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Abstract. Ballistic limit tests are widely used to assess armor performance, particularly to determine the velocity at
which half of all projectile impacts will perforate the armor, a velocity typically described as the V50. For armor designs
where the armor’s performance transitions quickly from stopping all impacts to being perforated by all impacts as a test
projectile’s velocity increases, the V50 can often be determined with acceptable certainty with only a small number of
shots. When the transition is more gradual, such as is common with soft armor designs, significantly more testing may
be necessary to determine either the V50, or the performance at other velocities, with reasonable levels of uncertainty.

In the case of armor designs with gradual transitions, the estimated performance may be influenced by a variety of
factors, including the number of shots used to assess the performance, the starting velocity of the shot sequence, and the
model chosen to represent the armor performance.

This paper describes work to assess the uncertainty in performance estimates obtained from ballistic limit testing.
Monte Carlo style simulations of ballistic tests are used to asses the influences of starting velocity, shot sequence length,
total shots, and armor performance on the uncertainty of performance estimates.

Based on a better understanding of the performance uncertainty that is inherent in the test methods, ballistic tests can
be planned such that the uncertainty is reduced to an acceptable level with a minimal amount of testing.

1. BACKGROUND

Ballistic limit tests are typically used to determine the failure point of an armor, particularly to determine
the velocity at which half of all impacts with a specific type of projectile will perforate the armor, a velocity
typically described as the V50. Depending on the armor materials and construction, the way the armor
performs as the projectile velocity increases can be quite different, and the importance and meaning of the
V50 can vary.

For certain combinations of projectiles and armor designs, particularly hard armors with consistent thick-
ness and material properties impacted by non-deforming projectiles, the probability of the projectile perfo-
rating the armor at a velocity slightly less than the V50 can be negligible1, while the projectile will nearly
always perforate the armor when the impact velocity is slightly greater than the V50. This type of response
can be modeled with a curve such as the dotted gray line in Figure 1. In such cases the V50 represents the
failure velocity of the armor design, and it can be determined with reasonable accuracy using a relatively
simple up-down shooting method, such as the ones described in MIL–STD–662 [7] or STANAG 2920 [6],
with a small number of shots. When the tests are properly performed, the resulting estimate of the V50 will
be sufficiently accurate, and it is only necessary for the V50 to be slightly greater than the expected threat
velocity for the armor to be capable of consistently stopping the threat.

Unfortunately, for armor designs that use less consistent materials and for most soft armor designs, such
as the concealable vests used by law enforcement, the performance transitions more slowly from the velocity
where nearly all impacts are stopped to the velocity where all impacts perforate the armor. Such responses
can be modeled with curves such as the solid black, dashed red, or dash-dot blue lines in Figure 1. While
the rate of the transition will vary with the specific armor design, it is not unusual for there to be a low,
but significant, probability of perforation for impacts that are 100 m/s below the V50, and similarly a small
percentage of impacts at velocities as high as 100 m/s above the V50 will be stopped. Experimental results
have shown that for such armor designs, the small number of shots used in traditional V50 tests may yield
inconsistent results; moreover, the V50 itself has less value for such armors, since it does not provide an
indication of the velocity at which the probability of perforation becomes significant.

1Certain phenomenon, such as a shatter gap may allow low velocity projectiles to perforate such armors; however, this is not
addressed in this work.
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Figure 1: Typical textile armor responses, modeled using a logistic distribution.

2. MODELING OF ARMOR RESPONSE

2.1 Mean of Perforations and Stops

One of the simplest methods of estimating the V50 is to obtain a series of stops and perforations using an up-
down series of shot velocities, and then to calculate the average velocity of the fastest shots that are stopped
and the slowest ones that perforate the armor. This is the approach used in many test methods [7, 6, 4] that
estimate the V50 from a small number of shots. This approach, however, does not provide an estimation of
the uncertainty of the V50 estimate, and the estimate can be skewed by small errors or limitations of the test
procedures.

2.2 Logistic Distribution

An improved approach is to fit the test data to an appropriate statistical model that uses all of the test data to
estimate the armor performance. The logistic distribution is one such model, which is appropriate for binary
data [2, 1, 3] and has been used to model a wide variety of systems with discrete responses. The shape of
this model is shown in Figure 1, and it is defined by the equation [2]:

p(v) =
eβ0+vβ1

1 + eβ0+vβ1
. (1)

Here, p(v) is the probability of a shot fired at velocity v perforating the armor, the constant, β0, is a dimen-
sionless parameter, and the velocity coefficient, β1, has units of time/length and defines the steepness of the
curve. These parameters can be estimated by the maximum likelihood method [2].

Equation 1 can be rearranged such that the velocity, v, is a function of the probability of perforation, p:

v(p) = Vp =
ln
(

p
1−p

)
− β0

β1
. (2)



For the special case of p = 0.5, the V50, this relationship simplifies to:

v(0.50) = V50 =
−β0
β1

. (3)

The variance between the estimated model and the test data can be calculated, and this result is used to
calculate confidence intervals for the estimated model. The notation β̂0 and β̂1 will be used to indicate the
estimated model coefficients, and the estimated logit, ĝ(v), is defined as:

ĝ(v) = β̂0 + vβ̂1. (4)

Then, based on a Wald test with a normal distribution, the 100(1−α)% confidence intervals for the estimated
logistic response are [2, 3]:

CI(v) =
e ĝ(v)±z1−α/2

√
V̂ar[ĝ(v)]

1 + e ĝ(v)±z1−α/2
√

V̂ar[ĝ(v)]
. (5)

Here, z1−α/2 is the normal distribution critical value that is exceeded with a probability of 1− α/2, and:

V̂ar
[
ĝ(v)

]
= V̂ar

(
β̂0

)
+ v2V̂ar

(
β̂1

)
+ 2v ˆCov

(
β̂0, β̂1

)
. (6)

The terms V̂ar(β̂0), V̂ar(β̂1), and ˆCov(β̂0, β̂1) are, respectively, the estimated variance in the constant,
β̂0, the estimated variance in the velocity coefficient, β̂1, and the estimated covariance between these two
coefficients.

Equation 5 can be solved to determine the range of probabilities of perforation that can be expected to
occur at the selected velocity with a confidence of 100(1−α)% if the test is repeated. These values provide an
indication of the quality of the estimation. A small range between the upper and lower confidence intervals
indicates that the uncertainty of the estimated probability is small, and repeated tests will produce similar
results. A large range, however, indicates that the results are less certain, and repeated tests may produce
dissimilar results.

Equation 5 describes the confidence intervals in terms of probability limits at a given velocity, but often
it is more useful to understand the range of velocities within which a given probability of perforation, p, can
be expected to occur, i.e. CI(v) = p. Setting Equation 5 equal to p and rearranging, yields:

0 = ln

(
1

p
− 1

)
+ ĝ(v)± z1−α/2

√
V̂ar[ĝ(v)]. (7)

Expanding this equation with the relationships defined in Equations 4 and 6, using z to represent z1−α/2,
solving for v, and simplifying the result leads to:

v =
−
[(

ln
(

1
p − 1

)
+ β̂0

)
β̂1 − z2 ˆCov

(
β̂0, β̂1

)]
[
β̂2
1 − z2V̂ar

(
β̂1

)]

±

√√√√√√
[(

ln
(

1
p − 1

)
+ β̂0

)
β̂1 − z2 ˆCov

(
β̂0, β̂1

)]2
−
[
β̂2
1 − z2V̂ar

(
β̂1

)] [(
ln
(

1
p − 1

)
+ β̂0

)2
− z2V̂ar

(
β̂0

)]
[
β̂2
1 − z2V̂ar

(
β̂1

)] . (8)

Again, the V50 is of special interest, and setting p = 0.5 causes the logarithmic term to become zero.
This simplifies the relationship to:

v =
−
[
β̂0β̂1 − z2 ˆCov

(
β̂0, β̂1

)]
[
β̂2
1 − z2V̂ar

(
β̂1

)]

±

√[
β̂0β̂1 − z2 ˆCov

(
β̂0, β̂1

)]2
−
[
β̂2
1 − z2V̂ar

(
β̂1

)] [
β̂2
0 − z2V̂ar

(
β̂0

)]
[
β̂2
1 − z2V̂ar

(
β̂1

)] . (9)



These relationships can be used to estimate the performance of a tested armor and assess how good the
performance estimate appears to be. For the simulations described in this paper, the estimated responses are
compared to the known response for the purpose of understanding the uncertainty in the test method.

3. SIMULATION OF TEST RESULTS

Past research has shown that ballistic test results can be successfully modeled using the logistic distribution
and other, similar, statistical distributions. Extensive testing, however, is often required to provide sufficient
information for an acceptable model fit. Such testing can be quite expensive and time consuming; moreover,
it can be difficult to separate the uncertainty in the results that is due to variations in the specimens and the
limit size of the test data set from the uncertainty due to the test method itself.

In order to assess the uncertainty in the results that is due to the test method, an alternative approach is
to use numerical simulations to perform a large number of virtual tests. While these simulations will not
provide insight into the performance of armors, they can provide information about the variability and uncer-
tainty inherent in the test methods. Since the performance of simulated armor is defined in the simulation,
the performance estimated by the simulation can be compared to the defined performance to gain a better
understanding of the quality of the estimate.

In the current work a series of Monte Carlo style simulations were used to assess the influence of some
test parameters on the estimation of the armor response. The simulations accounted for the influence of
many typical experimental limitations, such as the typical levels of random variation in the shot velocity and
limitations to the precision of the propellant mass used in the cartridges. For these simulations, a typical
load-velocity curve was used to estimate a propellant mass for each simulated shot, the masses were rounded
the same increments used our experimental preocedures, and the resulting velocity randomly generated using
a normal distribution. This approach created simulated shot sequences that were similar to those that occur
during ballistic testing, including the occasional test series that fails to meet the requirements of the test
standards2. A series of 10,000 simulations were generated for each set of variables considered.

4. RESULTS OF SIMULATIONS

4.1 Influence of Test Starting Velocity

Since the V50 of an armor specimen is not known before the specimen is tested, there are a variety of ap-
proaches used to determine what velocity should be used for the first test shot. Many test protocols specify
that the starting velocity should be at the V50 expected from the design or previous tests. Other approaches
range from requiring the test to start at a relatively low velocity (e.g. [5, 4]) to some acceptance tests that
require a starting velocity that is significantly greater than a required V50 (e.g. [7]). If the test method pro-
duces the same estimate for the V50 no matter what starting velocity is used, then the starting velocity can
be considered to be unimportant; however, if different starting velocities lead to different results, a poorly
selected starting velocity will lead to an incorrect estimate of the armor performance.

To determine if the starting velocity would influence the estimated V50, a series of simulations were
performed with starting velocities that varied from 120 m/s less than the actual V50 of the simulated armor
to 120 m/s greater than the V50. Simulations were performed for armor models with β1 coefficients ranging
from 0.03 s/m to 0.18 s/m. The simulations considered tests that ranged from four shots to twelve shots3 (plus
additional shots that were not used in the V50 estimation), which were simulated and analyzed according to
the method described in MIL–STD–662 [7]. Velocity steps of 30.4 m/s were used prior to the first reversal,
after which the steps were reduced to a minimum step size of 7.6 m/s. For these simulations, the shots used for
the V50 estimation were required to fall within a range of 45.7 m/s, as required by NIJ Standard–0101.04 [4].
This range is slightly larger that allowed by some other test standards, such as STANAG 2920 [6]. The
simulations also considered tests that ranged from twelve to 240 shots, which were simulated and analyzed
according to the method described in NIJ Standard–0101.06 [5].

2Simulations that failed to meet the requirements of test standard were discarded and replaced, as such results would be in a test
laboratory.

3The number of shots is the total used in the V50 calculation, with half required to be stops and half perforations.



Figure 2 contains selected results from the simulations with four to twelve shots. The left side figures
(Figures 2a, 2c, and 2e) show the average difference between the estimated V50 and the actual V50, while
the right side figures (Figures 2b, 2d, and 2f) show the uncertainty in the V50 estimates. Each average and
uncertainty value in the plots are based on the results of ten thousand simulations.

When the test starting velocity is close to the actual V50, the average estimated V50 is quite close to the
actual V50; however, when the test starting velocity is significantly different than the actual V50 the average
estimated V50 is dependent on the response of the armor. When the response transitions quickly from the
zone of no perforations to the zone of all perforations (when β1 is larger), the difference between the starting
velocity and the actual V50 must be quite large – greater than 50 m/s – before the starting velocity causes a
significant bias in the V50 estimate. When the transition is slower (when β1 is relatively small), the difference
between the starting velocity and the actual V50 causes a bias in the results, and the difference between the
average estimated V50 and the actual one can be a large fraction of the starting velocity offset (See Figure 2a).
Increasing the number of shots used in the test reduces the bias.

More important is the influence of the starting velocity on the uncertainty of the test results. The expanded
uncertainty (94.45 % confidence) of the estimated V50 with respect to the actual V50 are shown in Figures 2b,
2d, and 2f. The uncertainty varies with the starting velocity offset, the number of shots, and the armor
response. The worst cases are tests with a small number of shots, a small β1, and a large starting velocity
offset. For example, the estimated V50 from a four shot test on a armor panel with a β1 of 0.03 s/m can be
expected to vary from the actual V50 by 50 m/s if the starting velocity is close to the actual V50, and by more
than 80 m/s when the starting velocity offset is 100 m/s.

The uncertainty decreases significantly when β1 is larger, but even with a relatively large β1 and a rea-
sonably small starting velocity offset the expanded uncertainty was found to range between 13 m/s in a four
shot test to 7.6 m/s in a twelve shot test. As β1 increases, the influence of the starting velocity on the uncer-
tainty of the V50 estimate decreases. With a β1 of 0.18 s/m, the starting velocity offset does not cause the
uncertainty to increase until the offset exceeds approximately 75 m/s.

When the number of shots used in the test become significantly large, it becomes practical to model the
results with the logistic distribution. Figure 3 contains selected results from the simulations with twelve to
240 shots, with the V50 estimated by fitting a logistic model to the simulated test results. Again, the left side
figures (Figures 3a, 3c, and 3e) show the average difference between the estimated V50 and the actual V50,
while the right side figures (Figures 3b, 3d, and 3f) show the expanded uncertainty in the V50 estimates.

These results have the same trends that occurred in the simulated tests with four to twelve shots, but
the increasing number of shots tends to minimize the differences and uncertainty. The average difference
between the estimated and actual V50 is small except in the cases where the β1 coefficient is small, or where
the test starting velocity offset is quite large.

The expanded uncertainty of the V50 estimates (Shown in Figures 3b, 3d, and 3f) tends to be smaller than
in the case of of the four to twelve shot tests, but it is still dependent on the armor response and the starting
velocity offset. When the β1 coefficient is small, the uncertainty is quite large when either the number of
shots is relatively small or when the starting velocity offset is large. Even when 120 shots are used and the
starting velocity offset is small, the expanded uncertainty is 13.0 m/s. When the β1 coefficient is larger, the
uncertainty is reduced – particularly when a larger number of shots are used. For β1 coefficients of 0.09 s/m
and 0.18 s/m, the expanded uncertainties are less than 6.4 m/s and 3.6 m/s, even when the starting velocity
offset is large.

These results indicate that the choice of the test starting velocity can have a significant influence on
the resulting V50 estimate, but that using a large number of shots will generally improve the quality of the
estimate.

4.2 Influence of Armor Response

As discussed above, the simulation results indicate that the goodness of the estimated response are, in part,
dependent on the armor response. To clearly show the influence of the armor response on the results, the
expanded uncertainty of the V50 estimates are plotted versus the coefficient β1 for the cases of 24 (Figure 4a)
and 120 (Figure 4b) shots. With all other simulation parameters held constant, the uncertainty decreases
significantly as the coefficient β1 increases.

This result shows that the uncertainty in the test results will depend on both the test method and the
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Figure 2: Differences and Uncertainty in V50 Estimated by MIL–STD–662[7] Method.
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Figure 3: Differences and Uncertainty in V50 Estimated Using Logistic Response Model.
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(b) 120 Shot Tests.

Figure 4: Variation of Uncertainty in V50 Estimated due to Armor Response.
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Figure 5: Influence of Shot Quantity on V50 Estimates (β1 = 0.090).

armor response. Increasing the number of shots used in the test and carefully selecting the test starting
velocity can reduce the uncertainty, but the uncertainty in the response estimate will still be a function of the
β1 coefficient, and when this response coefficient is small, the uncertainty will remain relatively large.

4.3 Influence of Number of Shots

When determining how to test an armor model, the armor’s response is generally unknown, or only poorly
known; therefore, a test starting velocity that will minimize the uncertainty cannot always be selected. More-
over, the coefficient β1 cannot be controlled. This leaves the number of shots used in the test as one parameter
that can be easily controlled, and that will have a significant influence on the quality of the estimated response.
The mean error in the V50 estimate and expanded uncertainty of that estimate are plotted in Figure 5 for an
increasing quantity of shots, all for an armor with a response coefficient β1 of 0.090 s/m. For this armor re-
sponse the mean error in the V50 estimate is small even when the number of shots is small, but the expanded
uncertainty is quite high until 48 to 60 shots are used.

When assessing the results of a test, the estimated confidence intervals provide insight into the goodness
of the estimated model response. When the upper and lower confidence intervals are close together (and both
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Figure 6: Influence of Shot Quantity on Mean Confidence Interval Estimates (β1 = 0.090).

close to the value of interest) the estimated response is likely to be close to the actual value; however, when
the confidence intervals are far apart, the estimated response may be quite different from the actual value.
Confidence intervals were calculated for each simulated test, for the purpose of assessing how the number of
shots used in the test influenced the confidence limits.

The mean confidence intervals are shown in Figure 6 for both the V50 (Figure 6a) and the V10 (Figure 6b).
As might be expected from the uncertainty analysis, the difference between the mean upper and lower con-
fidence intervals decreases as the number of shots in the test is increased. The mean confidence intervals for
V50 become reasonably small as the number of shots is increased. The mean confidence intervals for the V10
are somewhat larger than the mean confidence intervals for the V50, and they remain larger over the range of
test shots considered.

The variability of the individual confidence intervals was also considered. The mean confidences intervals
for the V50 and V10 are shown in Figure 7 with the whiskers indicating the 97.7 and 2.3 percentiles (95.45 %
coverage). While both the mean estimates and the variability of the confidence intervals decrease as the
number of shots used in the test increase, the variability remains relatively large – with 95 % coverage the
variability is about twice the mean value of the confidence limit.

5. SUMMARY AND CONCLUSIONS

These results with simulated ballistic limit tests indicate that the choice of the test starting velocity can have
a significant influence on the resulting V50 estimate, but that using a large number of shots will generally
improve the quality of the estimate. In addition, the uncertainty in the estimated armor response will depend
on both the test method and the actual armor response. Increasing the number of shots used in the test and
carefully selecting the test starting velocity can reduce the uncertainty, but for armors that can be modeled
using the logistic distribution, the uncertainty in the response estimate will be a function of the β1 coefficient
and when this response coefficient is small the uncertainty will remain relatively large.

The simulation results indicate that the uncertainty in the estimated V50 will generally remain large when
only a small number of test shots are used. Based on these results, 48 to 60 shots are necessary to reduce the
uncertainty, and more shots are desirable.

These results provide some insight into the variability and uncertainty associated with standard ballistic
limit test methods. Future research will expand this approach to study the influence of alternative test methods
on the estimated response, and to determine what test strategies can be used to provide improved performance
estimates using minimal quantities of armor specimens and the fewest test shots.
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(a) Variability at V50.
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(b) Variability at V10.

Figure 7: Variability in Confidence Interval Estimates at V50 and V10 (β1 = 0.090).
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