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Abstract 
We calculated the eigenvalues of the radially-symmetric acoustic modes of a gas-filled, 
spherical cavity to order (δ t /a)2, where δ t  is the thickness of the thermal boundary layer and a 
is the radius of the cavity. Our results explain an anomaly revealed by high-precision acoustic 
measurements made to re-determine the Boltzmann constant. 
 
 

 
 
The recent decision to re-define the kelvin has 
renewed interest within the metrological community to 
re-determine the Boltzmann constant kB with lower 
uncertainty [1]. To date, the most accurate 
determinations of kB are based on measurements of the 
speed of sound in a noble gas contained in a spherical 
or quasi-spherical cavity [2,3]1. The theory for the 
radially-symmetric gas oscillations including the 
effects of thermal dissipation and shape deformations 
is well established [2,4,5]. Mehl [6] calculated to 
second order the effect on the eigenvalues due to 
arbitrary shape deformations using boundary shape 
perturbation theory and showed that the radial-mode 
eigenvalues are unchanged to first order when the 
deformations preserve the volume. The effect of 
thermal dissipation at the cavity’s wall on the 
resonance frequencies and half-widths has been 
calculated to first order using perturbation theory [4] 
and verified from the exact solution for spherical 
geometry [5]. Perturbation theory treats the thermal 
boundary layer as a small, effective surface admittance 
that shifts the resonance frequencies by ∆ft

 (1) and 

                                                 
1 Note: in Sec. 5.1.3 of [3], Pitre et al. state that their “largest 
value of 1/Q2 was 4.04×10−8, obtained for the (0,2) mode at 50 
kPa…” The value 4.04×10−8 is erroneous. The maximum value 
of 1/Q2 from the thermal boundary loss is 4.6×10−7, which is 
consistent with Pitre et al.’s figure 28 and is comparable to the 
second-order corrections discussed here. 
  

increases the half-widths by gt
(1) from their values 

when the boundary layer is neglected. Importantly, the 
first-order theory for the boundary layer predicts that 
the resonance frequency shifts downward and the half-
width increases by the same fractional amount, e.g.  
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for the (0,n) radial mode in a spherical cavity. Here, 
γ = Cp/CV is the ratio of the isobaric and isochoric heat 
capacities, δt = (Dt/πf)1/2 is the thickness of the thermal 
boundary layer, Dt is the thermal diffusivity, f is the 
frequency, and a is the radius of the cavity. The 
superscripts in parentheses indicate the order of the 
approximation. 

As part of the effort to re-determine kB, de 
Podesta, et al. [7] and Gavioso, et al. [8] measured the 
resonance frequencies and half-widths of the radial 
acoustic modes of gas-filled quasi-spherical cavities 
with extraordinary precision. In [7] the gas was argon, 
and in [8] the gas was helium. Surprisingly, both 
groups found that, at low pressures and low 
frequencies, the measured half-widths gm were 
narrower than the half-widths gcalc

 calculated using the 
first-order boundary layer correction and other, 
smaller perturbations. For the (0,2) mode in argon at 
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30 kPa from [7], δ t /a ≈ 1.2×10−3 and gm /fm ≈ 400 
ppm (1 ppm = 1×10−6). For the (0,2) mode in helium 
at 50 kPa from [8], δ t /a ≈ 1.7×10−3 and gm /fm ≈ 600 
ppm. Figures 1(a) and 2(a) show that the scaled excess 
half-widths ( )6

m calc10 g g f× −  for the first 4 radial 
modes have a downward curvature and are negative at 
low pressures. This anomalous behavior is most 
pronounced for the (0,2) mode and more pronounced 
in helium than in argon. To the extent that this result is 
not understood, it reduces our confidence in acoustic 
determinations of kB. 

We calculated the effect of the thermal boundary 
layer on the resonance frequencies and half-widths to 
second order O(δ t /a)2 for the radial modes in a 
spherical cavity and applied a correction to the data 
(see figures 1(b) and 2(b)). The solid lines in figure 
1(b) and 2(b) serve to guide the eye. The second-order 
correction has no adjustable parameters, and it does 
not change the resonance frequencies. Nevertheless, it 
removes the curvature from the argon data and 
significantly reduces the negative intercepts to much 
less than 1 ppm. For helium, the second-order 

correction removes most of the curvature, and if the 
lowest pressure data (0.05 MPa) are ignored, the 
intercepts from linear fits are positive and closely 
grouped near zero. The small residual curvature in the 
helium data may indicate the presence of additional 
second-order effects.  

Linear dependence on pressure of the excess half-
widths has been reported in many publications on 
acoustic measurements in spherical resonators, yet 
there is no quantitative model to explain the observed 
slope. If the linear dependence is due to the gas 
motion driving a mechanical motion of the shell or its 
support, then the linear dependence will extrapolate to 
zero at zero pressure. The small negative intercepts in 
the data remaining after the second-order correction is 
applied could have several causes. Three are 
mentioned here. (1) Nonzero intercepts could be 
caused by an error in the value of the gas’s thermal 
conductivity used to calculate gt/f. Recently, Cencek et 
al. [9] reported ab initio calculations of the viscosity 
and thermal conductivity of helium with an extremely 
low relative uncertainty of 2×10−5. From Cencek’s 
calculations and the recent work by May et al. [10], 

Figure 1. The scaled, measured excess half-widths 
106(gm – gcalc) / f for the lowest 4 acoustic radial 
modes of argon in a quasi-spherical cavity [7] as a 
function of pressure. (a) gcalc includes the thermal 
boundary correction to O(δ t /a). (b) gcalc includes the 
thermal boundary correction to O(δ t /a)2. The solid 
lines are linear fits to the data. 

Figure 2. Same as figure 1 for the radial modes of 
helium from [8]. The solid lines are linear fits to the 
data up to 1 MPa, but omitting the data at 0.05 MPa. 
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who measured the ratio of the viscosities of argon to 
helium and calculated the Prandtl number of argon, we 
estimate that the relative uncertainty in the thermal 
conductivity of argon is only about 3×10−4. The low 
uncertainties in the transport properties of argon and 
helium affect the zero-pressure intercepts for the 
excess half-widths by significantly less than 0.1 ppm; 
therefore, they will be unimportant in this context. 
(2) Nonzero intercepts could be caused by an error in 
the pressure measurement. Because δ t ∝ (pressure)−1/2, 
an offset of 80 Pa in the pressure gauge changes the 
excess half-width by 0.3 ppm to 0.5 ppm for the 
lowest pressures in figures 1(b) and 2(b). Therefore, 
with high quality pressure gauges and careful 
measurement techniques, pressure errors are not likely 
to cause significant nonzero intercepts. (3) Nonzero 
intercepts could be caused by errors in the fitting of 
the acoustic data used to determine fm and gm. Here, 
we refer to systematic errors produced by a limitation 
of the function used to fit the resonance line shape. 
This important point is discussed at the end of this 
article. 

The data in [7] and [8] are the first measurements 
with sufficiently high precision and quality to show 
clear deviations from linearity at low pressures and 
low frequencies, and they are the first to require the 
small correction presented here to restore that 
linearity. In the remainder of this paper, we give a 
brief description of our calculation. We will present a 
detailed derivation of second-order boundary layer 
corrections for spherical and cylindrical geometries in 
a forthcoming publication. 

Starting from the linearized Navier-Stokes and 
continuity equations, the heat diffusion equation, and 
assumed i te ω  time dependence, we follow the 
development in [5,11,12] to obtain, without further 
approximation, the bi-quadratic equation for the 
temperature oscillation T  
 
 ( )( )2 2 2 2

ac t 0k k T∇ + ∇ + =  (2) 
 
where the wavenumbers ack  and tk  are known exactly 
as functions of cω , the thermal diffusivity, the 
kinematic viscosity, and the bulk viscosity. The 
oscillatory fields for pressure p , density ρ , and 
longitudinal (curl-free) velocity lu  must satisfy same 
the bi-quadratic operator as the temperature. Equation 
(2) supports two independent wave modes: one is a 
propagating (acoustic) mode with a (mostly real) 
wavenumber kac, and the other mode is a diffusive 
(thermal) mode with wavenumber kt ≈ (1−i) /δ t to 
lowest order. The divergence-free (shear wave) 
velocity vu  is zero for radially-symmetric modes, 
which are considered here. 

In spherical coordinates, equation (2) has an exact 
analytical solution that intrinsically includes the 
acoustic and thermal waves [5]. We solved equation 
(2) for the exact eigenfunctions that describe the 
radially-symmetric modes (0,n) of a gas in a rigid 
spherical cavity with radius a, including thermal 
conduction near the wall. Here, we neglect thermal 
accommodation and assume the cavity wall has 
infinite thermal conductivity. When we imposed the 
boundary conditions on the temperature ( )[ 0]T a =  

and on the velocity ( )ˆ[ 0]a⋅ =r u , we obtained an 
expression for the resonance frequencies f0n and half-
widths g0n as a series expansion in powers of the small 
parameter δ t /a: 
 
 (0) (1) (2)

0 0 t t ...n nf f f f= + ∆ + ∆ +  (3a) 

 (1) (2)
0 bulk t t ...ng g g g= + + +  (3b) 

 
We retained terms through O(δ t /a)2. Our result agreed 
with previous results to O(δ t /a) and included the 
well-known contribution to the half-width from 
viscous and thermal losses in the bulk (gbulk). The 
second-order correction due to the boundary layer 
reduces the half-width, but does not shift the 
resonance frequency ( )2

t( 0)f∆ =  
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In practice, the excess half-widths are presented as a 
fraction of the measured resonance frequency fm 
instead of a fraction of the unperturbed frequency (0)

0nf  
as in equation (4). If we use f0n, from equation (3a), to 
calculate the boundary layer corrections, then we must 
multiply equation (4) by ( ) ( ) 61

2 73 1 2 1γ γ− − ≈  to 
obtain the total second-order correction.  

Using equation (4) with γ = 5/3, we corrected de 
Podesta’s data by adding the quantity +7(gm / fm)2  to 
the half-width data in figure 1(a). The correction was 
largest for the (0,2) mode at 30 kPa where its value 
was 1.1×10−6. We estimate that the approximation 
gt

(1)/f(0)  ≈ gm / fm introduced a systematic error of 2% 
or less in the magnitude of the correction for the argon 
data. For the helium data, we used equation (4) with 
values for δ t /a supplied by the authors. The boundary 
condition that the amplitude of the temperature 
oscillation vanishes at the wall is approximate because 
the thermal conductivity of the resonator’s wall is not 
infinite. The effect of the wall’s thermal effusivity on 
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the resonance frequencies and half-widths was taken 
into account in [7] according to equations (3) and (4) 
of [13]. For helium in the copper resonator used in [8], 
we estimate that penetration of the thermal wave into 
the wall would increase the half-width for the (0,2) 
mode by only 0.12 ppm independent of pressure. The 
increase is only 0.02 ppm for argon in a similar 
resonator. 

The quasi-sphere used by de Podesta et al. is 
characterized by radii in the ratio 1:1 :1+ −e e , where 

0.0005≈e . The surface area-to-volume ratio of the 
quasi-sphere differs from that of a perfect sphere of 
equal volume by a term of order 2e . Thus the shape 
correction to g0n is 2( )O e . In the range of the data in 

figure 1, 2 (2) (0)
t 0ng fe ; therefore, we ignored the 

difference between a quasi-sphere and a sphere in the 
calculation of equation (4). 

Presently, we are conducting similar calculations 
for cylindrical resonators to account for terms of 
O(δ t /a)2 and the analogous term O(δ v /a)2, where δ v 
is the thickness of the viscous boundary layer. The 
details of the calculations for the spherical and 
cylindrical geometries will be presented in a 
forthcoming publication. 

Lastly, we mention that the standard resonance 
function (equation 2.42 in [2]) used to fit the 
experimental data in [7] and [8] and used by the rest of 
the acoustical metrology community was derived 
under the assumption that the resonance half-width 
does not change as the frequency is swept through the 
resonance. However, since the thickness of the 
boundary layer is proportional to f −1/2, the fitting 
function introduces a systematic error of order 
O(δ t /a)2 in the fitted values of fm and gm. This fitting 
error is the same order as the correction calculated 
here and will also show up in the excess half-widths. 
This effect on helium data is 3 times larger than the 
effect on argon data from the same resonator, since 
δ t /a is 1.7 times larger in helium than argon at the 
same pressure for the same mode. Further discussion 
about the fitting function and its limitations is beyond 
the scope of this paper. We are studying this effect and 
will address this issue elsewhere. 
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