
A Mosaic of Software
Kenton McHenry, Rob Kooper, Michal Ondrejcek, Luigi Marini, Peter Bajcsy

National Center for Supercomputing Applications
University of Illiniois at Urbana-Champaign

Email: {kmchenry, kooper, mondrejc, lmarini, pbajcsy}@ncsa.illinois.edu

Abstract—In this paper we describe a Software Server, a
background process that in conjunction with a central reposi-
tory of lightweight wrapper scripts allows functionality within
heterogeneous software to be called in a simple and consistent
manner. The key role of the Software Server is to provide a
common interface to software functionality in a manner that
can be programmed against, in essence re-introducing an API
to compiled code. Using the Java restlet framework, we provide
a RESTful interface consisting of URL endpoints allowing any
programming/scripting language capable of accessing URLs to
utilize software functionality as a black box. In addition to being
widely accessible the RESTful interface allows for a secondary
role from Software Servers by giving them the ability to turn
any traditional desktop software into a cloud based web service.
In this paper we describe these Software Servers, the scripts
we use to wrap primarily GUI based software, and show how
these servers allow software to be called and interconnected
into workflows across distributed machines. Finally, quantitative
experiments showing the feasibility of the described Software
Servers on a number of applications are presented.

I. INTRODUCTION

There is a great deal of software on desktop machines. Even
with mobile apps making a surge, graphical user interface
(GUI) based desktop software is still the primary outlet for
high end day to day productivity software. The world however
is clearly changing. Distributed, scalable, persistent, robust,
mobile, the “cloud” are all things that are becoming more

Figure 1. Functionality within traditional desktop software is made
available in the “cloud” through a RESTful interface by right clicking
on it and selecting “Share Functionality” from the menu. Behind the
scene a remote software registry is queried for associated wrapper
scripts, found scripts are downloaded, configured, and a Software
Server is started. Remote users can access a select set of operations
within the software through any programming/scripting language
capable of accessing URL’s or through a web browser.

Figure 2. Software servers allow desktop software to be used within
new code via a re-attached RESTful API. This RESTful API also
allows users to access software functionality through a browser. In
the image shown a user has pointed their browser to the IP address
of a machine hosting a Software Server which is sharing functionality
from a number of installed applications. The page shown is made to
look like a traditional file manager, presenting icons for each of the
available applications. If the user were to click on an icon they would
be taken to a web form which would allow them to choose an input
file, an output format, a task to perform using the selected software,
and a “submit” button allowing them to carry out the task on the
remotely installed software.

and more prominent today. Classical desktop software does
not exactly fit into this new realm of light weight clients,
web services, and remote/flexible resources (both CPU and
storage).

In the sections below we describe a Software Server. Where
conventional web servers allow data to be accessible from
anywhere within the web, Software Servers allow arbitrary
software functionality to be accessible over the web. The
shared software functionality is accessible through a uniform
RESTful interface allowing all software to be used in a similar
manner. While the notion of integrating distributed software
has been addressed before in a variety of workflow publica-
tions [1, 2, 3] we emphasize the ability to utilize arbitrary
software, a simple/fixed/concise/widely accessible interface,
and overall ease of use. Through the uniform API imposed by
the Software Servers, functionality within compiled software
can be used as part of any workflow system [4, 5] or reused
directly within novel code. Because this API is web based
Software Servers also serve as a bridge between contemporary

GUI based desktop software and the “cloud” paradigm. In
Section II we describe the Software Servers and the wrapper
scripts required to make them work. In Section III we describe
potential uses of such functionality. In Section IV we address
the robustness of these servers and give our conclusions in
Section V.

II. SOFTWARE SERVERS

Sharing data (i.e. files) remotely is fairly easy via a number
of services such as ftpd, files servers such as nfsd and smbd,
and of course web servers such as httpd and tomcat. Sharing
programs (i.e. applications) is a bit different in that while
programs are nothing more than files, these files are distinct
in that they contain instructions that execute on a given
hardware platform and operating system. To use a program
you must have the correct hardware (real or virtual), operating
system (real or emulated), and a means of interacting with the
program (e.g. keyboard, mouse). Programs can have a variety
of interfaces from command line interfaces to graphical user
interfaces. Sharing access to programs with command line
interfaces can be done via a number of services such as telnetd
and sshd. These programs are utilized remotely exactly as they
would be on the local machine, via the keyboard. Sharing
access to programs programs with graphical interfaces can also
be done via a number of services such as VNC and rdesktop.
These programs too are utilized remotely exactly as they would
be on the local machine, via a keyboard and mouse.

The proposed Software Server like telnet, ssh, VNC and
remote desktop provides access to remote software. The key
difference is how it makes that software available. While the
previously mentioned services provided the same interface one
would have on the local machine, a Software Server replaces
this interface. The motivation for replacing the interface is
twofold. The first reason is a need for consistency in that we
wish to interact with different programs in the exact same way.
The second reason is that we wish to have an interface that
can be programmed against. It is fairly trivial to call command
line software within a script or program by simply making a
call to the local system. The same cannot be said of software
with graphical interfaces however. We wish to be able to call
any program from within newly created code and to do so in
exactly the same way. Our Software Servers utilize wrapper
scripts to interact with arbitrary 3rd party software. In the sub-
sections that follow we will describe these wrapper scripts, the
means by which these scripts are obtained, and the interface
that the Software Server then presents.

A. Wrapper Scripts

The Software Server interfaces with 3rd party software by
calling small wrapper scripts that encapsulate equally small
pieces of functionality within the software. We place no
requirements on the interfaces a particular piece of software
supports. In this paper however we will focus on what we
consider to be relatively the most difficult interface to interact
with in an automated manner, specifically graphical user
interfaces designed for human interaction. The wrapper scripts

can be written in any text based scripting language. The
text based requirement comes from how we store information
about the scripted operation within the script. Scripts must
follow specific naming conventions and comment conventions
in order to be used by the Software Server. The functionality
of a particular script is determined by its name which takes
the form:

alias operation.*
The alias above is simply a short name used to identify
a particular application. While this alias can be anything it
should be consistent among scripts that operate on the same
application. The operation identifies the particular functional-
ity of the 3rd party software that the script controls. Operations
supported by the current Software Server implementation
are shown in Table 1. The “open”, “save”, and “convert”
operations deal with opening and saving files in the software.
Currently Software Servers use files as the primary means
of passing inputs and obtaining outputs from software. The
“exit”, “kill”, and “monitor” scripts deal with maintaining the
state of the Software Server. Software behaves unpredictably
at times. If not dealt with any deviation from the normal
operation of the software could potentially bring down the
server (e.g. a dialogue box asking to overwrite an existing
file or to install an update). If an application fails to respond
with output after a designated amount of time and a present
“monitor” script is unable to recover the application, the “kill”
script forcibly kills the process allowing the server to either
try again or move on.

With only the “open”, “save”, and “convert” scripts one
can perform file format conversions with the 3rd party soft-
ware. There is additional functionality within most 3rd party
software that can be scripted however. Consider for example
the filters within photo editing software to change contrast or
perform edge detection. Perhaps even functionality as simple
as changing the font. A “modify” script allows for these types
of operations that modify data. Unlike the other types of
scripts the “modify” script operation is implied by any non-
recognized script name (i.e. scripts should never be named
alias modify.*). Instead the operation specified in the name
should indicate what the modification is (e.g. “blur”, “edges”,
“fontToArial”, “tableToChart”).

The remaining information required by the Software Server
in order to use the script is stored as commented lines at the top
of each script. The first of these commented lines is required
by all scripts and contains the full name of the software along
with the version of the software in parenthesis. The next lines
are only applicable to operations that take arguments (i.e.
files). The second line will indicate the types of data operated
on (e.g. images, documents, 3D models, etc...). The last two
lines will contain comma separated lists of file extensions that
are accepted as inputs and/or outputs (depending on if this is
an “open”, “save”, or “convert” script). An example comment
“header” is shown below for a script “GSkUp open.ahk”
which will open a file using Google SketchUp:

;Google SketchUp (v7.0)
;model
;3ds, ddf, dem, dwg, dxf, skp

Operation Arguments Description
open 1 Open the file given as an argument.
save 1 Save the data currently open within

the software to the file name given as
an argument. The format of the output
file is determined from the output file’s
extension.

convert 2 Perform both the “open” and “save”
operation within the same script. Open
the file specified by the first argument
and save it to the file given as the
second argument.

exit 0 Exit the application by closing the soft-
ware.

kill 0 Forcibly exit an application by killing
its process.

monitor 0 Monitor a given application for infre-
quent events that could hinder the usage
of the software.

“modify” 0 or 2 Modify data loaded from a file. This
operation can take no arguments and be
called between an “open” and “save”
opertion, or, it can take two arguments
opening the file specified by the first ar-
gument, modifying the loaded data, and
saving the result to the file specified by
the second argument. The “modify” op-
eration is implicit in that it is assumed
as the operation in the case where
the operation name doesn’t match the
above list.

Table 1. The operation names supported by Software Servers. The “open”,
“save”, and “convert” deal with loading and saving files within the software.
The “exit”, “kill”, and “monitor” scripts deal with maintaining the state
of the machine running the Software Server, specifically watching for rarely
observed occurrences such as warning dialogue boxes and forcefully killing
applications that are too far gone. The modify scripts deal with operations that
don’t involve loading and saving files such as smoothing an image, changing
a font, or building a chart.

The information contained within the script name and header
is all the Software Server needs in order to use the script.
The rest of the script is responsible for actually performing
the operation it claims to perform. As our focus is mainly
on graphical user interface (GUI) based software we will
briefly describe two of the languages we have used to script
functionality within such software: AutoHotKey 1 and Sikuli 2.

1) AutoHotKey: AutoHotKey is a GUI scripting language
that makes use of the messages that widgets within the
Windows OS use to communicate and respond to events.
Through tools such as AutoIT Spy and Winspector Spy one
is able to identify the the ID’s of particular widgets as well
as intercept and store the message passed during a desired
event (e.g. a mouse click on a menu item). These messages
can be posted (or replayed) from within a script in order to
reproduce a given GUI interaction. AutoHotKey also allows
scripting solely based on the text found within windows and
widgets (allowing one to avoid the extra step of identifying
widget ID’s and the messages used for a particular event).

We utilize AutoHotKey primarily for Windows applica-
tions 3 though it appears that there are now versions for

1http://www.autohotkey.com
2http://sikuli.org
3http://isda.ncsa.illinois.edu/drupal/content/software-servers

Linux and OS X 4. AutoHotKey scripts we have created for
software operations have tended to be fairly small. The longest
script the authors have encountered for a particular operation
was roughly one hundred lines (the bulk of this being an if-
statement to choose the correct action for a given format).
Most scripts are far shorter.

2) Sikuli: Sikuli [6, 7] is a vision based GUI scripting
language written in Java. Unlike AutoHotKey, Sikuli focuses
exclusively on what is seen on the desktop by taking screen
shots of the desktop and comparing them during script execu-
tion to know what is happening and where. Sikuli is written
as an extension of Python, using JPython, and provides a
very convenient IDE for writing scripts. The provided IDE
allows a script writer to walk through the automation of a
GUI application, pause periodically, and capture images from
the screen to use within the script. Clicking a button from the
script is as simple as calling the “click()” function and passing
into it an image of the button to be clicked (with the image
being easily obtained from within the IDE).

Because Sikuli is written in Java and makes no use of
specific system functionality to control the GUI it can be used
on a variety of platforms. Because it acts as an extension to
a well known scripting language and uses a convenient IDE,
Sikuli scripts are fairly easy to write. Our main motivation
for looking at Sikuli was to avoid timing issues that can
sometimes occur within our AutoHotKey scripts. Specifically,
it is important to not click on a button until it is actually
present on the screen. While this is usually manageable within
AutoHotKey it can sometimes be a challenge. A vision based
language gets around this by operating much like a human
being would, in that a human using a GUI based application
will not click on a button until the button appears and they
see it.

A drawback of Sikuli is that the created scripts are not
necessarily portable. A consequence of being vision based the
script is dependent on the appearance of the desktop (such
as fonts used for text and other window styles/themes). In
addition we have noticed that Sikuli scripts run much slower
than AutoHotKey scripts that perform the same task.

B. Obtaining Scripts

The work of [8, 9] used a less developed notion of Software
Servers to create an extensible and distributed conversion
service for the purpose of measuring information loss across
file format conversions. As an extension to that work a web
based registry was created to document software 5 empha-
sizing the inputs and outputs supported. This registry, called
the Conversion Software Registory (CSR) [10], allows one
to easily identify 3rd party software capable of performing
conversions between a given input and output format based
on file extensions. In order to make it easier to install new
instances of the Polyglot conversion service described in [8]
we began associating Software Server wrapper scripts with the

4http://www.autohotkey.com/forum/topic54494.html
5http://isda.ncsa.illinois.edu/NARA/CSR

Task Operation Sequence
convert convert
convert open, save

X modify
X open, modify, save

Table 2. The tasks a Software Server broadcasts (generated from the wrapper
scripts available). Conversion tasks are made up from a single “convert”
script or a pair of “open” and “save” scripts. Tasks involving modify scripts
are named according to the name of the modify operation (indicated by X’s
above). Modify tasks can be made of a single “modify” script if it takes two
arguments (an input and an output) or an “open”, “modify”, and “save”
script if the modify script takes no arguments (indicating that it deals with
whatever is currently open in the application at the time).

software entries of the CSR database. Doing this has made the
process of sharing software functionality extremely simple for
an end user.

A script installer tool provided as part of the Software Server
searches the local system for installed software (on a Windows
system this is done by searching for uninstallable applications
within the system registry). For each locally installed appli-
cation the tool will query the CSR for matching software
that also contains associated wrapper scripts. If scripts are
found they are download and configured to run on the local
system (e.g. correcting for any software path variations that
occur). Once configured the Software Server can be started and
will share the functionality scripted by the union of obtained
scripts.

C. Tasks

The Software Server does non allow for the direct calling of
individual scripted operations as some don’t make sense when
called alone. For example calling an “open” operation to open
a file within an application has no purpose unless a “modify”
and/or “save” follows. In addition if a sequence of operations
is requested of the server such as an “open”, “modify”,
and “save”, the server must guarantee that these operations
are executed all at once in order to prevent other requests
on the same application from corrupting the desired result.
To do this the Software Server hides individual operations
and instead presents “tasks”. These tasks are nothing more
than a sequence of operations to obtain a particular result
which are guaranteed to be run without interruption. Tasks are
automatically generated from the given scripts (see Table 2).
Using the inputs/output operations alone allows for format
conversions tasks. If modify operations are available they are
included between open/save operations in order to pass in an
input, carry out the modification, and return some output. We
point out that one usually creates a “convert” operation for
an application or an “open”/“save” pair, not both. If both are
present the server will choose the direct conversion. The same
goes for two argument and no argument “modify” scripts.

D. RESTful Interface
The primary motivation for the creation of these Software

Servers is to provide an interface that is consistent among
all software, simple, widely accessible, and capable of being
programmed against. To meet these requirements we have
decided to go with a RESTful interface based on the Java

Restlet 6 framework. Built on top of the HTTP protocol restlets
are a popular interface for web services in general. Software
Servers are accessed via URL endpoints of the form:
http://host:8182/software/[application]/[task]/[output]/[input]

The host is simply the name or IP of the host running the
Software Server. The “[application]” in the URL specifies the
alias of the application to use. In turn the “[task]” specifies
the task to carry out, “[output]” specifies the desired output
format, and “[input]” the input file to perform the task on.
The parameter options available on the server can be obtained
by accessing the various endpoints. For example to determine
what software is available on the host one would visit:
http://host:8182/software/

to obtain a list of available software. To then see what tasks
are available for one of the available applications one can then
visit:
http://host:8182/software/[application]/

where “[application]” is one of the aliases displayed at the
previous URL. To see what output formats are supported by
a given task one can then go to:
http://host:8182/software/[application]/[task]/

where “[task]” is one of the tasks displayed at the previous
URL. Finally to see what input formats are supported for a
given application task for a given output format one can go
to:
http://host:8182/software/[application]/[task]/[output]/

where “[output]” is one of the outputs displayed at the previous
URL. To carry out a task one can either POST a file to the
URL above or URL encode the URL to a file on the web and
append it to the end. When this is done the Software Server
will immediately return with a URL to where the result file
can be downloaded. The execution of the task will depend on
the tasks position in the queue and on the specs of the machine
running the software. Attempting to access the download URL
before the task is complete will result in a “404 - File not
found”. A user in a browser, program, or shell script can
use this error to wait until the file is available. We point out
that the benefit of going with the chosen RESTful interface
is that the shared software functionality can be accessed
across many programming/scripting languages in addition to
browsers. Specifically any programming or scripting language
that supports accessing URLs can treat this shared software
functionality as just another function within a library and
literally hide the fact that the “black box” is actually software
running on a remote machine.

Software servers provide additional information through
various other endpoints such as:
http://host:8182/alive

which will simply return true if the the server is running,
http://host:8182/busy

which will notify the accessing user/program as to whether
or not the server is currently busy running an application per
another request,
http://host:8182/processors

which will return the number of processors available on the
host machine, and

6http://www.restlet.org

http://host:8182/memory

which will return the amount of memory available to the Java
virtual machine on the host machine.

E. Security
Software servers can be configured so as to require a pass-

word in order to access the software functionality provided. In
addition a special admin user can be specified for operations
which go beyond the access of software functionality such as:
http://host:8182/screen

which will return a screen shot of the host machines desktop
and
http://host:8182/reboot

which will remotely reboot the host machine. Both these
capabilities are useful for checking on and resetting a bogged
down server but at the same time should not be exposed
to everyone that is allowed to use the Software Server. If
passwords are enabled and a user wishes to utilize the Software
Server functionality within a program or script they can
include the username and password within the URL:
http://username:password@host:8182/software/...

III. APPLICATIONS

One should think of Software Servers in the same way that
they would think of a dynamic or static library. Both provide
functionality and make it accessible through a specified API.
How that functionality is carried out is of little importance.
We refer to this process of re-attaching an API to compiled
software as imposed code reuse. In this light anything that you
would expect to do with a dynamic or static library can also
be done with a Software Server. Below we describe several
applications that utilize Software Servers.

A. Distributed Software Servers
A Distributed Software Server provides the same RESTful

interface as a regular Software Server but runs no software
of its own. Instead it listens for available Software Servers,
catalogues the capabilities of those it finds, and presents
the union of the found Software Server capabilities as its
own. Cataloguing the available functionality within a Software
Server is a simple matter of crawling the URL’s shown in the
previous section. When a request is made of the Distributed
Software Server the catalogue of found Software Servers is
searched and the request is passed on to the first non-busy
server found.

The current Software Server implementation can, depending
on its configuration, either broadcast its existence directly to
a specific Distributed Software Server via TCP or multicast
its existence to any number of Distributed Software Servers
within a specified ttl (i.e. time to live) via UDP. When
a Software Server configured in this way comes online it
will spawn a thread to continuously notify the one or more
distributed servers which will in turn add its functionality to its
catalogue. The distributed servers will check on the individual
Software Servers periodically to determine if they are still alive
and if not will drop them from their catalogue. In this way
Software Servers can come and go, expanding or degrading the
capabilities of the Distributed Software Server without totally
bringing it down.

B. Software as Libraries
Software servers re-attach an API to compiled code so that

it can once again be called within code. As an example of that
we show here a small bash script to convert the files within a
directory to another format:
! / b i n / bash

h o s t =” h t t p : / / 1 4 1 . 1 4 2 . 2 2 4 . 2 3 1 : 8 1 8 2 ”
a p p l i c a t i o n =” A3DReviewer ”
t a s k =” c o n v e r t ”
o u t p u t =” i g s ”
i n p u t =” s t p ”
u r l = $ h o s t / s o f t w a r e / $ a p p l i c a t i o n / $ t a s k / $ o u t p u t

f o r i n p u t f i l e i n ‘ l s ∗. $ i n p u t ‘ ; do
o u t p u t u r l = ‘ c u r l −s −H ” Accept : t e x t / p l a i n ” −F ” f i l e = @ $ i n p u t f i l e ” $ u r l ‘
o u t p u t f i l e =${ i n p u t f i l e %.∗}. $ o u t p u t
echo ” C o n v e r t i n g : $ i n p u t f i l e t o $ o u t p u t f i l e ”

w h i l e : ; do
wget −q −O $ o u t p u t f i l e $ o u t p u t u r l

i f [${?}−eq 0] ; t h e n
b r e a k

f i

s l e e p 1
done

done

As a bash script this is only a very simple example of what is
possible. The available software functionality can be chained
together to produce more complex workflows. Any language
capable of accessing URL’s (e.g. Java, Python, etc...) can be
used. The RESTful API itself can be wrapped within the code
to make the call look like a more native function call (as
opposed to accessing a URL).

C. File Format Conversion

The driver for the creation of the described Software Servers
was to construct a practical nearly “universal” file format
converter. The task of building such a conversion engine by
implementing the needed loaders/transcoders for the thousands
of different file formats (many proprietary, closed, and/or with
lengthy specifications) was unrealistic. Given that the main
reason so many formats exist is that software vendors tend to
create new formats specific to their own applications and the
fact that their software would load their own formats plus often
a handful of others it seemed like a good idea to use available
software to build such an engine. Clearly the software had to
be automated for this to be a true service that could convert
potentially millions of files. With the help of AutoHotKey this
was possible.

The conversion service referred to as NCSA Polyglot [8, 9],
named for a person who speaks many languages, constructs a
directed graph from the software available across a number of
Software Servers. This graph referred to as an input/output
graph (or I/O-graph) contains vertices that represents the
union of the file formats supported by the available software
and directed edges between these vertices/formats for each
application that is directly capable of converting from the
source to the target. New conversions can be created between
formats not supported by any single application by looking
for a shortest path between a given source and target vertex
within the graph. Conversions are carried out by submitting
individual tasks to their respective Software Servers.

D. Software Functionality Sharing
The Software Servers in combination with the script in-

staller tool and the Conversion Software Registry allow for

Figure 3. The form presented to a user after clicking on a software
icon within the browser view of a software server. From this form the
user can select a task to perform, select an input file, select an output
format (which may be the same as the input format), and submit the
task to be executed. To emphasize the available RESTful API access
to the software functionality we display the API call below and update
it in real time as the user makes selections. The user can achieve the
same effect of pressing the “submit” button by simply accessing the
shown RESTful API URL.

a very convenient means of sharing specific software func-
tionality. On the Windows OS one can typically share data
simply by right clicking on a folder and selecting “Share”. By
doing this data can be accessed remotely in manner that looks
identical to the way one would access the data if it were on the
local machine. Software servers allows something very similar
to be done in terms of software functionality. We modify the
Windows 7 registry as follows to add a “Share Functionality”
item to the context menu for shortcut (*.lnk) files:
[HKEY_CLASSES_ROOT\lnkfile\Shell]
[HKEY_CLASSES_ROOT\lnkfile\Shell\Share]
@="Share Functionality"
[HKEY_CLASSES_ROOT\lnkfile\Shell\Share\command]
@="C:\\Users\\polyglot\\Desktop\\Polyglot2\\Share.bat \"%1\""

When the “Share Functionality” option is selected within the
right-click menu presented on top of an application’s shortcut
icon, Figure 1, Windows will call “Share.bat” with the name
of the shortcut as an argument. The shortcut name usually
identifies the software thus we use this to identify the scripts
to download from the CSR. Once the associated software
scripts are downloaded they are configured for the local system
and an instance of the Software Server is started. At this
point the scripted software functionality is available via the
RESTful interface discussed previously. While the main driver
behind the development of Software Servers has been the
imposed API on software to utilize its functionality within
new code, due to the RESTful interface one can also access
the functionality via a web browser. In Figure 2 we show a
browser pointed to the IP address of a Software Server sharing
functionality from a number of applications. By default an icon
for each of the available applications is shown in a layout
made to be similar to that of the file managers found on most
modern operating systems. By clicking on one of the icons a
user can access the software’s functionality via a web form.
From this form, shown in Figure 3, the user can select the task
to perform, the input file, and the format of the output file.
When a task is submitted by a user it will be carried out on
the Software Server and the output file returned to the user via

a link shown to them immediately after pressing the “submit”
button. When the output file is ready the user can click on the
link to download it.

IV. ROBUSTNESS
The key concern in terms of implementation when au-

tomating software that was not designed to be automated
is robustness. True libraries should be fairly robust. Cloud
based services are expected to rarely go down. The fact of the
matter however is that desktop software sometimes crashes. As
mentioned in the previous sections we not only try to build
the wrapper scripts as robustly as possible but include “exit”,
“monitor”, and “kill” operations which allow the Software
Server to regain control when something unexpected occurs.

We empirically evaluate the robustness of a Software Server
by measuring the number of tasks per hour it is capable of
performing. We perform this evaluation per application by
performing “convert” tasks on randomly selected input files
from a small data set to randomly selected output formats. For
each application we consider two data sets consisting of 20
files each. The first set, referred to as the “valid” set, contains
files with formats that are claimed to be supported by the called
application. The second set, referred to as the “mixed” set, has
half its files made up of formats claimed to be supported by
the software and half of files not supported by the software
but renamed to have extensions that match supported formats.
The purpose of this “mixed” set is to deliberately try to break
the Software Server by causing the application being called
to choke. This set mimics an adversarial user who might be
trying to bring down the system. In reality a service should be
able to withstand incorrect inputs as this situation is likely to
happen once in a while regardless of the intent of the users.
We point out that there is no way for the Software Server to
absolutely determine the validity of the input file as it relies
solely on file extensions. We also argue that digging further
into the file runs contrary to the idea of a Software Server
which was built so one did not have to know the details of
the many formats available.

Experiments were run on a Software Server running within
a virtual machine running on VMWare’s ESXi 4.1.0. The
underlying hardware consisted of 2 4-core 2.5 GHz Xeon
processors, 8 GB of memory, and 4 TB of hard disk space
in a RAID 5 configuration. The virtual machine used utilized
1 CPU, 1 GB of memory, 100 GB of disk space and ran
Windows XP. Random conversions requests were issued for
a little over an hour to each of the applications evaluated,
with each application being evaluated twice (one for each data
set). The results of our experiment are shown in Table 3 and
Table 4.

When given the valid data set the Software Server was
able to perform on average 1394.71 tasks per hour with an
average wait per execution of 4.42 s. Of the files submitted we
estimate that on average 88.46% were converted successfully.
A conversion is deemed successful if a non-empty file is
created as output. Not surprisingly the applications with the
highest throughput are those with command line interfaces
such as ImageMagick and IrfanView (a GUI application that

can also be called from the command line in a headless
manner). When scripting applications for the Software Server
we always try to choose the most robust means of using
the software, meaning command line interfaces are chosen
over GUI interfaces when possible. VTK and Blender also
have high throughputs, both these applications having built
in scripting capabilities that were again chosen over the GUI
interface for the sake of robustness. The software that was
scripted through the GUI interface tended to be slower with
3DS Max having the least throughput at 355.08 tasks per
hour. We point out that 3DS Max is a very large high end
application. In addition it generated a relatively large variety
of dialogue boxes when opening/saving files making it a bit
more difficult to script for all possible scenarios (a possible
reason for the lower success rate of 67.13%). None the less 355
tasks per hour is not bad considering that this is GUI based
software designed for human interaction, obtaining roughly
one tenth the throughput of the fastest application. For a little
context one need only ask how many people would it take to
manually use this software to convert 355 files an hour. How
much would you have to pay them? How long would they be
willing to keep doing this incredible mundane job?

In the case of the mixed set it is convenient to see how
the throughput changes relative to the ideal situation with the
completely valid data set. Table 5 indicates the percentage
of the ideal case achieved when the Software Server is run
with data from the mixed set. We see that on average we
achieve 55.41% of the throughput achieved in the ideal case
at 64.36% the success rate. Both these values are close to 50%
which is what we would expect given that half of the mixed
set is made up of bad files. The important thing to take from
this result however is that the Software Server and machine
it was running on did not fail and new tasks were able to
be carried out after unexpected situations were encountered.
As we can see from last columns of Table 3 and Table 4
the applications kill script is called significantly more often in
the case of the mixed set. The reason for this is that when
the application attempts to open a file it believes is of a
type it can open and it is in fact some completely foreign
type that was renamed to fool it, the software will behave in
some unexpected way. When this occurs the script controlling
the software will often be lost. The Software Servers are
configured to wait a maximum of 30 seconds for any one
operation to complete. Thus once an application deviates from
a script, as is often the case when opening these sabotaged
files, the Software Server will wait 30 seconds and then call an
associated kill script to forcefully kill the software and move
on to another task. Based on the number of times called it is
clear that these kill operations are critical in order to ensure
that the Software Server does not fail. If the kill operation did
not exist we can simply look to the last column of Table 3
and Table 4 to see how many times the Software Server would
have failed per hour for each application.

V. CONCLUSION
In this paper we have described a web service that shares

software functionality through an interface that is consistent

among software, simple, widely accessible, and capable of
being programmed against. These Software Servers allow arbi-
trary 3rd party software to be used as a black box within new
code while at the same time allowing conventional desktop
software to be used within the “cloud” as web services. We
have shown how new software can potentially be added to a
given Software Server by a simple two click process similar to
that of sharing folders in the Windows operating system and
then accessed through a web browser. The only thing missing
that would allow any software to be added to a Software Server
via this simple process is a well stocked script repository. We
hope that by gaining a community of users and providing tools
such as IDE’s or IDE plugins specifically designed for GUI
scripting we will be able to build such a repository.

ACKNOWLEDGMENTS

This research has been funded through the National Science
Foundation Cooperative Agreement NSF OCI 05-25308 and
Cooperative Support Agreement NSF OCI 05-04064 by the
National Archives and Records Administration (NARA).

REFERENCES

[1] C. Pancerella, “The use of agents and objects to integrate
virtual enterprises,” SANDIA Report 8226, 1998.

[2] R. Whiteside, E. Friedman-Hill, and R. Detry, “Pre: A
framework for enterprise integeration,” SANDIA Report
8505C, 1998.

[3] P. Bajcsy, R. Kooper, L. Marini, B. Minsker, and J. My-
ers, “A meta-workflow cyber-infrastructure system de-
signed for environmental observations,” Technical Report
ISDA01-2005, 2005.

[4] B. Ludascher, I. Altintas, C. Berkeley, D. Higgins,
E. Jaeger, M. Jones, E. Lee, J. Tao, and Y. Zhao, “Sci-
entific workflow management and the kepler system,”
Concurrence and computation: Practice and Experience,
Special Issue on Scientific Workflows, 2006.

[5] D. Hull, K. Wolstencroft, R. Stevens, C. Goble,
M. Pocock, P. Li, and T. Oinn, “Taverna: A tool for
building and running workflows of services,” Nucleic
Acids Research, 2006.

[6] T. Yeh, T. Chang, and R. Miller, “Sikuli: Using gui
screenshots for search and automation,” UIST, 2009.

[7] T. Chang, T. Yeh, and R. Miller, “Gui testing using
computer vision,” CHI, 2010.

[8] K. McHenry, R. Kooper, and P. Bajcsy, “Taking matters
into your own hands: Imposing code reusability for uni-
versal file format conversion,” The Microsoft e-Science
Workshop, 2009.

[9] ——, “Towards a universal, quantifiable, and scalable file
format converter,” The IEEE Conference on e-Science,
2009.

[10] M. Ondrejcek, K. McHenry, and P. Bajcsy, “The conver-
sion software registry,” The Microsoft e-Science Work-
shop, 2010.

Application tasks/hour success rate average wait kills
3ds Max 355.08 67.13% 10.00 s (8.85 s) 37

Adobe 3D Reviewer 628.11 99.53% 5.54 s (3.99 s) 0
Blender 2024.71 100.00% 1.65 s (0.82 s) 0

Google SketchUp 362.00 95.36% 9.81 s (7.48 s) 1
ImageMagick 1871.34 89.59% 1.68 s (3.70 s) 12

IrfanView 3163.12 99.91% 0.92 s (0.85 s) 0
Microsoft Paint 795.74 93.66% 4.36 s (6.88 s) 48

Microsoft Word 2007 756.04 80.37% 4.60 s (3.39 s) 11
ParaView 750.93 93.41% 4.67 s (6.62 s) 47

VTK 3240.04 65.60% 0.94 s (0.43 s) 0
Average 1394.71 88.46% 4.42 s (4.30 s) 15.60

Table 3. Software server robustness test results on the “valid” data set containing files with valid input formats. These results represent an ideal throughput
for the given system.

Application tasks/hour success rate average wait kills
3ds Max 180.04 36.61% 19.86 s (11.02 s) 67

Adobe 3D Reviewer 271.01 66.79% 13.15 s (11.37 s) 81
Blender 542.44 85.04% 6.5s (10 s) 82

Google SketchUp 221.97 64.16% 16.09 s (11.08 s) 80
ImageMagick 2291.69 45.70% 1.3 s (2.56 s) 7

IrfanView 2700.51 55.35% 1.06 s (1.1 s) 0
Microsoft Paint 198.54 46.77% 17.97 s (13.21 s) 106

Microsoft Word 2007 162.33 28.05% 22.05 s (11.84 s) 110
ParaView 282.96 68.40% 12.55 s (12.08 s) 87

VTK 2597.36 69.02% 1.21 s (1.1 s) 0
Average 944.89 56.59% 11.17 s (8.54 s) 62.00

Table 4. Software server robustness test results on the “mixed” data set containing files with half valid input formats and half invalid input formats renamed
to appear as valid input formats. These results represent the throughput achieved given a hostile user attempting to deliberately hinder the system. The
important thing to note here is that the server did not fail and the overall effect was a diminished throughput. In an actual system such a user can be easily
detected and banned from the service.

Application tasks/hour success rate average wait
3ds Max 50.70% 54.54% 198.60% (124.52%)

Adobe 3D Reviewer 43.15% 67.11% 237.36% (284.96%)
Blender 26.79% 85.04% 393.94% (1219.51%)

Google SketchUp 61.32% 67.28% 164.02% (148.13%)
ImageMagick 122.46% 51.01% 77.38% (69.19%)

IrfanView 85.37% 55.40% 115.22% (129.41%)
Microsoft Paint 24.95% 49.94% 412.16% (192.01%)

Microsoft Word 2007 21.47% 34.90% 479.35% (349.26%)
ParaView 37.68% 73.23% 268.74% (182.48%)

VTK 80.16% 105.21% 128.72% (255.81%)
Average 55.41% 64.36% 247.55% (295.53%)

Table 5. Software server robustness results showing difference between “valid” and “mixed” data sets (indicated as a percentage of the throughput achieved
in the ideal case using the “valid” data set).

