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Abstract: In this paper, we present initial thoughts on an approach to ontology/logic-based intention recognition based 
on the recognition, representation, and ordering of states. This is different than traditional approaches to 
intention recognition, which use activity recognition and the ordering of activities. State recognition and 
representation offer numerous advantages, including the ability to infer the intention of multiple people 
working together and the fact that states are easier for a sensor system to recognize than actions. The focus 
of this work is on the domain of manufacturing assembly, with an emphasis on human/robot collaboration 
during the assembly process.  

1 INTRODUCTION 

Safe human-robot collaboration is widely seen as 
key to the future of robotics. When humans and 
robots can work together in the same space, a whole 
class of tasks becomes amenable to automation, 
ranging from collaborative assembly, to parts and 
material handling and delivery. Keeping humans 
safe requires the ability to monitor the work area and 
ensure that automation equipment is aware of 
potential danger soon enough to avoid it. Robots are 
under development throughout the world that will 
revolutionize manufacturing by allowing humans 
and robots to operate in close proximity while 
performing a variety of tasks (Szabo, Norcross et al. 
2011). 

Proposed standards exist for robot-human safety, 
but these standards focus on robots adjusting their 
speed based on the separation distance between the 
human and the robot (Chabrol 1987). The 
approaches focus on where the human is at a given 
point in time. It does not focus on where they are 
anticipated to be at points in the future. 

A key enabler for human-robot safety involves 
the field of intention recognition, which involves the 
process of (the robot) understanding the intention of 
an agent (the human(s)) by recognizing some or all 
of their actions (Sadri 2011) to help predict future 
actions. Knowing these future actions will allow a 
robot to plan its own actions in such a way as to 

either help the human perform his/her activities or, 
at a minimum, not put itself in a position to cause an 
unsafe situation. 

In this paper, we present an approach for 
ontology-based intention recognition using state-
based information. In this context, state is defined as 
a set of one or more objects in an area of interest that 
consist of specific recognizable configuration(s) 
and/or characteristic(s). This is different than most 
ontology-based approaches in the literature (as 
described in Section 2) as they primarily focus on 
activity (as opposed to state) recognition and then 
use a form of abduction to provide explanations for 
observations.  In the approach presented in this 
paper, state information serves as the focus of the 
observations, which provides many advantages over 
the representation of activities. One such advantage 
is the ability to handle more than one single 
observed agent, which is a significant limitation of 
current approaches (Sadri 2011). This paper focuses 
on the knowledge requirements necessary to 
represent state information for ontology-based 
intention recognition. 

Section 2 describes the state of the art in 
ontology/logic-based intention recognition. Section 
3 provides an example of the initial domain of 
interest, namely, industrial assembly operations. 
Section 4 describes the newly-formed IEEE 
Ontologies for Robotics and Automation (ORA) 
Working Group and describes some information 



 

requirements necessary to represent state-based 
intention recognition, including spatial relations, 
ordering constraints, and associations with overall 
intentions. Section 5 describes how this information 
can be put together to perform intention recognition. 
Section 6 concludes the paper. 

2 ONTOLOGY/LOGIC-BASED 
INTENTION RECOGNITION 

As mentioned in the introduction, intention 
recognition traditionally involves recognizing the 
intent of an agent by analyzing the actions that the 
agent performs. Many of the recognition efforts in 
the literature are composed of at least three 
components: (1) identification and representation of 
a set of intentions that are relevant to the domain of 
interest, (2) representation of a set of actions that are 
expected to be performed in the domain of interest 
and the association of these actions with the 
intentions, and (3) recognition of a sequence of 
observed actions executed by the agent and 
matching them to the actions in the knowledge base.  

There have been many techniques applied to 
intention recognition that follow the three steps 
listed above, including ontology-based approaches 
(Jeon, Kim et al. 2008) and probabilistic frameworks 
such as  Hidden Markov Models (Kelley, Tavakkoli 
et al. 2008) and Dynamic Bayesian Networks 
(Schrempf and Hanebeck 2005). In this paper, we 
focus on ontology-based approaches.  

In many of these efforts, abduction has been used 
as the underlying reasoning mechanism in providing 
hypotheses about intentions. In abduction, the 
system “guesses” that a certain intention could be 
true based on the existence of a series of observed 
actions. For example, one could guess that it must 
have rained if the lawn is wet, though the sprinkler 
could have been on as well. As more information is 
learned, probabilities of certain intentions are refined 
to be consistent with the observations. 

One of the key challenges in intention 
recognition is pruning the space of hypotheses. In a 
given domain, there could be many possible 
intentions. Based on the observed actions, various 
techniques have been used to eliminate improbable 
intentions and assign appropriate probabilities to 
intentions that are consistent with the actions 
performed. Some have assigned weights to 
conditions of the rules used for intention recognition 
as a function of the likelihood that those conditions 
are true (Pereira and Ahn 2009).  

There has also been a large amount of research in 
the Belief-Desire-Intention (BDI) community (Rao 
and Georgeff 1991). However, this work focuses on 

the intention of the intelligent agent (as opposed to 
the human it is observing) and the belief structure is 
often based on the observation of activities as 
opposed to inferring the intention of the human via 
state recognition.  

Once observations of actions have been made, 
different approaches exist to match those 
observations to an overall intention or goal. (Jarvis, 
Lunt et al. 2005) focused on building plans with 
frequency information to represent how often an 
activity occurs. The rationale behind this approach is 
that there are some activities that occur very 
frequently and are often not relevant to the 
recognition process (e.g., a person cleaning their 
hands). When these activities occur, they can be 
mostly ignored. In (Demolombe, Mara et al. 2006), 
the authors combine probabilities and situation 
calculus-like formalization of actions. In particular, 
they not only define the actions and sequences of 
actions that constitute an intention, they also state 
which activities cannot occur for the intention to be 
valid.  

All of these approaches have focused on the 
activity being performed as being the primary basis 
for observation and the building block for intention 
recognition. However, as noted in (Sadri 2011), 
activity recognition is a very difficult problem and 
far from being solved. There has only been limited 
success in using RFID (Radio Frequency 
Identification) readers and tags attached to objects of 
interest to track their movement with the goal of 
associating their movement with known activities, as 
in (Philipose, Fishkin et al. 2005). 

Throughout the rest of this paper, we describe an 
approach to intention recognition that uses state 
information as opposed to activity information to 
help address some of the challenges described in this 
section.  

3. INDUSTRIAL ASSEMBLY 
EXAMPLE 

Imagine a situation where a person and a robot are 
working together to assemble furniture. There are 
different types of furniture that need to be 
assembled, and many of the pieces of furniture use 
the same set of interchangeable parts. 

In this example, we will focus on two cabinets, 
as shown in Figure 1 and Figure 2. The cabinets and 
their subsequent assemblies were taken from the 
assembly instructions on the IKEA web site 
(http://www.ikea.com/ms/en_US/customer_service/a
ssembly_instructions.html). Ten of each cabinet 
need to be assembled by the end of the shift. The 
order in which the assembly happens is up to the 



 

human. He may choose to do all of the cabinet 1s 
first, all of the cabinet 2s first, or intermingle the 
two.  

The robot’s goal is to see which assembly the 
human is trying to accomplish, and then take steps to 
facilitate that assembly, whether it be handing the 
human parts or orienting the subassembly to make it 
easier for the human to complete his task. 

 

 
 
Not knowing which assembly the human is 

performing at any given time, the robot will observe 
the sequence of states that occur over time and 
associate those states with the overall intention of 
which cabinet is being created. Because many of the 
parts are common between the two cabinets, simply 
seeing which part the human picks up is not 
sufficient. The robot also needs to observe which 
other parts are used in the assembly and how those 
parts are attached together.  

In the approach described in this paper, the robot 
will observe the series of states that are the results of 
various actions and infer the intent of the human by 
matching the sequence of states to an ontology of 
intentions with associated state orderings. 

Next, we will describe an overall effort that is 
creating an ontology for robotics and automation and 
then describe how we are extending this ontology to 
capture state information. 

4 A MANUFACTURING ROBOT 
ONTOLOGY 

In this section we describe current work in 
developing a standard robotics ontology and how it 
can be expanded to capture state information.  

4.1 IEEE Ontologies for Robotics and 
Automation Working Group 

In late 2011, IEEE formed a working group entitled 
Ontologies for Robotics and Automation (ORA) 
(Schlenoff, Prestes et al. 2012). The goal of the 
working group is to develop a standard ontology and 
associated methodology for knowledge 
representation and reasoning in robotics and 
automation, together with the representation of 
concepts in an initial set of application domains. The 
working group understood that it would be 
extremely difficult to develop an ontology that could 
cover the entire space of robotics and automation. 
As such, the working group is structured in such a 
way as to take a bottom-up and top-down approach 
to address this broad domain. This group is 
comprised of four sub-groups entitled: Upper 
Ontology/Methodology (UpOM), Autonomous 
Robots (AuR), Service Robots (SeR), and In- 
dustrial Robots (InR). The InR, AuR, and SeR sub-
groups are producing sub-domain ontologies that 
will serve as a test case to validate the upper 
ontology and the methodology developed by UpOM. 

The industrial robots group is focusing on 
manufacturing kitting operations as a test case, 
which is extremely similar in concept to 
manufacturing assembly operations. This kitting 
ontology is focusing on activities that are expected 
to be performed in a sample kitting operation along 
with pertinent objects that are expected to be 
present.  

4.2 Expanding the Ontology to Include 
State Information 

The current version of the IEEE Industrial Robots 
Ontology contains minimal information about states. 
Initial efforts will look to expand the information 
that is already represented to include more detailed 
state information. 

A comprehensive literature review was 
performed in (Bateman and Farrar 2006) which 
explored the way that spatial information was 
represented in a number of upper ontology efforts, 
including  Standard Upper Merged Ontology 
(SUMO), OpenCyc, DOLCE (A Descriptive 

Figure 1: Picture of cabinet 1 with some associated parts 

Figure 2: Picture of a cabinet 2 with some associated parts 



 

Ontology for Linguistic and Cognitive Engineering), 
and Basic Formal Ontology (BFO). The general 
findings of the study concluded that, in order to 
specify the location of an entity, the following four 
items are needed: 

1. A selection of an appropriate granular 
partition of the world that picks out the 
entity that we wish to locate 

2. A selection of an appropriate space region 
formalization that brings out or makes 
available relevant spatial relationships 

3. A selection of an appropriate partition over 
the space region (e.g., qualitative distance, 
cardinal direction, etc.) 

4. The location of the entity with respect to 
the selected space region description 

Item #1: World partition is provided in many 
manufacturing assembly applications via a parts list. 
Additional environmental information may be 
necessary as well. 

Item #2: Space region formalization is important 
in manufacturing assembly, among other reasons, in 
that it provides a point of reference. When 
describing spatial relations such as to_the_right_of, 
it provides a point of reference such that all 
observers are interpreting the relation similarly. 

Item #3: Partition of the space region is perhaps 
one of the most important items to represent in the 
ontology as it pertains to manufacturing assembly. 
This is because an assembly operation is based on 
the ability to combine pieces together to form an 
overall structure. The location of each piece, 
whether on a table or attached to other pieces, is key 
to determining what actions a person has performed 
and what actions they are likely and able to be 
performed next.  

Item #4 Absolute location of objects in the space 
regions is perhaps the least important of the four 
items because the absolute location of objects is 
often not essential for intention recognition. Note 
that for controlling robots, the absolute location of 
objects is extremely important, but that is not the 
focus of this paper.  

4.3 Identifying and Ordering of States to 
Infer Intention  

In just about any domain, there are an extremely 
large number of states that can occur. However, 
most of those states are not relevant to determine 
what activity is occurring. By pre-defining (in the 
ontology) the activities that are relevant and of 
interest in the domain, one can then infer the states 
that are associated with these activities and train the 

sensor system to only track and report when those 
states exist in the environment. 

States can be ordered in a similar way as 
activities to create an overall plan (and therefore an 
overall intention). In fact, some of the same types of 
constructs that are used for activities can also be 
used for states. OWL-S (Web Ontology Language – 
Services) (Martin, Burstein et al. 2004) is one 
example of an ontology for describing semantic web 
services. OWL-S contains a number of constructs 
for not only representing activities, but also for 
specifying the ordering of processes. Some of these 
ordering constructs (as applied to states) include: 

• Sequences – a set of states that must occur 
in a specific order 

• Choice – a set of possible states that can 
occur after a given state  

• Join – two or more states that must be true 
at the same time for a subsequent state to 
be possible 

• Count – a state that needs to be present 
multiple times. One example of this could 
be having multiple screws inserted to 
attach two parts together. Note that this is 
similar to the iterate construct for processes 

• Any-Order – a set of states that must all 
occur but may occur in any order  

All of the constructs that are stated in OWL-S 
are relevant to states apart from those that deal with 
concurrency. In this work, states are different than 
activities in that they are true or false at a given 
instance of time. Activities occur for a duration, 
which can cause them to have concurrency 
constraints, such as starting at the same time (as 
represented by the OWL-S Split Construct) and/or 
having to complete at the same time (as represented 
by the OWL-S Split+Join construct).  

An intention is represented as an ordering of 
states. At the highest level, the overall intention 
could be to build a specific type of cabinet. This 
intention can be made up of sub-intentions which 
could be to build the frame, build the drawers, etc. 
Each of these sub-intentions would have its own 
ordering of states which would be a subset of overall 
intention.  

5 APPLYING THE APPROACH 
TO THE CABINETS EXAMPLE 

 
For the remainder of this paper, we will simplify the 
assembly operation by using two types of spatial 
relationships, namely: 
 



 

attached(x,y,z) (1) 
 
which means that part x and part y are attached 
together by part z, where part z could be a screw, a 
nail, or any other securing mechanism, and  
 

partially-within(x,y) (2) 
  

which means that an aspect of part x is within part y.  
The first step in both cabinet assembly 

operations is placing a wooden peg into each of four 
legs, as shown in Figure 3.  

 

 
 

The state would be represented by: 
  

partially-within(wooden_peg, leg) (3) 
 

and the sequence would be: 
 

count(partially-within(wooden_peg, leg),4) (4) 
 
which indicates that there must be four instances of 
the state of the wooden peg within a leg. Because 
this series of states is true for both assemblies, more 
information is needed for the robot to infer which 
cabinet the human is assembling. 

The second state of the assembly for the small 
cabinet in Figure 1 is shown in Figure 4. 
 

 
 

Figure 4: Step 2 of the small cabinet assembly. 

 
In this case, the small base is attached to the legs 

via screw14 (based on Figure 1). Because this has to 
be performed four times, this would be represented 
by: 
 
count(attached(leg,small_base,screw14),4) (5) 

 
The second state of the assembly for the larger 

cabinet in Figure 2 is shown in Figure 5.  

 
Figure 5: Step 2 of the larger cabinet assembly. 

 
In this case, the large base is attached to the legs 

via screw14. Because this has to be performed four 
times, this would be represented by: 
 
count(attached(leg,large_base,screw14),4) (6) 

 
The overall sequence for cabinet 1 and 2 

(respectively) up to this point would be:  
 
sequence( 
count(partially_within(wooden_peg, leg),4), 
count(attached(leg,small_base,screw14),4)) 

 
(7) 

 
sequence( 
count(partially_within(wooden_peg, leg),4), 
count(attached(leg,large_base,screw14),4)) 

 
(8) 

 
The type of formalisms shown in (7) and (8) 

would serve as the basis for the state ordering 
specification that would be represented in the 
ontology. Spatial relations such as attached() and 
partially-within() (such as in equations (1 and 2)) 
would be represented as subclasses of the general 
spatial_relation class. Specific occurrences of the 
state (such as in equation (3)) would be represented 
by instances of the appropriate class.  Sequence 
information would be represented as in OWL-S, by 
overall ControlContruct class, containing subclasses 
of the appropriate sequence constructs (e.g., count, 
sequence).  As a robot makes observations about the 
state of the environment, these observations would 

 
 

 

Figure 3: Step 1 of both assembly operations. 



 

be compared to the ontology to find possible state 
matches. Constraints on state ordering in the 
ontology will guide the robot’s sensor system to 
areas that should contain the logical next states. 
With this state information, a robot could track the 
ordering of observed states over time and compare 
that observed ordering to predefined state sequences 
in the ontology to infer the intention of the human.  

Though this example is simplistic, it does show 
the formalism that one could use to represent a 
sequence of states as a mechanism to perform 
intention recognition based on state ordering. 

6 CONCLUSION 

In this paper, we present initial thoughts on a form 
of intention recognition that is based on states as 
opposed to actions. State-based intention recognition 
offers some interesting advantages of activity-based 
recognition, including: 

• States are often more easily recognizable 
by sensor systems than actions.  

• Using activities, intention recognition is 
often limited to inferring the intention of a 
single person. State-based intention 
recognition eliminates this shortfall, in that 
the state is independent of who created it. 

• State information is often more ubiquitous 
than activity information, thus allowing for 
reusability of the ontology.  

Because of the similarity of state representation 
with activity representation, many of the same 
approaches that were described in Section 2 can be 
applied to this approach as well. Future work will 
explore explicitly representing which states cannot 
occur for a subsequent state to be possible as in 
(Demolombe, Mara et al. 2006) and assigning 
probabilities to various states similar to (Kelley, 
Tavakkoli et al. 2008). 

DISCLAIMER 

Certain commercial software and tools are identified 
in this paper in order to explain our research. Such 
identification does not imply recommendation or 
endorsement by the National Institute of Standards 
and Technology, nor does it imply that the software 
tools identified are necessarily the best available for 
the purpose. 
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