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Abstract. We theoretically explore the optical flux lattices produced for
ultra-cold atoms subject to laser fields where both the atom–light coupling
and the effective detuning are spatially periodic. We analyze the geometric
vector potential and the magnetic flux it generates, as well as the accompanying
geometric scalar potential. We show how to understand the gauge-dependent
Aharonov–Bohm singularities in the vector potential, and calculate the contin-
uous magnetic flux through the elementary cell in terms of these singularities.
The analysis is illustrated with a square optical flux lattice. We conclude with
an explicit laser configuration yielding such a lattice using a set of five properly
chosen beams with two counterpropagating pairs (one along the x axes and the
other along the y axes), together with a single beam along the z-axis. We show
that this lattice is not phase-stable, and identify the one phase-difference that
affects the magnetic flux. Thus armed with a realistic laser setup, we directly
compute the Chern number of the lowest Bloch band to identify the region where
the non-zero magnetic flux produces a topologically non-trivial band structure.
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1. Introduction

Atomic quantum gases are systems where condensed matter and atomic physics meet.
Cold atomic gases exhibit a number of condensed matter phenomena [1–4], such as the
superfluid–Mott transition [5], Berezinskii–Kosterlitz–Thouless superfluidity [6] and the
Bose–Einstein condensation-to-Bardeen–Cooper–Schrieffer crossover [7, 8]. Because the atoms
constituting these quantum gases are electrically neutral, no vector potentials affect their center-
of-mass motion. Such vector potentials might provide the Lorentz force essential for magnetic
phenomena in solids, such as the quantum Hall effect [9]. The standard way to produce an
artificial magnetic field is to rotate an atomic cloud, leading to a non-trivial vector potential in
the rotating frame of reference [10, 11]. The various proposed schemes to create an effective
magnetic field for ultra-cold atoms without rotation [12] can be divided into two categories.

The first category relies on a primary optical lattice which traps atoms at its sites. The
magnetic flux is created by inducing asymmetric tunneling between lattice sites, so that atoms
acquire a non-zero phase after completing a closed loop along a plaquette [13–22]. Such
asymmetries can be induced by laser-assisted tunneling [13–16, 18, 21, 23] or using time-
dependent lattices [15, 17, 19, 20, 22].

The second group of proposals is based on the concept of geometric gauge potentials
which are encountered in many areas of physics [24–32]. In atomic gases, the geometric
vector and scalar potentials were first considered in the late 1990s for atoms interacting with
the laser fields [33–35], where the atoms are ‘dressed’ by laser beams. The resulting position
dependence of the dressed internal states leads to geometric vector and scalar potentials. The
method can provide a non-zero effective magnetic field using non-trivial spatial arrangements
of laser fields [36–43] or position-dependent detuning of the atom–light coupling [44–46].
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In these approaches the magnetic flux through the atomic cloud scales linearly with the cloud’s
extent [40, 42, 44, 45] and not its area. For large systems this is a major obstacle to reaching the
sizable magnetic fluxes required for achieving the fractional Hall effect [47].

A new class of geometric potentials termed ‘flux lattices’ were recently shown to yield
a magnetic flux proportional to the surface area of the atomic cloud [48], see also [49]. In
this proposal, a two-level atom was coupled to a spatially periodic laser field where both the
atom–light coupling and the detuning term were oscillatory. This approach simultaneously
generates a non-staggered magnetic flux along with a lattice potential, thus providing an optical
flux lattice [48].

The vector potential A plays an important role in the quantum physics [50]. It is featured
in the Peierls substitution [51–53] widely used in tight binding models in solids to describe
the motion of charged particles in a magnetic field. Specifically, the tunneling matrix element
between the lattice sites rA and rB acquires the Peierls phase factor proportional to

R rB

rA
A · dr.

Similar Peierls phase factors emerge also in the tunneling matrix elements between the sites of
an optical lattice for electrically neutral ultra-cold atoms affected by an artificial magnetic field.

The geometric vector potential contains gauge-dependent singularities for optical flux
lattices: to avoid these singularities, Cooper [48] concentrated on the magnetic flux rather than
on the underlying vector potential. Here we explicitly reformulate the previous analysis of
the optical flux lattices and explore them directly in terms of the geometric vector potential,
as well as an accompanying geometric scalar potential. We show how to understand the
gauge-dependent Aharonov–Bohm (AB) singularities [50] appearing in the vector potential
and calculate the continuous magnetic flux through the elementary cell in terms of these
singularities, providing a straightforward method of finding the total magnetic flux. Our analysis
is not restricted to two atomic internal states and is applicable to situations where the atom in
the external electromagnetic field has total spin- f (with 2 f + 1 internal atomic states). This
is important for applying the theory to the specific atomic setups which involve more than
two atomic internal states. For instance, the f = 1 and 2 situations directly describe the two
hyperfine manifolds in 87Rb’s ground electronic state.

Next, we analyze a square optical flux lattice and describe a way of creating it using
Raman coupling between the atomic magnetic sublevels. A related setup proposed recently by
Cooper and Dalibard aimed at producing triangular and hexagonal optical flux lattices used three
coplanar lasers intersecting at 120�, with an additional beam normal to the plane spanned by the
first three [54]. Now we present an explicit laser configuration yielding a square flux lattice and
directly compute the Chern number of the lowest Bloch band. We identify the region where
the non-zero magnetic flux produces a topologically non-trivial band structure for this lattice.
In this configuration, a non-zero and quantized geometric magnetic flux always traverses each
unit cell; however, the band structure has non-zero Chern number only over a modest range of
parameters. Because of this, we studied typical experimental imperfections, such as polarization
errors or a possible phase mismatch of the lasers producing the flux lattice, and identified the
factors that must be cared for in experiment.

2. Hamiltonian and its eigenstates

Before focusing on a specific physical system, we begin by considering the very general problem
of a multi-level atom moving in the presence of a spatially inhomogenous coupling Hamiltonian
(for example, produced by a combination of optical and magnetic fields). The Hamiltonian
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Frequency

a. Two-level b. Three-level

Figure 1. Traditional representation of the M̂ = � · F̂ coupling scheme for (a)
total angular momentum f = 1/2 and (b) total angular momentum f = 1. The
bare atomic states are labeled by |m Fi and in both cases are detuned from each
other by a frequency �z. These levels are coupled with strength proportional to
�x ± i�y .

describing such combined internal and center-of-mass motion is

Ĥ =


p2

2m
+ U (r)

�
1̂ + M̂(r), (1)

where p = �i h̄r is the atomic momentum; 1̂ is the identity operator; U (r) is a state-
independent ‘scalar’ potential and M̂ is the state-dependent part of the Hamiltonian. Here we
focus on the case where the atom affected by the light fields behaves like a spin in a magnetic
field, so the state-dependent Hamiltonian M̂(r) is

M̂(r) = � · F̂ ⌘�F̂�, (2)

where the vector � ⌘ �(r) = (�x(r),�y(r),�z(r)) describes the spatially dependent coupling
between the atomic internal states, �(r) = |�(r)| being the total coupling strength; F̂ =
(F̂ x , F̂ y, F̂ z) is a vector operator satisfying the angular momentum algebra (to be referred to
as the spin operator); and F̂� ⌘ F̂�(r) is the spatially dependent projection of F̂ along �. The
position dependence of the Hamiltonian M̂(r) therefore originates from the position-dependent
atom–light interaction through the coupling vector �(r): a rapidly varying effective magnetic
field. The physical implementation of such a Hamiltonian—equivalent to the Zeeman effect for
a spatially dependent magnetic field—will be discussed in section 5.

Figure 1(a) depicts the (quasi-)spin-1/2 case, where h̄�z is the light-induced detuning
between the two internal atomic states |m F = ±1/2i, and h̄(�x ± i�y)/2 is the transition
matrix element coupling the two states together. In what follows, we do not restrict ourselves
to the spin-1/2 case and consider N internal states |m Fi, where m F 2 {� f, f + 1, . . . , f },
and the quantity f = (N � 1)/2 is the total angular momentum quantum number. The
spin-1 case depicted in figure 1(b), has f = 1 and N = 3. We emphasize that the atomic states
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Figure 2. Representation of the coupling vector � = (�x ,�y,�z) in terms of
the spherical angles ✓ and �.

|m Fi do not necessarily represent the true spin states. They can be the atomic internal states
of arbitrary origin, provided that the operator F̂ featured in the atomic Hamiltonian obeys the
angular momentum algebra.

2.1. Diagonalization via a unitary transformation

The projected momentum operator F̂� entering the coupling Hamiltonian M̂ can be related to
the eigenstates of F̂ z via a unitary transformation Ŝ� where

F̂� = Ŝ� F̂ z Ŝ�1
� , (3)

with

Ŝ� = e�i F̂ z�/h̄e�i F̂ y✓/h̄ei F̂ z�/h̄. (4)

We parameterize the coupling vector � = (�x ,�y,�z) in terms of the spherical angles

tan� = �y

�x
and cos ✓ = �z

�
(5)

shown in figure 2.
The operators F̂2 and F̂ z have eigenstates |m Fi ⌘ | f, m Fi identified by the total angular

momentum and its ez projection

F̂2 |m Fi = h̄2 f ( f + 1) |m Fi and F̂ z |m Fi = h̄m F |m Fi ,

f and m F are the corresponding quantum numbers. Multiplying the last equation by Ŝ�, one
has

F̂� |m F , �i = h̄m F |m F , �i , where |m F , �i = Ŝ� |m Fi . (6)

The transformed states |m F , �i are characterized by the projection h̄m F of the momentum
operator F̂ along the coupling vector �. In this way, the coupling Hamiltonian M̂ =�F̂� has a
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set of position-dependent eigenstates |m F , �i ⌘ |m F , �(r)i related to the eigenstates of F̂ z via
the position-dependent unitary transformation Ŝ� ⌘ Ŝ�(r). Using equation (4) for Ŝ� and the
fact that |m Fi is an eigenstate of F̂ z, one arrives at the eigenstates

|m F , �i ⌘ |m F , ✓,�i = ei(m F �F̂ z/h̄)�e�i F̂ y✓/h̄ |m Fi , (7)

and energies

Vm F = h̄m F� (8)

of the coupling Hamiltonian M̂ . Here, Vm F ⌘ V (r) is the position-dependent energy of the local
eigenstate |m F , �(r)i. Interestingly, similar kinds of eigenstates give rise to artificial gauge
potential terms describing the rotation of diatomic molecules [26, 27] and the physics of atomic
collisions [55, 56].

3. Gauge potentials

For an atom subject to the Hamiltonian of equation (1), the state vector describing both its
internal and motional degrees of freedom can be expressed in the basis of dressed states

|9(r, t)i =
X

m0
F

 m0
F
(r, t) |m 0

F , �i ,

where  m0
F
(r, t) is a wave function describing the atom’s motion in the basis of local eigenstates

|m 0
F , �i ⌘ |m 0

F ,�(r)i. We are interested in the situation where � 6= 0, so the local eigenstates
|m 0

F , �i are non-degenerate everywhere.
If an atom is prepared in one of these dressed states with m 0

F = m F , and its characteristic
kinetic energy is small compared to 1E = h̄� the energy difference between adjacent spin
states, the internal state of the atom will adiabatically follow the dressed state |m F , �i
as the atom moves, and contributions from other states with m 0

F 6= m F can be neglected.
Projecting the full Schrödinger equation i h̄ |9̇(r, t)i = Ĥ |9(r, t)i onto the selected internal
eigenstate |m F , �i yields a reduced Schrödinger equation for the atomic center-of-mass motion
i h̄ ̇m F (r, t) = H m F (r, t) with an effective Hamiltonian

H = [p �A(r)]2

2m
+ U (r) + V (r) + W (r). (9)

In this expression, the geometric vector

A⌘A(r) = i h̄ hm F , �| r |m F , �i (10)

and scalar

W ⌘ W (r) = h̄2

2m

X

m0
F 6=m F

��hm 0
F , �| r |m F , �i��2

(11)

potentials appear due to the position dependence of the atomic dressed states. The vector
potential can be interpreted as the average center-of-mass momentum of the selected
internal state |m Fi ⌘ |m F (r)i. The scalar potential W (r) emerges due to the elimination
of the remaining atomic internal states. It represents the kinetic energy of the oscillatory
micromotion [57, 58] due to the tiny transitions to the eliminated states

��m 0
F , �

↵ ⌘ ��m 0
F , � (r)

↵

with m 0
F 6= m F .
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Equation (9) contains three distinct scalar potentials: (a) the state-independent potential
U (r) featured in the initial Hamiltonian (1), which we shall call U (r) the ‘scalar light shift’;
(b) the ‘adiabatic scalar potential’ V (r) ⌘ Vm F arising from spatial variations in the magnitude
�(r); and (c) the ‘geometric scalar potential’ W (r) described above. All three contribute to the
potential energy of atoms in the dressed state basis.

3.1. Vector and scalar potentials

Using equation (7), the matrix elements featured in the vector and scalar potentials are
⌦
m 0

F , �
�� r |m F , �i = i

h̄
ei(m F �m0

F)� hm 0
F |

h⇣
h̄m F � ˆ̃Fz

⌘
r�� F̂ yr✓

i
|m Fi , (12)

with ˆ̃Fz = exp(i F̂ y✓/h̄)F̂ z exp(�i F̂ y✓/h̄) = F̂ z cos ✓ + F̂ x sin ✓ . Using the identities
hm F | F̂ x |m Fi = hm F | F̂ y |m Fi = 0 and hm F | F̂ z |m Fi = h̄m F , equations (10)–(12) provide
the vector potential

A(r) = h̄m F (cos ✓ � 1) r�. (13)

The vector potential (equation (13)) is maximum in magnitude when m F = ± f , and is zero for
m F = 0. For f = 1/2 and m F = 1/2, equation (13) reduces to the result presented in [12].

To determine the scalar potential, we need the off-diagonal matrix elements of
hm 0

F , �|r|m F , �i which are
⌦
m 0

F , �
�� r |m F , �i = � i

h̄
ei(m F �m0

F)� hm 0
F |

⇣
F̂ x sin ✓r� + F̂ yr✓

⌘
|m Fi , (14)

for m 0
F 6= m F . Combining equations (11) and (14), and using the completeness relation, we

arrive at the geometric scalar potential

W (r) = h̄2

4m
g f,m F

⇥
sin2 ✓ (r�)2 + (r✓)2⇤ , (15)

with

g f,m F = f ( f + 1) � m2
F . (16)

We made use of hm F | F̂2
x |m Fi = hm F | F̂2

y |m Fi = h̄2g f,m F /2. In particular, for f = 1/2, one has
g f,m F = 1/2, and like the vector potential, the scalar potential reduces to that presented in [12].
Generally, W (r) depends both on the total spin f and on its projection m F . For instance, for
f = 1, one has g f,m F = 2 � m2

F , showing that W (r) is maximum for m F = 0 and is half of that
for m F = ±1.

3.2. Alternative gauge

Because each of the local eigenstates can be assigned an arbitrary position-dependent phase
'm F (r), the vector potential A(r) ⌘Am F (r) in equation (13) is not unique. Effecting a state-
dependent gauge transformation

|m F , �i0 = exp
⇥
i'm F (r)

⇤ |m F , �i , (17)

the vector potential A(r) transforms to A0(r) =A(r) � h̄r'm F (r). For example, by taking
'm F (r) = �2�m F , the initial vector potential given by equation (13) becomes

A0(r) = h̄m F (cos ✓ + 1) r�.
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This seemingly esoteric change can have a significant impact because the r� contribution
may be singular when cos ✓ = ±1 (near the z axes, see figure 2) if the factors (cos ✓ � 1) or
(cos ✓ + 1) do not compensate for the singularity by simultaneously going to zero. The vector
potential A(r) is singular if ✓ = ⇡ , but in the alternative gauge the vector potential A0(r) has
singularities when ✓ = 0 at spatially different points than in the initial gauge! This is because the
original and transformed local eigenstates (|m F , �i ⌘ |m F , ✓,�i and |m F , �i0 ⌘ |m F , ✓,�i0)
do not have a well-defined phase for ✓ = ⇡ and 0, respectively.

3.3. Magnetic flux

The singularities in the vector potential correspond to AB-type flux tubes (piercing the ex–ey-
plane) each with an integer flux quantum. Since the AB-type flux containing an integer number
flux quanta cannot be observed [50], the two vector potentials A(r) and A0(r) are equivalent
and produce the same effective magnetic field

B(r) = r ⇥A(r) = h̄m Fr (cos ✓) ⇥ r�. (18)

The gauge-dependent AB singularities (if any) present in the vector potential must be absent in
equation (18) for B(r).

It is convenient to represent the magnetic flux density in terms of the unit vector N = �/�

B(r) = �h̄m F
rNx ⇥ rNy

Nz
. (19)

Thus if �z alternates in sign at the points where �x =�y = 0, this might compensate the
alternation of the rNx ⇥ rNy sign at these points, giving a non-zero magnetic flux, such as
the one given by equation (30) below. This shows the necessity to have an oscillating detuning
�z in addition to the oscillating coupling �x + i�y .

As we show in section 4.2, the geometric scalar potential W (r) contributes most
significantly to the overall scalar potential U (r) + V (r) + W (r) at the maxima of the effective
magnetic field where �x + i�y = 0, and is zero at the points of the minimum magnetic flux
where �z = 0.

3.4. Periodic atom–light coupling

Given this general background, we now consider the case where the coupling vector � =
(�x ,�y,�z) is spatially periodic in the ex–ey-plane

�(r + rn,m) = �(r), rn,m = na1 + ma2, (20)

where a1 and a2 are the primitive vectors defining a 2D lattice in the ex–ey-plane, with
{n, m} 2 Z. In this case, both the atomic internal dressed states |m̃ F(r)i and the corresponding
geometric potentialA(r) have the same periodicity (usually the geometric scalar potential W (r)
has a periodicity twice as small as the initial Hamiltonian and the geometric vector potential).
Due to the periodicity of the vector potential the total flux over the elementary cell is zero:

↵ = 1
h̄

I

cell
A · dr = 1

h̄

ZZ

cell
Btot · dS = 0, (21)
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where Btot = B(r) +BAB(r) is the total magnetic flux density with contributions both from the
continuous (background) magnetic flux density B(r) and possibly a set of gauge-dependent
singular fluxes of the AB type represented by BAB(r).

Thus it is, strictly speaking, impossible to produce a non-zero effective magnetic flux
↵ over the elementary cell using the periodic atom–light coupling. However, this does not
preclude a non-staggered continuous magnetic flux density B(r) over the elementary cell as
long as the vector potential contains (gauge-dependent) singularities of the AB type carrying
together a non-zero number of the Dirac flux quanta. The AB singularities are associated
with the points where the �x + i�y goes to zero and hence cos ✓ ! ±1. Deducting these non-
measurable gauge-dependent singularities, the remaining flux over the elementary cell can be
non-zero:

↵0 = 1
h̄

ZZ

cell
B · dS = �1

h̄

ZZ

cell
BAB(r) · dS . (22)

The physical flux can hence be expressed in terms of the vector potential

↵0 = �1
h̄

X I

singul
A · dr = �1

h̄

X I

singul
A0 · dr, (23)

where the summation is over the singular points of the vector potential (emerging at cos ✓ ! �1
for A and at cos ✓ ! 1 for A0) around which the contour integration is carried out. In the
neighborhood of each singular point (different forA andA0) the vector potentials have a Dirac-
string (the AB singularity) piercing the ex–ey-plane, giving

A! �2h̄m Fr� and A0 ! 2h̄m Fr�. (24)

Thus each integral in equation (23) provides an integer number of the Dirac flux quanta. To
obtain a non-zero flux ↵0, the sum of the singular contributions must be non-zero. The flux is
maximum if all these singular contributions have the same sign, as is the case for the square flux
lattice considered below.

To summarize, the optical flux lattice contains a background non-staggered magnetic field
B plus an array of gauge-dependent Dirac-string fluxes of opposite sign as compared to the
background. The two types of fluxes compensate for each other, so the total magnetic flux over
an elementary cell is zero as is required from the periodicity of the Hamiltonian. However,
the Dirac-string fluxes are non-measurable and hence must be excluded from any physical
consideration. As a result, a non-staggered magnetic flux over the optical flux lattice is possible.

4. Square optical flux lattice

We now construct a simple model flux lattice generated by a spatially periodic coupling vector
� = (�x ,�y,�z) with components

�x =�? cos(x⇡/a),

�y =�? cos(y⇡/a), (25)

�z =�k sin(x⇡/a) sin(y⇡/a).

This coupling has period 2a along ex and ey . It is convenient to define dimensionless coordinates
x 0 = ⇡x/a, y0 = ⇡y/a and z0 = ⇡ z/a. In the symmetric case, �? =�k, the scheme reduces to
the one considered previously in [48]. As will be discussed in section 5.1.2, the coupling vector
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Figure 3. Sites of the square optical flux lattice corresponding to the minima of
the adiabatic energy V (x, y) for m F < 0.

in equation (25) can be produced for alkali atoms using five laser beams intersecting at right
angles: a pair counterpropagating along ex , a second pair counterpropagating along ey and a
single beam propagating along ez.

The total Rabi frequency resulting from equation (25) is

�=
q
�2

k +
�
�2

? ��2
k
� �

f 2
x + f 2

y

�
+�2

k f 2
x f 2

y , (26)

where fu = cos(u0). The resulting adiabatic energies Vm F = h̄m F� have periodicity a, half that
of the atom–light coupling.

When �2
? >�2

k/2, the minima of the m F < 0 adiabatic scalar potential V (x, y) are
positioned at x 0

n = ⇡n and y0
m = ⇡m (brown dots in figure 3) where�z = 0. The energy maxima

are positioned at x 0
n,max = ⇡(n + 1/2) and y0

m,max = ⇡(m + /2), where the atom–light coupling
vanishes: �x + i�y ! 0. Thus one has

Emin = V (⇡n,⇡m) = h̄m F

p
2�?,

Emax = V (⇡(n + 1/2),⇡(m + /2)) = h̄m F�k. (27)

In the vicinity of the energy maxima, one has

�x ⇡ ��?
�
x 0 � x 0

n,max

�
(�1)n,

�y ⇡ ��?
�
y0 � y0

m,max

�
(�1)m, (28)

�z ⇡�k(�1)n+m.

Thus for odd (even) values of n + m the angle � rotates clockwise (anti-clockwise) around
the singularities of the vector potential positioned at x 0 = x 0

n,max and y0 = y0
n,max, whereas �z

alternates its sign when going from even to odd values of n + m. This ensures a non-zero
magnetic flux over the elementary cell when integrating the vector potential around its singular
points in equations (23) and (24).
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Figure 4. Rectangular coordinate flux lattice computed for � = 1. (a) Position-
dependent effective Zeeman magnetic field �. The vectors denote the
components in the ex–ey-plane and the color depicts the ez component.
(b) Geometric potentials. The color indicates the geometric scalar potential
W (r), and the arrows denote the vector potentialA(r). (c) Magnitude of effective
geometric magnetic field B along ez. Note that regions of largest B correspond
to the maxima of W (r) indicated in red.

4.1. Magnetic flux

Consider now the flux passing through the elementary cell with x 0 2 [0, 2⇡) and y0 2 [0, 2⇡).
The vector potential A has Dirac-string singularities for �z = ��k corresponding to odd
values of n + m in equation (28). Within the elementary cell these two points are positioned
at (n = 1, m = 0) and (n = 0, m = 1), each providing 2m F magnetic flux quanta. In fact,
integrating the vector potential around each singular point, equations (23) and (24) yield the
background magnetic flux

↵0 = �1
h̄

X I

singul
A · dr = �8⇡m F . (29)

In particular, for the spin-1/2 case (m F = 1/2) a measurable continuous flux over the elementary
cell accommodates two Dirac quanta [48]. The same gauge-independent magnetic flux ↵0

is obtained using the alternative vector potential A0 which contains gauge-dependent AB
singularities at different points: n = m = 0 and n = m = 1, again each carrying 2m F Dirac flux
quanta.

Using equation (19), one arrives at the explicit result for the magnetic flux density

B(r) = h̄m F

⇣⇡
a

⌘2 �
�

f 2
x f 2

y � 1
�

⇥
f 2

x + f 2
y +�2g2

x g2
y

⇤3/2 ez, (30)

where fu = cos(u0), gu = sin(u0) and � =�k/�?. Equation (30) explicitly demonstrates that
the magnetic flux, while non-uniform, is non-staggered, and its profile can be tailored by
changing the ratio of the Rabi frequency amplitudes �. It is evident that the magnetic flux is zero
at the potential minima xn = na and ym = ma for finite values of �. For � = 1, equation (30) is
equivalent to a result obtained independently by Dalibard [59].

Figure 4 displays the spatial distribution of the effective Zeeman field �, the geometric
vector and scalar potentialsA and W , as well as the geometric magnetic field for � = 1. Figure 5
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Figure 5. Dependence of geometric gauge field B(r) on �. (a) � = 0.2,
(b) � = 0.5, (c) � = 1.0 and (d) � = 2.0.

presents the geometric magnetic field B for various values of �, showing that the most uniform
magnetic field is reached for � = 1.

4.2. Scalar potential

Assuming that �k =�?, the second term entering the scalar potential (equation (15)) is

sin2 ✓ (r�)2 =
⇣⇡

a

⌘2 f 2
x + f 2

y � 2 f 2
x f 2

y�
1 + f 2

x f 2
y

� �
f 2

x + f 2
y

� . (31)

It is evident that sin2 ✓ (r�)2 is zero at the minima of the adiabatic energy xn = na and ym = ma.
Additionally, it equals (⇡/a)2 at the maxima of the adiabatic energy xn,max = na + a/2 and
ym,max = ma + a/2. This part of the scalar potential behaves similar to the adiabatic energy
E� (x, y), thus increasing the energy maxima by h̄2⇡ 2/8 ma2.

The first term entering the scalar potential (equation (15)) is

(r✓)2 =
⇣⇡

a

⌘2 g2
x f 2

y (1 + f 2
x )2 + g2

y f 2
x (1 + f 2

y )2

�
1 + f 2

x f 2
y

� �
f 2

x + f 2
y

� . (32)

The gradient (r✓)2 is zero at the minima of the adiabatic energy where gx = gy = 0, but is equal
to (⇡/a)2 if fx = fy = 0, i.e. at the center of each plaquette thus raising the potential there.

In this way, the geometric scalar potential is given by equation (15) together with
equations (31) and (32). It is zero at the corners of a plaquette and reaches its maximum values
at the center of the plaquette, thus behaving similar to the effective magnetic field, as is evident
in figure 4. The scalar potential thus repels atoms from the area of high magnetic field at the
center of the plaquette.
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5. Alkali atoms and light shifts

In this section, we shall first demonstrate a possible way to engineer the state-independent
potential U (r) together with the state-dependent potential M̂ featured in the general atomic
Hamiltonian given by equation (1). Subsequently, we analyze atom–light configurations
providing the square optical flux lattices.

Let us consider a system of ultracold alkali atoms in their electronic ground state manifold
illuminated by one or several laser fields which non-resonantly couple the ground states with
the lowest electronic excited states. In the presence of an external magnetic field (but without
including the contributions from the laser fields), the Hamiltonian for the atomic ground state
manifold is

H0 = Hk + AhfÎ · Ĵ +
µB

h̄
B ·

⇣
gJ Ĵ + gI Î

⌘
,

where Hk = p2/2m is the kinetic contribution to the Hamiltonian; Ahf is the magnetic dipole
hyperfine coefficient; and µB is the Bohr magneton. The Zeeman term includes separate
contributions from Ĵ = L̂ + Ŝ (the sum of the orbital L̂ and electronic spin Ŝ angular momentum)
and the nuclear angular momentum Î, along with their respective Landé g-factors. We next
consider the additional contributions to the atomic Hamiltonian resulting from off-resonant
interaction with laser fields.

As was observed in [60–62], conventional spin-independent (scalar, Us) optical potentials
acquire additional spin-dependent terms near atomic resonance: the rank-1 (vector, Uv) and
rank-2 tensor light shifts [60]. For the alkali atoms, adiabatic elimination of the excited states
labeled by j = 1/2 (D1) and j = 3/2 (D2) yields an effective atom–light coupling Hamiltonian
for the ground state atoms (with j = 1/2):

HL =


us(E⇤ · E) +
i uv(E⇤⇥E)

h̄
· J

�
.

The rank-2 term is negligible for the parameters of interest and hence is not included in HL .
Here E is the optical electric field; uv = �2us1FS/3(!�!0) determines the vector light shift;
1FS = !3/2 �!1/2 is the fine-structure splitting; h̄!1/2 and h̄!3/2 are the D1 and D2 transition
energies respectively, and !0 = (2!1/2 +!3/2)/3 is a suitable average. us sets the scale of the
light shift and proportional to the atoms’ ac polarizability.

The contributions from the scalar and vector light shifts featured in HL can be
independently specified with informed choices of laser frequency ! and intensity. Evidently,
the vector light shift is a contribution to the total Hamiltonian acting as an effective magnetic
field

Beff = i uv(E⇤⇥E)

µBgJ
,

which acts on Ĵ and not on the nuclear spin Î. Instead of using the full Breit–Rabi equation [63]
for the Zeeman energies, we assume that the Zeeman shifts are small in comparison with the
hyperfine splitting—the linear, or anomalous, Zeeman regime—in which case the effective
Hamiltonian for a single manifold of total angular momentum F̂ = Ĵ + Î states is

H0 + HL = us(E⇤ · E) +
µBgF

h̄
(B + Beff) · F̂ +

Ahf

2

⇣
F̂2 � Ĵ2 � Î2

⌘
.
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Note that Beff acts as a true magnetic field and adds vectorially with B, and since |gI /gJ | '
0.0005 in the alkali atoms, we safely neglected a contribution �µBgI Beff · Î/h̄ to the atomic
Hamiltonian. We also introduced the hyperfine Landé g-factor

gF = gJ
f ( f + 1) � i(i + 1) + j ( j + 1)

2 f ( f + 1)
.

In 87Rb’s lowest energy manifold with f = 1, for which j = 1/2 and i = 3/2, we obtain gF =
�gJ/4 ⇡ �1/2. In the following, we always consider a single angular momentum manifold
labeled by f , and select its energy at zero field as the zero of energy.

5.1. Bichromatic light field

By combining state-dependent optical lattices along with ‘Raman coupling lattices’, it is
possible to create lattice potentials with large, non-staggered, artificial magnetic fields [48]
even for alkali atoms [54]. Consider an ensemble of ultra-cold atoms subjected to a magnetic
field B = B0ez. The atoms are illuminated by several lasers with frequencies ! and ! + �!,
where �! ⇡ |gFµB B0/h̄| differs by a small detuning � = gFµB B0/h̄ � �! from the linear
Zeeman shift between m F states (where |�| ⌧ �!). In this case, the complex electric field
E = E!� exp(�i!t) + E!+ exp [�i(! + �!)t] contributes to the combined magnetic field, giving

B + Beff = B0ez +
iuv

µBgJ

⇥ �
E⇤
!�⇥E!�

�
+

�
E⇤
!+

⇥E!+

�
+

�
E⇤
!�⇥E!+

�
e�i�!t +

�
E⇤
!+

⇥E!�
�

ei�!t
⇤
.

The first two terms of Beff add to the static bias field B0ez, and the remaining two time-
dependent terms describe transitions between different m F levels. Provided that B0 � |Beff| and
�! are large compared to the kinetic energy scales, the Hamiltonian can be simplified by time-
averaging to zero the time-dependent terms in the scalar light shift and making the rotating wave
approximation (RWA) to eliminate the time-dependence of the coupling fields. The resulting
contribution to the Hamiltonian

ĤRWA = U (r)1̂ + � · F̂ (33)

takes the form of equation (1) once we identify the scalar potential

U (r) = us
�
E⇤
!� · E!� + E⇤

!+
· E!+

�
, (34)

and the RWA effective magnetic field

� =

� + i

uv

h̄

�
E⇤
!�⇥E!� + E⇤

!+
⇥E!+

� · ez

�
ez � uv

h̄
Im

⇥�
E⇤
!�⇥E!+

� · �ex � i ey
�⇤

ex (35)

�uv

h̄
Re

⇥�
E⇤
!�⇥E!+

� · �ex � i ey
�⇤

ey.

This expression is valid for gF > 0 (for gF < 0 the sign of the ex and i ey terms would both be
positive, owing to selecting the opposite complex terms in the RWA). The final form of this
effective coupling shows that, while it is related to the initial vector light shifts, � is composed
of both static and resonant couplings in a way that goes beyond the restrictive Beff / i E⇤ ⇥ E
form. This enables flux lattices in the alkali atoms.

Importantly for practical flux-lattice configurations,�z depends both on the static magnetic
field and on the component of Beff along ez. For practical considerations it is undesirable that
the resonance condition be a function of the laser intensity, so we seek solutions without a
contribution from this term.
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5.1.1. Two Raman beams. First consider the straightforward example of the two counterprop-
agating Raman beams used in existing experiments [45, 46, 64–67]. In this simple case

E!� = EeikRxey and E!+ = Ee�ikRxez,

describing the electric field of two lasers counterpropagating along ex with equal intensities
and crossed linear polarization, where kR = 2⇡/� is the single photon recoil wave vector, and
ER = h̄2k2

R/2m is the associated recoil energy. The resulting scalar light shift U (r) and the
effective magnetic field � describing the vector light shift are

U (r) = us
�
E⇤
!� · E!� + E⇤

!+
· E!+

� = 2us E2

� = �ez +�R
⇥
sin (2kRx) ex � cos (2kRx) ey

⇤
,

where �R = uv E2/h̄. These describe a constant scalar light shift along with a spatially rotating
effective magnetic field, as discussed in [64] which produced an artificial spin–orbit coupling,
and in different notation, is equivalent to the proposal of [40]. Because this Hamiltonian is only
invariant under spatial translations with primitive vector u = ⇡/kRex , it would be expected to
describe a periodic lattice. However, transforming the complete Hamiltonian according to the
rotation Û (x)ĤÛ †(x), with Û (x) = exp[i F̂z(2kRx �⇡/2)/h̄], completely removes the spatial
periodicity. Instead, the transformed Hamiltonian becomes

Ĥ = h̄2

2m

⇣
k̂ � 2kR F̂z/h̄

⌘2
+ U (r)1̂ + � F̂z +�R F̂x ,

in which the position dependence has vanished from coupling vector �ez +�Rey . In this
example, all spatial dependence (including the initial lattice structure) has been eliminated from
the Hamiltonian in exchange for a matrix-valued (although Abelian) gauge field. An additional
spatially uniform radio-frequency magnetic field added to the mix forces the spatial structure to
remain, creating a composite lattice potential [68].

5.1.2. Flux-lattice configuration. Next, we analyze the configuration shown in figure 6 where
four beams with angular frequency ! intersecting at right angles in the ex–ey-plane are joined
by a fifth beam with angular frequency ! + �! traveling along ez. The total electric field from
these five beams is

E!� = Ex+ + Ex� + Ey+ + Ey� and E!+ = Ez,

where

Ex+ = Exy
�
e�i�/2 cos ✓pez + ei�/2 sin ✓pey

�
ei��x/2ei��xy/2eikRx ,

Ex� = Exy
�
e�i�/2 cos ✓pez � ei�/2 sin ✓pey

�
e�i��x/2ei��xy/2e�ikRx ,

Ey+ = Exy
�
ei�/2 cos ✓pez � e�i�/2 sin ✓pex

�
ei��y/2e�i��xy/2eikR y,

Ey� = Exy
�
ei�/2 cos ✓pez + e�i�/2 sin ✓pex

�
e�i��y/2e�i��xy/2e�ikR y,

Ez = Ezp
2

�
ex + ey

�
eikRz.

In this complicated set of fields, � describes the ellipticity of the lasers traveling in the ex–ey-
plane, the major axes of which are tipped by an angle ✓p from vertical. When � = ⇡/2 all
four beams are right-hand circular polarized. ��x and ��y describe relative phase differences
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(a) (b)

Figure 6. Proposed experimental geometry. (a) Laser geometry for creating
flux lattice showing the four circularly polarized beams in the ex–ey-plane with
frequency ! along with the linearly polarized beam traveling along ez with
frequency ! + �!. (b) Physical level diagram for the three-level total angular
momentum f = 1 case with m F states labeled, as is applicable for the common
alkali atoms 7Li, 23Na, 39K, 41K and 87Rb. For reference, the diagram shows the
decomposition of these optical fields into �± and ⇡ , but as discussed in the text,
this is not an overly useful way of considering this problem. The red beams have
frequency ! and the blue beams have frequency ! + �!.

between the forward- and counter-propagating beams along ex and ey , respectively; lastly, ��xy

is an overall phase difference between the beams traveling along ex and those traveling along
ey (a similar phase difference ��z exists between the ex–ey beams and the ez beam; however, it
amounts to simply displacing the system along ez).

For this set of fields, the scalar light shift (neglecting a us(4E2
xy + E2

z ) energy offset) is

U (r) = U?
⇥
cos(2x 0) + cos(2y0)

⇤
+ Uk cos x 0 cos y0, (36)

where we have introduced the scalar energies U? = 2us E2
xy cos

�
2✓p

�
and Uk =

8us E2
xycos2 ✓pcos(2'�), with '± = (��xy ±�)/2. The RWA effective magnetic field

becomes

� =�?
⇥
cos

�
x 0� sin

�
z0 �'�

�
+ cos

�
y0� sin

�
z0 +'�

�⇤
ex +�?

⇥
cos

�
x 0� cos

�
z0 �'�

�

+ cos
�
y0� cos

�
z0 +'�

�⇤
ey +�k

h
sin(x 0) sin(y0) + �̃

i
ez. (37)

We defined �? = 2uv Exy Ez cos ✓p/h̄ and �k = 4uv E2
xysin(2'+)sin2 ✓p/h̄ and introduced a

dimensionless detuning �̃ = �/h̄�k. (Here, Ez is linearly polarized, so it does not have any
contributions to �, as would be the case for a circularly polarized beam [48].) In these
expressions, we made the simplifying replacements x 0 = kRx � ��x/2, y0 = kR y � ��y/2 and
z0 = kRz +⇡/4. These show that the phase-differences between beams traveling along ex and ey

give rise only to effective spatial displacements leaving the topology of the lattice unchanged;
in contrast, the phase difference between the ex and ey lasers ��xy fundamentally changes the
coupling.

Somewhat more subtly, transforming the complete Hamiltonian according to the unitary
rotation Û (x)ĤÛ †(x), with Û (x) = exp(i F̂zz0/h̄) completely eliminates the z-dependence
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from the Hamiltonian, but as in section 5.1.1, introduces a gauge field kL F̂z for motion along ez.
Under this transformation the effective Zeeman term becomes

Û (x)
h
F̂ · �(z0)

i
Û †(x) = F̂ · �(z0 = 0).

Therefore the Hamiltonian separates into a sum of independent contributions for motion along
ez and motion in the ex–ey-plane; without loss of generality, we take z0 = ⇡/4. The expression
for � then reduces to that of equation (25) for the physical parameters � = ⇡/2 (circularly
polarized beams in the ex–ey-plane), �xy = 0 and �̃ = 0.

With the replacement � =�k/�?, the resulting adiabatic orbital field is

B(r) = h̄m f

⇣⇡
a

⌘2 �
⇣

f 2
x f 2

y � 1 � �̃gx gy

⌘
sin (�2'�)


f 2

x + f 2
y + 2 fx fy cos(2'�) +�2

⇣
�̃ + gx gy

⌘2
�3/2 ez. (38)

This implies that practical implementations of flux lattices require active stabilization of the
phase between beams traveling along ex and ey , but not the ez beam. For the choice '� = �⇡/4
and �̃ = 0 this reduces to equation (30).

Given the dependence of B(r) on so many parameters, we now consider the first order
sensitivity to perturbations in �̃ =1�̃ and '� = �⇡/4 +1'�; since changes in phase sum
'+ = ⇡/4 +1'0 enter into �k quadratically, they may be neglected at first order. Additionally,
the polarization angle ✓P is generally static in the laboratory, and an imperfect setting can be
accounted for by changing the intensity of the Raman beams. We find the scalar light shift is
unchanged, but the effective coupling becomes

�=�?
⇥
cos

�
x 0� +1'� cos

�
y0�⇤ ex +�?

⇥�1'� cos
�
x 0� + cos

�
y0�⇤ ey

+�k
h
sin(x 0) sin(y0) +1�̃

i
ez. (39)

Given this, it is surprising but delightful that we arrive at an orbital field which is unaltered at
first order. We observe that 1�̃ usually results from noise in the magnetic field; here this noise
must be small compared to the coupling strength �k, not the generally much smaller width of
the Bloch bands.

5.2. Band structure and Chern numbers

The adiabatic arguments show that flux lattices give rise to large orbital magnetic fields with
non-zero average. As we learned above, the spatial locations with largest magnetic field are
also associated with a repulsive adiabatic scalar potential W (r), suggesting that without a
compensating term from the scalar potential U (r) the magnetic field might not be important
for atoms in the lowest bands. To address this question, we studied the resulting band structure
and identified when the Bloch bands have a non-zero Chern number, in analogy with the band
structure of charged particles in a magnetic field. We directly compute the band structure from
potential terms in equation (33) combined with the contribution from the usual kinetic energy
term and then extract the Chern numbers using the prescription in [69].

The Hamiltonian described by equation (33) has apparent primitive lattice vectors u1 =
2⇡/kRex and u2 = 2⇡/kRey (each of these is twice as large as usual for a lattice formed by
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retro-reflected lasers). To compute the band structure in the simplest manner, we first rotated
the coordinate system in equations (36) and (37) by ⇡/4 in the ex–ey-plane and defined
scaled coordinates x 00 = y0 + x 0 and y00 = y0 � x 0. In analogy with the procedure described in
section 5.1.1, we applied a spatially dependent rotation

U (r) = exp

"
i (x 00 + y00) F̂z

2h̄

#

= exp

"
i kR y F̂z

h̄

#

,

which introduced a gauge term in the kinetic energy. In the example given in section 5.1.1,
this process completely removed the Hamiltonian’s spatial dependence; here it does not,
but the area of the unit cell is halved (the primitive lattice vectors u1 = ⇡/2kR(ex + ey) and
u2 = ⇡/2kR(�ex + ey) expressed in the initial coordinate system are reduced in magnitude by
a factor of 1/

p
2), doubling the area of the Brillouin zone [48]. The resulting Hamiltonian has

contributions

Hk = h̄2

2m

⇣
kx � kL F̂z/2

⌘2
+

⇣
ky � kL F̂z/2

⌘2
�

U (r) = U?
⇥
cos(x 00 + y00) + cos(x 00 � y00)

⇤
+

Uk
2

⇥
cos

�
x 00� + cos

�
y00�⇤

F̂ · � = F̂z�z + F̂+�� + F̂��+,

(40)

where F̂± = F̂x ± iF̂y are the usual angular momentum raising and lower operators; the coupling
expressed in the helicity basis is quite simple with

�z = �k
2

h
� cos(x 00) + cos(y00) + �̃

i
,

�+ =�†
� = i�?

4

h
ei(x 00+'�) + ei(y00+'�) + ei(x 00+y00�'�) + e�i'�

i
.

All these expressions fully respect translational symmetry in the reduced unit cell whose
reciprocal lattice vectors have magnitude kL = p

2kR, and a recoil energy EL = 2ER. From this,
computation of the band structure and its Chern numbers is straightforward.

Figure 7 depicts the outcome of this computation for an optimally chosen parameter set
(values given in the caption). While the Chern number of the lowest band C0 is non-zero
over a wide range of parameters, the red contours illustrate the most significant limitation for
practical implementation of these flux lattices: the relatively small gap between the ground
and first excited bands 1E01. For our optimal parameter set, we find a maximal gap of just
1E01 = 0.107EL = 0.214ER, far less than the U ⇡ 1ER on-site interaction energy in typical
3D optical lattices (a slight improvement is possible by tuning the quadratic Zeeman term
which was absent in these computations). This implies that interactions will hybridize several
of the lowest bands in a way that cannot be described as a perturbation of the lowest band as is
possible in conventional optical lattices where1E01 & 10EL. Moreover, the geometric magnetic
field through each unit cell always has m F quanta of flux, leading to the misguided intuitive
expectation of high magnetic field physics everywhere. Instead, the competing localization
from the strong lattice potential restricts the topological non-trivial band structure to a modest
parameter range.
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Figure 7. Band structure. (a) Band structure for the lowest four bands showing
the Chern numbers Cn, and the modest energy gap 1E01 between the ground
and first excited bands. These were computed for �? = 1.905EL, �k = 5.1EL,
U? = �1.95EL, Uk = 0, � = 0 and the phase �� = �⇡/4. (b) Ground band
Chern number as a function of �? and �k for the same U? and Uk as above.
White indicates a Chern number Cn = �1, and black indicates Cn = 0; the
gray region is where two bands touch and neither have integer Cn (although
the sum is of course quantized). The red contours mark 1E01 in this plane,
showing the modest parameter region where it is non-negligible, and the blue
cross locates the maximum gap of 1E01 = 0.107EL where the band structure
of (a) was computed. The contours (from outside to inside) correspond to
1E01/EL = {0.025, 0.05, 0.075, 0.1}.

6. Concluding remarks

We have explored the optical flux lattices produced for ultra-cold atoms in the radiation field
when both the atom–light coupling and the detuning exhibit an oscillatory behavior. We have
analyzed not only the magnetic flux but also the geometric vector potential generating the
flux, as well as the accompanying geometric scalar potential. We showed how to deal with
the gauge-dependent singularities of the AB type appearing in the vector potentials for the
optical flux lattices. We have presented a way to calculate the continuous magnetic flux through
the elementary cell via the singularities of the vector potential inside the cell. The analysis is
illustrated with a square optical flux lattice. We have presented a way of creating such a lattice
using the Raman transitions induced by a set of properly chosen polarization-dependent standing
waves propagating at a right angle and containing a time-phase difference.
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