitions is K = 3. Results are presented for
4 subjects for walking sequences.Each row shows up to 30 partitioned cropped
face images from the same video sequence. The red lines distinguish between
different subjects. It can be seen that each partition from a video sequence
encodes a particular pose and/or illumination condition, and different partitions
represent different conditions.

Fig. 3. Partition results of MBGC walking sequences (4 subjects only). Red lines sep-
arate different subjects. A subject has at least two video sequences. Face images from
a video sequence are shown in a row, and are further divided into three partitions.
Each partition shows up to 10 face images. A partition represents a particular pose
and illumination condition.

Following the experiment design in [I4], we conducted a leave-one-out iden-
tification experiment on 3 subsets of the cropped face images from walking
videos performed. These 3 subsets are S2 (subjects which have at least two
video sequences: 144 subjects, 397 videos), S3 (subjects which have at least
three video sequences: 55 subjects, 219 videos) and S4 (subjects which have at
least four video sequences: 54 subjects, 216 videos). Table 1 lists the percentages
of correct identifications for this experiment. The DFRV method outperforms
the statistical-pattern recognition methods reported in [14],[22] and the Sparse
Approximated Nearest Points (SANP) method [15].
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Table 1. Identification rates of leave-one-out testing experiments on the MBGC walk-
ing videos. Our DFRV method outperforms statistical methods and the SANP method,
recently proposed in [14] and [I5], respectively.

MBGC Procrustes Kernel WGCP [SANP [I5]| DFRV
walking  |Metric [14],[22] Density [14]
videos [14),122]
S2 43.79 39.74 63.79 83.88 85.64
S3 53.88 50.22 74.88 84.02 88.13
S4 53.70 50.46 75 84.26 88.43
Average 50.46 46.81 71.22 84.05 87.40

In the second set of experiments, we selected videos associated for those sub-
jects that are in at least two videos (i.e., S2). We divide all these videos into
SD and HD videos, to conduct “SD v.s. HD” (SD as probe; HD as gallery) and
“HD v.s. SD” (HD as probe; SD as gallery) experiments. Correct identification
rates are shown in Table 2. The DFRV method performed the best and it out-
performed the other methods significantly. Figure d{(a) shows the corresponding

Table 2. Identification rates of “SD v.s. HD” and “HD v.s. SD” experiments on the
MBGC walking video subset S2 (the subset that contains subjects who have at least two
video sequences). In this experiment, most subjects (89 out of 144) have only one video
per subject available for training. The DFRV method achieves the best identification
rates.

MBGC walking | Procrustes |Kernel Density| WGCP |SANP [15]| DFRV
videos Metric [14],[22] [14],[22] [14]

SD v.s. HD 61.31 55.78 30.15 41.71 86.93

HD v.s. SD 68.69 56.06 30.30 45.96 91.41

Average 65 55.92 30.23 43.84 89.17

ROC curves for verification experiments. For both identification and verifica-
tion, HD probes had better performances than SD probes. In this experiment,
we examine the effect on performance of varying the number video sequences per
person in the gallery. We divide the videos into two groups beforehand either
as probe, or as gallery. For most subjects (89 out of 144), this setting allows
only one video per subject for training, unlike the previous leave-one-out test
in which there are always at least two training video sequences per subject (the
subject whose video is currently used as probe is excluded). Results presented
above show that WGCP in this setting does not perform so well. We observe
that WGCP is able to give satisfactory performance only when there are enough
video sequences for training, to obtain more discriminative metrics for different
subjects.

In the MBGC [I§] protocol, verifications are specified by two sets: target
and query. The protocol requires the algorithm to match each target sequence
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Fig. 4. (a) ROC curves( o)f SD v.s. HD and HD v.s. SD veriﬁc(at)ion testing experiments
on the MBGC frontal (walking) videos using DFRV. (b) ROC curves of the MBGC
experiments on frontal (walking) and profile (activity) videos. The proposed DFRV
method gives better ROC curves than WGCP in WW experiments. Both curves are
close to the random guess in the challenging AW and AA experiments.

with all query sequences. We performed three verification experiments: walking
v.s. walking (WW), activity v.s. walking (AW), activity v.s. activity (AA). Fig-
ure[l(b) shows the ROC curves. We observe that DFRV gives better ROC curve
than WGCP for most FARs, in WW experiments. In AW and AA experiments;
however, all curves are pretty close to random performance. These two experi-
ments are very challenging. According to the MBGC website[19], for the AW and
AA experiments, no results have been reported that are better than random.

4.2 FOCS UT-Dallas Video

The video challenge of Face and Ocular Challenge Series (FOCS) [20] is designed
to match “frontal v.s. frontal”, “frontal v.s. non-frontal”, and “non-frontal v.s.
non-frontal” video sequences. In this section we present our experimental results
on the UT Dallas video sequences contained in the FOCS video challenge. The
performance of the DFRV algorithm on the UT Dallas dataset shows the strength
of our approach on a second hard data set. In addition, it allows us to directly
compare the performance of the DFRV algorithm to humans [23].

The FOCS UT Dallas dataset contains 510 walking (frontal face) and 506 ac-
tivity (non-frontal face) video sequences recorded from 295 subjects with frame
size 720 x 480 pixels. The top row of Figure R(b) shows key frames from four
different walking sequences of one subject. The sequences were acquired on dif-
ferent days. In the walking sequences, the subject is originally positioned far
away from the video camera, walks towards it with a frontal pose, and finally
turns away from the video camera showing the profile face. The bottom row
of figure 2I(b) shows key frames of four different activity sequences of the same
subject. In these sequences, the subject stands and talks with another person
with a non-frontal face view to the video camera. The sequences contain normal
head motions that occur during a conversation; e.g., the head turning up to 90
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Table 3. Identification rates of leave-one-out testing experiments on the FOCS UT-
Dallas walking videos. The DFRV method performs the best.

UT-Dallas Procrustes |Kernel Density| WGCP [SANP [15]| DFRV
walking videos |Metric [14],[22] [14],]22] [14]

S2 38.12 40.84 53.22 48.27 59.90

S3 60.94 64.06 70.31 60.94 78.13

S4 64 64 76 68.00 80.00

Average 54.35 54.97 66.51 59.07 72.68

degrees, hand raising and/or pointing somewhere. We conducted the same leave-
one-out tests on 3 subsets: S2 (189 subjects, 404 videos), S3 (19 subjects, 64
videos), and S4 (6 subjects, 25 videos) from the UT-Dallas walking videos. Table
3 shows identification results. The DFRV algorithm has the best identification
rates among all the compared algorithms.

Like MBGC, FOCS specifies a verification protocol: 1A (walking v.s. walking),
2A (activity v.s. walking), and 3A (activity v.s. activity). In these experiments,
481 walking videos and 477 activity videos are chosen as query videos. The size of
target sets ranges from 109 to 135 video sequences. Figure [f] shows ROC curves
of verification experiments. In Figure Bl(a), we compare the proposed algorithm
with WGCP [I4]. In all three experiments, the DFRV algorithm is superior to
the WGCP algorithm.

O’Toole et al. [23] evaluated the accuracy of humans recognizing people in
the UT Dallas data set. Human performance was reported for both through
static and dynamic presentations of faces and bodies. Performance in [23] was
reported for humans viewing the original sequence and for sequences edited to
contain only the head. Since the DFRV algorithm only encodes face information,
it is reasonable to compare the DFRV with human performance on the original
sequences and the edited face only sequences. In Figure Bi(b)(c)(d) we compare
the performance of the DFRV algorithm and humans for experiments 1A, 2A,
and 3A. In FiguresBlb)(d), the performance of the DFRV algorithm is very close
to humans on the face only matching task. Experiments 1A and 3A are within
pose matching tasks; whereas, 2A is cross pose. Reported performance is better
than random; however, not near human level of performance. This suggests that
recognition across pose in a video is a good direction for future research.

4.3 Honda/UCSD Dataset

The third set of experiments is conducted on the Honda/UCSD Dataset [7].
The Honda Dataset consists of 59 video sequences from 20 distinct subjects.
We follow the same experiment procedure in [I5]. The experiments are done in
three cases of the maximum set length (available number of cropped-face images
per video sequence) as defined in [15]: 50, 100 and Full Length frames. Image
resolution is 20 x 20 pixels. Table 4 shows identification rates of the DFRV and
other methods [I5]. The DFRV method ranks first except for the full length case,
where the DFRV ranks second, tied with the MDA method [24].
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WGCP [14]; (b)(c)(d) comparison with human perception [23]: (b) walking v.s. walking
(c) activity v.s. walking (d) activity v.s. activity. Compared to WGCP, the proposed
DFRV method gives better ROC curves, which also stay very close to those of face-only
human perception in (b)(d) cases.

Table 4. Identification rates on Honda/UCSD Dataset. The proposed DFRV method
ranks first except for the full length case where it ranks the second.

Set length |DCC [25]| MMD |MDA [24]| AHISD CHISD |SANP [I5]|DFRV
126] 27] 27

50 frames 76.92 69.23 74.36 87.18 82.05 84.62 |[89.74

100 frames 84.62 87.18 94.87 84.62 84.62 92.31 |97.44

Full Length | 94.87 94.87 97.44 89.74 92.31 100 97.44

Average 85.47 83.76 88.89 87.18 86.33 92.31 |94.87
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5 Conclusions and Future Work

We have demonstrated the effectiveness of the proposed dictionary approach
for video-based face identification and verification. Our experiments show that
our method performs better than many competitive video-based face recogni-
tion methods. Our experimental results are on three different datasets. It was
observed that when viewing the face and body in motion, humans can achieve
the best identification performances [23]. As as shown in Figures Bl(b)(c)(d), an
important future research direction is developing algorithms that effectively fuse
both face and body information for recognition from video.
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