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Abstract 
 
The National Institute of Standards and Technology conducts an ongoing series of Speaker 
Recognition Evaluations (SRE). Speaker detection performance is measured using a detection cost 
function defined as a weighted sum of the probabilities of type I and type II errors. The sampling 
variability can result in measurement uncertainties. In our prior study, the data independency was 
assumed in using the nonparametric two-sample bootstrap method to compute the standard errors 
(SE) of the detection cost function based on our extensive bootstrap variability studies in ROC 
analysis on large datasets. In this article, the data dependency caused by multiple uses of the same 
subjects is taken into account. The data are grouped into target sets and non-target sets, and each set 
contains multiple scores. One-layer and two-layer bootstrap methods are proposed based on whether 
the two-sample bootstrap resampling takes place only on target sets and non-target sets, or 
subsequently on target scores and non-target scores within the sets, respectively. The SEs of the 
detection cost function using these two methods along with those with the assumption of data 
independency are compared. It is found that the data dependency increases both estimated SEs and 
the variations of SEs. Some suggestions regarding the test design are provided. 
 
 
Keywords: Data dependency; Measurement uncertainty; Speaker recognition evaluation; Biometrics; 
ROC analysis; Bootstrap; Standard error. 
 
 
1 Introduction 
 
The ongoing series of Speaker Recognition Evaluations (SRE) conducted by the National Institute of 
Standards and Technology (NIST) has had a great impact on the research efforts and the technical 
capabilities regarding the general problem of text independent speaker recognition [1]. Each test 
consisted of a sequence of trials. Each trial consisted of a training model speaker and a test speech 
segment. The speaker recognition system should decide whether the speech of the model speaker 
occurred in the test speech segment and generate a similarity score. A higher score indicates greater 
confidence that the test speech is spoken by the model speaker. Target (non-target) trials are those 
where the test speech segment contains (does not contain) speech of the model speaker defined in 
the training data. Each test included about 20,000 target scores and 80,000 non-target scores [1, 2]. 
 
The speaker detection performance is measured using a detection cost function, that is defined as a 
weighted sum of the probabilities of type I error (miss) and type II error (false alarm), which 
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represent a tradeoff and are negatively correlated [1]. The sampling variability results in 
uncertainties of any measures [3]. It is hard to calculate the variance of the detection cost function 
analytically because the two probabilities are correlated. 
 
In our prior study of the SRE, the uncertainties in terms of standard errors (SE) were computed using 
the nonparametric two-sample bootstrap method based on our extensive bootstrap variability studies 
in ROC analysis on large datasets, using the assumption of data independency [3-9]. The two 
samples involved are referred to as a set of target scores and a set of non-target scores, which 
characterize the speaker recognition system that generates them and usually do not have well defined 
parametric forms [9-11]. The bootstrap method assumes that the random samples drawn from a 
population are independent and identically distributed (i.i.d.). With such an assumption, the 
bootstrap units are scores in the sample. 
 
However, the NIST speaker recognition data do contain dependency. In this article, the data 
dependency is taken into account while computing the measurement uncertainties in SRE. The data 
dependency arises basically from multiple uses of the same subjects in order to create more target 
and non-target scores. The data dependency is complicated, due in part to the way the data was 
collected. There are several ways to interpret the dependencies of the data. 
 
In this article, the data dependency is determined based purely upon whether the training speaker 
identification (id) number is used multiple times. Those target scores and non-target scores 
generated using the same training speaker id number are grouped into a target set and a non-target 
set, respectively. This can preserve the data dependency while the bootstrap resampling takes place. 
Certainly, how the sample is grouped into sets can impact the bootstrap results. Now the speaker 
recognition data structure has two layers: The first layer consists of the target sets and non-target 
sets, and the second layer consists of the target scores and non-target scores within the sets. 
 
It should be noted that there are other forms of data dependency not taken into account by this 
procedure. Different non-target trials involving a specific training speaker may involve the same test 
segment speaker. Further, different trials involve the same or different recording channels (telephone 
or multiple types of room microphone) of the speakers involved. Also varying are the speech styles 
(including conversational telephone or face-to-face interview) of the speakers, and the extent of high 
or low or normal vocal effort encouraged. In some cases different trials involve the same speech of 
the training speaker, or of the test segment speaker (or both), but recorded over different 
microphones. Further work will be necessary to address these types of data dependency. 
 
In addition to a bootstrap method in which all data are assumed to be i.i.d., one-layer and two-layer 
bootstrap methods are proposed based on whether the nonparametric two-sample bootstrap 
resampling takes place randomly with replacement (WR) only on the first layer of the data, i.e., the 
target sets and non-target sets, or subsequently on the second layer, i.e., the target scores and non-
target scores within the sets. Resampling on the first layer indicates that the bootstrap units are sets, 
while resampling on the second layer means that the bootstrap units are the scores within a set, 
where the similarity scores are assumed to be conditionally independent. 
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Different target (non-target) sets may have different numbers of target (non-target) scores. This can 
cause that the probabilities for target (non-target) scores being selected are not the same and the 
numbers of scores resampled are different from iteration to iteration when the bootstrap resampling 
is carried out. To avoid all these, the speaker recognition data is adjusted so that all target sets 
contain the same number of scores and likewise for the non-target sets. In the meantime, the total 
numbers of target scores and non-target scores are kept as large as possible. After data adjustment, 
the SEs of the detection cost functions computed using the three bootstrap methods can be compared 
on an equal footing. And it can reduce the variance of the computation as well. 
 
Further, the bootstrap method is a stochastic process. The results will vary for different runs, and 
thus constitute a probability distribution of SEs. Some results may be more probable and others less 
probable. Hence, the comparisons of SEs of the detection cost functions may involve the 
comparisons of the spread of the distributions of SEs. It is found that taking account of the data 
dependency increases the estimated SEs and the variations of SEs. 
 
The bootstrap method on datasets with dependencies was initially studied in the references [5, 12], 
and applied to other cases later [13, 14]. In this article, the nonparametric two-sample bootstrap 
rather than the one-sample bootstrap is employed. Through two-sample bootstrap method, the 
uncertainties of much more complicated measures, such as the detection cost function defined as a 
weighted sum of two probabilities, can be computed. Further, in this article the probability issues of 
similarity scores being selected and the numbers of scores resampled at each iteration are 
investigated, and the hypothesis testing is conducted on the distributions of SEs to reveal their 
relationships while dealing with different resampling methods in bootstrap. 
 
As pointed out in Ref. [9], the speaker recognition data had their own characteristics. In order to 
obtain accurate results, five decimal places (i.e., multiplying by 105) or up to seven decimal places 
(i.e., multiplying by 107) of real-number similarity scores were preserved while converted to 
integers. In addition, only a few of similarity scores of the speaker recognition data took the same 
matching value. Thus, the computation could take an excessive amount of time. 
 
Adjustment of speaker recognition datasets based on the selection probabilities is discussed in 
Section 2. The formulas for computing the detection cost function are shown in Section 3. The three 
nonparametric two-sample bootstrap algorithms and how to simulate distributions of the SEs of the 
detection cost function are presented in Section 4. The resulting measurement uncertainties 
employing the three bootstrap methods for two speaker recognition systems1, and comparisons 
among them are shown in Section 5. The conclusions and discussion can be found in Section 6. 
 
2 Adjustment of speaker recognition datasets 
 
The speaker recognition data dependency is complicated. There are several ways to group data into 
sets according to different interpretations of data dependency as discussed in Section 1. In this 
                                                 
1 Specific hardware and software products identified in this paper were used in order to adequately support the 
development of technology to conduct the performance evaluations described in this document. In no case does such 
identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the products and equipment identified are necessarily the best available for the purpose. 
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If the speaker recognition datasets are assumed to be i.i.d., then the resampling units of the bootstrap 
method are all similarity scores. With this assumption, it is obvious that the probability for a score 
being selected is 1 / NT equally for each target score and 1 / NN equally for each non-target score. 
 
For the one-layer bootstrap method in which the resampling takes place randomly WR only on all 
score sets, it follows from the Law of Large Numbers that the probabilities for each target score and 
each non-target score being selected are also 1 / N T and 1 / N N , respectively [15]. 
 
For the two-layer bootstrap method where the resampling takes place randomly WR not only on the 
first layer of the data but also on the second layer of the data, i.e., target scores and non-target scores 
in the sets, respectively, which are assumed to be conditionally independent, the probability for a 
score α i j k in a set Si j being selected is 

,
μ
1x

m
1) | α( P x )( P  )(α P

j ii
j ik j ij ik j ilayer-2 == SS  

                                         where k = 1, …, μi j,  j = 1, …, mi  and  i ∈ {T, N}. 
(2) 

These probabilities are the same for all scores within a set, but different from set to set, regardless of 
whether it is target or non-target. 
 
The unequal selection probabilities for two-layer resampling must be eliminated, while using the 
bootstrap to compute the measurement uncertainties of the detection cost function. If the numbers of 
scores in target sets, i.e., μT j, j = 1, …, mT, are set to be equal, then the probability for each target 
score being selected will be 1 / N T due to Eq. (1). The same argument holds true for the non-target 
case. Consequently, this will be the same as those in the previous two resampling methods. Hence, 
the measurement uncertainties calculated using these three resampling methods can be compared on 
an equal footing. In addition, this can reduce the variance of the computation. 
 
In the meantime, the new datasets should be restructured in such a way that the total numbers of 
target scores and non-target scores are kept as large as possible. After adjustment, the new datasets 
had 132 target sets (130 non-target sets), each of which contained 96 target scores (244 non-target 
scores) that were randomly selected without replacement from the raw target (non-target) set if the 
number of scores in the set was greater than or equal to what was required; and thus the total number 
of target (non-target) scores was 12,672 (31,720). 
 
3 The detection cost function in speaker recognition evaluation 
 
For a speaker recognition system, the scores after converting to integers are expressed inclusively 
using the integer score set {s} = {smin, smin+1, …, smax}, running consecutively from the lowest score 
smin to the highest score smax. Let Ci (s), i ∈ {T, N} denote the cumulative probabilities of target 
scores and non-target scores from the highest score smax down to an integer score s, respectively. 
 
Let PI (t) denote the probability of type I error at a threshold } s {  ∈t  for target scores, which is 
cumulated from the lowest score smin. Let PII (t) denote the probability of type II error at a threshold t 
for non-target scores, which is cumulated from the highest score smax. The probabilities of target 
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scores and non-target scores at this threshold t must be taken into account, while computing PI (t) 
and PII (t) at a threshold t for discrete probability distribution [16]. 
 
Thus, at a threshold value } s {  ∈t , their estimators are expressed, respectively, as 

(t) PÎ  = 1 – CT (t + 1) 
for } s {  ∈t  , (3) 

(t) PII
ˆ = CN (t) 

where CT (smax + 1) = 0 is assumed [3]. Based on Eq. (3), in practice, the estimators (t) PÎ  and (t) PII
ˆ  

can be obtained by moving the score from the highest score smax down to the threshold t one score at 
a time to cumulate the probabilities of target scores and non-target scores, respectively. 
 
A number of metrics exist for measuring the performance of a speaker recognition system. In this 
article, the detection cost function is defined as the metric of interest in SRE, which is a weighted 
sum of the probabilities of type I and type II errors at a threshold t [1] 
 

CDet (t) = CMiss × PI (t) × PTarget + CFalseAlarm × PII (t) × (1 – PTarget) . (4) 
 
The threshold t plays an important role here, which can be determined in many ways. It is a 
challenging research problem to determine appropriate decision thresholds, which is out of the scope 
of this article. In this article, the thresholds were provided by the tested speaker recognition systems 
in order to make an explicit speaker detection decision for each trial. 
 
The parameters CMiss and CFalseAlarm are the relative costs of detection errors, and the parameter PTarget 
is the a priori probability of the specified model speaker. For the primary evaluation of speaker 
recognition performance for all speaker detection tests, the parameters CMiss, CFalseAlarm, and PTarget 
were set to be 10, 1, and 0.01, respectively [1]. 
 
4 The three bootstrap methods and the distributions of SEs 
 
It is difficult to compute analytically the covariance term of the correlated probabilities of type I 
error PI (t) and type II error PII (t) at a threshold t in Eq. (4). Thus, the estimate of the uncertainty of 
the detection cost function at a threshold t in terms of SE is computed using the three different 
nonparametric two-sample bootstrap methods based on our extensive studies of bootstrap variability 
in ROC analysis on large datasets [3-8]. 
 
First of all, here is a function WR_Random_Sampling_Set that will be frequently employed in the 
following algorithms, 
 
1: function WR_Random_Sampling_Set (N, Γ, Θ) 
2: for i = 1 to N do 
3: select randomly WR an index j ∈  { 1, …, N } 
4: θi = γj 
5: end for 
6: end function 
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where Γ stands for a set of sets or a set of scores, N is the cardinality of the set Γ, Θ represents a 
new set of sets or scores accordingly with the same cardinality, and γj and θi are members of the sets 
Γ and Θ, respectively. Notice that this function can be applied to either a set of sets or a set of 
scores. It runs N iterations as shown from Step 2 to Step 5. In the i-th iteration, a member of the set 
Γ is randomly selected WR to become a member of a new set Θ, as indicated in Steps 3 and 4. As a 
result, N members (sets or scores) are randomly selected WR from the set Γ to form a new set Θ. 
 
To simplify the presentation, the two-layer bootstrap algorithm is presented first. From here on, the 
superscript indices are used for the numeration of the resampling iterations. The two-layer 
resampling is conducted not only on the first layer of the new data structure in which the two-sample 
bootstrap units are target sets and non-target sets, but also on the second layer of the data in which 
the bootstrap units are target scores and non-target scores in sets. Hence, the algorithm for the two-
layer nonparametric two-sample bootstrap is as follows. 
 
Algorithm (two-layer bootstrap) 
 
1: for i = 1 to B do 
2:     WR_Random_Sampling_Set ( mT, ST, S 'T i = { S 'T j i | j = 1, …, mT } ) 
3:     for k = 1 to mT do 
4:           WR_Random_Sampling_Set ( μ'T k

i, S 'T k i, S "T k i ) 
5:     end for 
6:     WR_Random_Sampling_Set ( mN, SN, S 'N i = { S 'N j i | j = 1, …, mN } ) 
7:     for k = 1 to mN do 
8:           WR_Random_Sampling_Set ( μ'N k

i, S 'N k i, S "N k i ) 
9:     end for 
10:     S "T i = { S "T j i | j = 1, …, mT } and S "N i = { S "N j i | j = 1, …, mN } => statistic iĈ  
11: end for 
12: ES  } B ..., 1,  i | C { i ˆˆ =>=  
13: end 
 
where B is the number of the two-sample bootstrap replications, i.e., the number of iterations as 
shown from Step 1 to 11, ST is the set of all target sets and SN is the set of all non-target sets, and mT 
and mN are the cardinalities of the set ST and the set SN, respectively. 
 
In the i-th iteration, as shown in Step 2 and Step 6, the function WR_Random_Sampling_Set is 
applied to the first layer of datasets, i.e., the target and non-target sets. That is, mT target sets are 
randomly selected WR from the set ST of all original target sets to form a new set S 'T i = { S 'T j i | j = 
1, …, mT }, and mN non-target sets are randomly selected WR from the set SN of all original non-
target sets to constitute a new set S 'N i = { S 'N j i | j = 1, …, mN }. 
 
Subsequently, the same function is applied to the second layer of datasets, i.e., the similarity scores 
in sets as well. As shown from Step 3 to 5, mT iterations take place after the first-layer resampling of 
the target sets in Step 2. In the k-th iteration, μ'T k

i target scores are randomly selected WR from the 
target set S 'T k i, which is the k-th new target set from the first-layer resampling, to form the k-th 
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new target set S "T k i of the second-layer resampling. The analogous interpretation can be applied to 
non-target scores in the non-target set S 'N k i as shown from Step 7 to 9. 
 
As indicated in Step 10, all target scores in the new set S "T i = { S "T j i | j = 1, …, mT } and all non-
target scores in the new set S "N i = { S "N j i | j = 1, …, mN } are employed to calculate the estimators 
of the probabilities of type I and type II errors, i.e., (t) PÎ  and (t) PII

ˆ  using Eq. (3) and then the i-th 

bootstrap replication of the estimated detection cost function at a given threshold, i.e., iĈ  using Eq. 
(4). Finally, as shown in Step 12, from the set { iĈ  | i = 1, …, B }, the standard error SÊ of the 
detection cost function is estimated by the sample standard deviation of the B bootstrap replications. 
 
The one-layer resampling takes place only on the first layer of the new data structure, namely, the 
nonparametric two-sample bootstrap units are target sets and non-target sets, respectively. Thus, the 
corresponding algorithm can be obtained simply by removing Steps 3, 4, 5, 7, 8 and 9 from the 
above algorithm and modifying Step 10 accordingly. 
 
Further, the algorithm for the bootstrap with i.i.d. assumption for similarity scores can be obtained, if 
Steps 2, 6 and 10 in the algorithm for the one-layer bootstrap method are replaced by 
“WR_Random_Sampling_Set (NT, T, Λi)”, “WR_Random_Sampling_Set (NN, N, Ξi)”, and “Λi and 
Ξi => statistic iĈ ”, respectively. That is, in the i-th iteration by calling the function twice, NT target 
scores are randomly selected WR from the set T of all original target scores to form a new set Λi, NN 
non-target scores are randomly selected WR from the set N of all original non-target scores to 
constitute a new set Ξi, and then all target and non-target scores in these two new sets Λi and Ξi are 
employed to generate the i-th bootstrap replication of the estimated iĈ . 
 
With the new data structure described in Section 2, for all three different bootstrap resampling 
methods, not only does each target (non-target) score have the same probability to be selected, but 
also the numbers of target scores and the numbers of non-target scores resampled to generate the 
estimate of the statistic of interest iĈ  at different iterations in Step 10 are the same, respectively. 
This can reduce the variance of the computation. 
 
The remaining issue is to determine how many iterations the bootstrap algorithms need to run in 
order to reduce the bootstrap variance and ensure the accuracy of the computation. In our 
applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes of datasets 
are tens or hundreds of thousands of similarity scores, which are much larger than those in some 
other applications of bootstrap methods like medical decision making, etc.. Moreover, in ROC 
analysis our statistics of interest are mostly probabilities or a weighted sum of probabilities, etc. 
rather than a simple sample mean. And our data samples of similarity scores have no parametric 
model to fit. Therefore, the bootstrap variability was re-studied empirically, and the appropriate 
number of bootstrap replications B for our applications was determined to be 2,000 [3, 6, 7]. 
 
Due to the stochastic nature of the bootstrap method, distributions of SEs need to be generated in 
order to compare SEs obtained by using different bootstrap algorithms. All three algorithms can only 
create one estimated SÊ of the detection cost function at a time. However, if such an algorithm runs 
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The distributions of SEs shown in Table 1 and Figure 2 have two important features. The first 
feature is concerning the variances of the distributions of SEs. The one generated using the i.i.d. 
bootstrap is less than those created using the other two bootstrap methods. This feature can be seen 
from Table 1 and the widths of the histograms in Figure 2. Different runs of bootstrap method might 
produce different results of SEs. Hence, the bootstrap method with the i.i.d. assumption creates less 
variation of SEs than the other two bootstrap methods do on the datasets with dependency. 
 
The second feature is regarding the positions of the distributions of SEs. It follows from Table 1 and 
Figure 2 that the two distributions of SEs created using the one-layer bootstrap and the two-layer 
bootstrap are well separated, towards larger SEs, from the distribution of SEs generated using the 
i.i.d. bootstrap. The former two distributions overlap for System PB, and are separated for System 
CH, as shown in Figure 2. Then, what is the significant relationship between these two distributions? 
 
The hypothesis testing is conducted on both estimated means and variances of distributions. The 
Shapiro-Wilk normality test [18] was conducted on the distributions of SEs generated by the three 
bootstrap methods for Systems PB and CH, respectively. It was observed that five p-values were 
between 37% and 88% which were much greater than 5%, and only one p-value was 1.7%. This 
suggests that the estimated SÊs of the detection cost function calculated using the three different 
resampling methods be regarded as approximately normally distributed. 
 
Hence, the Z-test for comparing the means and the F-test for comparing the variances can be carried 
out on the two distributions generated using the one-layer bootstrap and the two-layer bootstrap, 
respectively, for each system [3, 16, 18, 19]. It is observed in Table 1 and Figure 2 that the mean of 
the former is less than the mean of the latter. Hence, the one-tailed Z-test is applied. The p-values for 
the two systems are all close to one. This suggests that the above observation hold true significantly. 
Further, the p-values of the two-tailed F-test are all greater than 5%. It indicates that the null 
hypothesis, i.e., the ratio of the variances of these two distributions equals one, cannot be rejected. 
 
Thus, the distribution of SEs of the cost function computed using the two-layer bootstrap for the 
datasets with inherent data dependencies is significantly on the right side of the distribution of SEs 
calculated using the one-layer bootstrap. Certainly, both of them are well separated, towards larger 
SEs, from the distribution of SEs computed using the bootstrap method with the i.i.d. assumption. 
 
6 Conclusions and discussion 
 
It is difficult to compute the SE of the measure in the SRE analytically, where the statistic of interest 
is a detection cost function defined as a weighted sum of the probabilities of type I and type II errors. 
These two probabilities are traded off each other and thus negatively correlated. It is hard to 
determine their correlation coefficient analytically. 
 
To calculate the uncertainties of such a measure, the nonparametric two-sample bootstrap method 
based on our extensive bootstrap variability studies in ROC analysis on large datasets is employed. 
The premise of the bootstrap method is that the datasets must be i.i.d.. If the datasets are i.i.d., it can 
be employed without any modification. 
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In the test design, from the statistical point of view, the data should be randomly sampled to be i.i.d.. 
However, the datasets may contain data dependencies due to multiple uses of the same subjects in 
order to increase the size of datasets because of limited resources. The data dependency may be 
interpreted in different ways because of the complicated nature. Different interpretations of data 
dependencies can cause different ways of grouping similarity scores into sets to preserve the data 
dependency while the bootstrap resampling takes place, and subsequently will have impact on the 
bootstrap results. 
 
In this article, the impact of the data dependency on the uncertainties of measures in SRE was 
studied. The two bootstrap methods with one-layer resampling and two-layer resampling, 
respectively, are proposed. In the test design, for properly employing the two-layer bootstrap method 
after grouping the data into sets, the numbers of target scores in target sets must be the same and 
likewise for the numbers of non-target scores in non-target sets. In such a way, the probability for 
each target score being selected will be equal, and so is the probability for each non-target score 
being selected. Moreover, based on such new data structure, the same numbers of target (non-target) 
scores can be resampled at different iterations to generate the estimator of the statistic of interest for 
all three different resampling methods. All these can reduce the variance of the computation. 
 
The data dependency involved in the datasets acts like “noise” behind “signal”. After performing the 
hypothesis testing on the distributions of SEs of the statistic of interest, it reveals that the data 
dependency can increase the measurement uncertainties and the variation of uncertainties as well. 
For the datasets with dependency, the bootstrap method with the i.i.d. assumption underestimates the 
uncertainties of measures. And the two-layer bootstrap estimates more conservatively the impact of 
the data dependency on the measurement uncertainties than the one-layer bootstrap does. Further, 
the bootstrap methods with one-layer resampling and two-layer resampling may produce different 
SEs from different runs, which differ larger than what the i.i.d. bootstrap does. 
 
Hence, in order to reduce the sampling variability to obtain more accurate measures and less 
variation of SEs, the best way is to randomly select i.i.d. data samples. If the data dependency is 
inevitable, then the i.i.d. assumption cannot be made and the two-layer bootstrap method rather than 
the one-layer bootstrap method is recommended while using the bootstrap methods to compute the 
measurement uncertainties. 
 
It seems that the large size of datasets cannot reduce the impact of data dependency on the 
measurement uncertainties. The reason why the SEs of the area under ROC curve computed using 
the bootstrap method for the large size of datasets containing data dependency but with the i.i.d. 
assumption are very close to those calculated analytically using the Mann-Whitney statistics is that 
the methods are blind to the data dependency implied in the datasets [9]. Nonetheless, on the other 
side, running on the i.i.d. datasets, the fact that these two types of results are very close validates the 
nonparametric two-sample bootstrap methods in our applications [8]. 
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