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E. Cobanera∗ and G. Ortiz
Department of Physics, Indiana University, Bloomington, IN 47405, USA

E. Knill
National Institute of Standards and Technology, Boulder, CO 80305, USA

(Dated: June 8, 2012)

We exploit a new theory of duality transformations to construct dual representations of models
incompatible with traditional duality transformations. Hence we obtain a solution to the long-
standing problem of non-Abelian dualities that hinges on two key observations: (i) from the point
of view of dualities, whether the group of symmetries of a model is or is not Abelian is unimportant,
and (ii) the new theory of dualities that we exploit includes traditional duality transformations, but
also introduces in a natural way more general transformations.
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Introduction.— Dualities have been recognized as
powerful non-perturbative mathematical tools to study
strongly interacting systems since Kramers and Wannier
introduced them to determine the exact critical temper-
ature of the planar Ising model [1]. Traditional dualities
(TD) as described in Refs. [2–4] are obtained by a sys-
tematic method based on the Fourier transform (FT),
suitably generalized to arbitrary groups G. The method
generates a dual partition function (or lattice Euclidean
path integral) ZD[K∗

i ] from a partition function (PF)
Z[Ki] with physical couplings Ki, i = 1, · · · ,m. The
dual PF has the remarkable property that its (dual) cou-
plings K∗

i are large (strong) if the couplings Ki are small
(weak), and vice versa. This is in part because the dual-
ity engenders collective (topological) excitations in terms
of which ZD is expressed.

Unfortunately, many models of great physical interest
such as Heisenberg, non-Abelian gauge and more recent
models based on Hopf algebras are outside the scope of
TD transformations. The reason is technical, not physi-
cal: the group-theoretic FT has different algebraic prop-
erties depending on G being Abelian or not, and the
TD transformation takes advantage of essential simpli-
fications present only in the Abelian case. In essence, a
TD transformation introduces, via an FT, dual elemen-
tary degrees of freedom (EDFs). For Abelian FTs, the
dual EDFs are still locally coupled and result in physical
dual PFs. Non-Abelian FTs result in non-local interac-
tions and/or constraints and complex Boltzman weights,
as historically illustrated by attempts to construct dual
representations of non-Abelian gauge theories [5]. Thus,
in order to obtain TDs, it is necessary that the model and
associate groups satisfy restrictive properties enabling
the existence of physical dual models.

Conventionally it is thought that the group G needed
for TD transformations is determined by the model’s
group of symmetries G [2, 6] (see especially section 7,
point (3) of Ref. [6]). Here we argue that G is not deter-
mined by, and in general is unrelated to, G. Rather, G

is associated with and constrained by the model’s local
or quasi-local interactions. We call a model S-Abelian, or
S-non-Abelian, according to whether the group of sym-
metries G is Abelian or not. Many models are S-non-
Abelian, but have a TD transformation with an associ-
ated Abelian G. It is tempting to call a candidate duality
transformation D-Abelian or D-non-Abelian according to
whether G is Abelian or not. However, the underlying
group may not be apparent and may involve more gen-
eral structures. Instead, we focus on the presence or
absence of non-trivial constraints on the states of the
models. That is, we say that a transformation connect-
ing two locally defined PFs has D-non-Abelian features
if the transformation introduces or removes non-trivial
local constraints. From this perspective, it is impossible
to have a D-non-Abelian self-duality.

The non-Abelian duality problem is the problem of ex-
tending the scope of TDs without sacrificing their physi-
cal content to cases where there are no relevant Abelian
groups G for the interactions of a model. Our main con-
tribution is to introduce a generalization of TD transfor-
mations, bond-algebraic duality transformations, that ad-
dresses the problem of non-Abelian dualities by exploit-
ing the recently developed theory of bond algebras [7, 8]
and their homomorphisms. These transformations [2]
handle on equal footing models with arbitraryG, Abelian
or not, and even more general models, where there is
no obvious group structure constraining the transfor-
mations. Unlike a strictly D-Abelian duality, a bond-
algebraic duality can have both D-Abelian and D-non-
Abelian features. To illustrate our ideas, we give a du-
ality for a model outside the scope of TDs, namely a
rigid-rotator model with group G = SU(2). According
to our terminology, this duality is D-non-Abelian and
impossible to obtain by a TD.

Lattice Models.— For simplicity, consider models with
identical, classical EDFs with configuration space M
at sites r of a lattice Λ. A full configuration of the
model consists of an assignment sr ∈ M for each site
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r. If the model has only pair-wise symmetric interac-
tions, then the total energy E{sr} of a configuration
{sr} is a sum of (oriented) two-body interaction energies
ǫ(sr, sr′) = ǫ(sr′ , sr). This minimal description suffices
to specify physical quantities such as a PF. However, it
often happens that M admits useful additional mathe-
matical structures. In the context of TDs, this includes
groups acting on the EDFs. More generally, we can con-
sider configuration spaces that are endowed with two op-
erations m,m′ 7→ m ·m′ (multiplication) and m 7→ S(M)
(involution) such that (a) multiplication is associative,
(b) S is involutive (S2 is the identity map) and order-
reversing (S(m·m′) = S(m′)·S(m)), and c) the pair-wise
interactions between EDFs can be expressed in the form

ǫ(sr, sr′) = v
(

sr · S(sr′)
)

, (1)

for some real-valued function v. Conditions (a) and
(b) turn M into a semigroup with involution. We call
models satisfying these conditions m-models (short for
multiplication-models). It is possible to accommodate in-
teractions involving more than two EDFs, provided the
EDFs in an interaction are ordered and oriented. For
example, let sr1 , sr2 , sr3 , sr4 occupy the corners of an
elementary plaquette on the lattice, ordered along the
boundary of the plaquette. Then

ǫ(sr1 , sr2 , sr3 , sr4) = v
(

sr1 · S(sr2) · sr3 · S(sr4)
)

(2)

describes a form ofm-interaction relevant to physical ap-
plications that we discuss in the next section.
Wilson’s lattice approach to quantum field theory [10]

popularized the study of m-models defined in terms of
EDFs taking values on a group G = M , with interac-
tions of the form of Eq. (1) or its generalizations. These
G-models are important examples of m-models where
the multiplication in M is group multiplication and S
is group inversion, S(g) = g−1. TD transformations

are applicable only to G-models with G an Abelian group

[3]. A reason for introducing the more general notion of
m-model is that we want to accommodate a larger set
of theories, such as those based on general Hopf algebras
[11] that are becoming increasingly more important in
topological quantum matter, and the theory of quantum
computation and error correction.
A model’s symmetry group G is completely determined

by its interactions. But semigroups with involutionM as-
sociated with the model and constrained to satisfy iden-
tities such as those of Eqs. (1) or (2) are in general not
unique and may be completely unrelated to G. For exam-
ple, consider the non-Abelian group SN of permutations
on N ≥ 3 letters, and use it as the configuration space
M = SN for the EDFs of the Potts model. Then we can
write the interaction energy as

ǫPotts(sr, sr′) = δe
(

sr · s−1
r
′

)

, (3)

where δe(g) = δe,g is the Kronecker delta on SN . The
Potts model is non-Abelian from the point of view of its

symmetries, but it supports D-Abelian dualities. The
reason is that we can map the elements of SN to the ele-
ments of ZN ! (the Abelian group of integers modulo N !),
and rewrite the interaction energy in the equivalent form
ǫPotts(sr, sr′) = δ0

(

sr − sr′

)

. Rewriting the model in this
way does not change the fact that its symmetries are non-
Abelian, yet it permits the use of a TD to determine its
critical coupling. Some early explorations of non-Abelian
dualities [12–14] exploited this procedure extensively to
map models defined on certain non-Abelian groups to
Abelian ones. In particular, it was noted that models
defined on solvable groups are specially amenable to this
procedure [13], since solvable groups can be mapped to
Abelian groups in a natural way.

Beyond traditional dualities.— The recently developed
theory of bond-algebra homomorphisms [2, 8] includes
and generalizes the theory of TD transformations. To
apply this theory, we start with a physical model de-
fined by its EDFs and local interactions that capture the
main features of the physical phenomena under study.
We then identify the model’s bonds, which are the local
or quasi-local interaction operators occuring in the inter-
actions. The multiplicatively closed algebra generated by
the bonds is called the bond algebra. A key observation
is that the structure of the bond algebra and its generat-
ing bonds contain essential information about the model.
In particular, mappings between bond algebras that pre-
serve locality in, and all the algebraic relations among

the bonds, can demonstrate close relationships between
seemingly unrelated models, including models with EDFs
of differing exchange statistics. Although such bond-
algebra mappings are by definition local in the bonds,
they are typically non-local in the EDFs. That is, the
model’s EDFs in the domain can be naturally related
in the range to highly non-local degrees of freedom in-
volving many EDFs [2, 8]. These collective modes can
be considered to be alternative EDFs relative to which
interactions take different, but still local, forms. In the
following, we call mappings of bond algebras that pre-
serve locality and algebraic relationships bond-algebraic

duality transformations. This is motivated by the obser-
vation made in Refs. [2, 8] that they can be used as the
foundation for a unified theory of classical and quantum
dualities. Here we show that bond-algebraic dualities go
beyond TDs and generate new transformations that are
not related to the group-theoretic FT.

A bond-algebraic duality [2] for a classical model can
be obtained by expressing the PF Z in terms of opera-
tors that can be related to a bond algebra. A popular
way to do this (for an alternative, see [15]) begins by
identifying operators T0, · · · , Ts, called transfer matrices
(TMs), acting on a Hilbert spaceH, and a preferred basis
φ = {|φi〉} of H. The operators must satisfy

Z =
∑

{sr}

[e−E{sr}] = Trφ[(Ts · · ·T1T0)
N ], (4)
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where N is determined by the length of the lattice in a
chosen direction. The role of the basis is so enable us to
make the equality explicit by appropriately inserting res-
olutions of the identity

∑

i |φi〉〈φi| between the operators
in the trace, expanding the trace in terms of the resulting
summands and associating the states sr with sequences
of basis indices. For this to work and the expanded trace
to match the desired PF, we need the right combination
of TMs and a preferred basis.
The locality of the classical model’s interactions is usu-

ally reflected in this construction. Thus, the Hilbert
space H is defined by quantum EDFs on a lattice such
that the TMs factor into a product of quasi-local oper-
ators, Tα =

∏

Γ tα,Γ (α = 0, 1, · · · , s), with Γ a lattice
index that may stand for a site, a link, or a plaquette.
As a result, it is natural to define the bond algebra of Z
as the algebra generated by the bonds {tα,Γ} [7].
To obtain a duality, one can algebraically represent the

bonds, and therefore the TMs, on an alternative space,
and determine a preferred basis so that the expansion of
the trace can be recognized as a physical PF for a differ-
ent model. Suppose we have such a bond-algebraic dual-
ity tα,Γ 7→ tDα,Γ with image bonds tDα,Γ on different quan-
tum EDFs that are also local and have the same algebraic
relationships. This induces a bond-algebra isomorphism
between the algebras generated by the two sets of bonds.

We can define dual TMs TDα = A
−1/N
α

∏

Γ t
D
α,Γ, with Aα

analytic functions of the parameters of the model, and
compute a dual PF as

ZD = Trψ [(T
D
s · · ·TD1 T

D
0 )N ]. (5)

relative to a basis ψ = {|ψj〉} to be specified. A non-
trivial property of typical bond algebra isomorphisms is
that they are induced by unitary transformations [2]. In

particular, if tDα,Γ = Udtα,ΓU
†
d
, with Ud unitary, then

Z = A ZD and A =

s
∏

α=0

Aα. (6)

It follows that Z and ZD represent two, in general dif-
ferent, systems that have nonetheless the same thermo-
dynamics.

(r, i + 1)

(r, i)

(r + e1, i)

e3

e2

e1

FIG. 1. Lattice connectivity of the classical D = 3 XM model.

The final form of ZD in terms of its EDFs depends
critically on the choice of basis ψ in Eq. (5). As an

extreme example, if {|ψj〉} = {Ud|φi〉}, then Eq. (6) is
reduced to a trivial identity with A = 1. The choice
of basis also determines whether a bond-algebraic dual-
ity is D-non-Abelian or D-Abelian, that is, whether or
not it introduces local constraints when the trace is ex-
panded. Local constraints appear if the combination of
TMs between resolutions of the identity have entries that
are zero with respect to the basis. Thus, given a bond-
algebraic duality, it is natural to seek a basis where the
relevant TMs are full, so that the duality is D-Abelian.
In general, the entries of the matrices also need to be
positive and expressible as products of local Boltzmann
weights. Although such bases are known to exist for a
large class of duality problems including TDs, we do not
have general strategies for finding them.
We illustrate these ideas with a D-Abelian and a D-

non-Abelian duality for the Xu-Moore (XM) model of
p+ip superconducting arrays [16, 17]. The model’sD = 3
dimensional classical PF is given by (see Fig. 1)

ZXM =
∑

{σ(r,i)}

e
∑

i

∑
r
[Klσ(r,i)σ(r,i+1)+Kp�σ(r,i)], (7)

where σ(r,i) = ±1 are classical Ising variables placed
at the sites (r, i) (i an integer) of a cubic lattice, and
�σ(r,i) ≡ σ(r,i)σ(r+e2,i)σ(r+e1,i)σ(r+e1+e2,i). The XM
model is a G-model with G = Z2. The TD transfor-
mation maps the model to itself with a characteristic
interchange of strong and weak coupling constants [16].
To recast it as a D-Abelian bond-algebraic duality, we
construct plane-to-plane TMs

T1 =
∏

r

ehσ
x
r , T0 =

∏

r

eKp�σ
z
r , (8)

with σx,z
r

Pauli matrices acting on quantum spins at sites
r of a (d = 2) square lattice, h = − ln tanh(Kl)/2, and
�σz

r
= σz

r
σz
r+e2

σz
r+e1

σz
r+e1+e2

(see Fig. 2). To recover
ZXM, the trace Trφ[(T1T0)

N ] is computed with respect to
the basis φ that diagonalizes the σz

r
.

The TMs can be expressed as products of t1,r =
cosh(h)+sinh(h)σx

r
, t0,r = cosh(Kp)+sinh(Kp)�σ

z
r
. We

therefore let the bonds be {σx
r
,�σz

r
}. They satisfy a

bond-algebraic duality induced by

σx
r
7→ �σx

r
, �σz

r
7→ σz

r+e1+e2
, (9)

and illustrated in Fig. 2. The dual TMs

TD1 =
∏

r

eh�σ
x
r , TD0 =

∏

r

eKpσ
z
r , (10)

are related to T1, T0 by a unitary mapping. If we expand
ZD

XM
= Trφ[(T

D
1 T

D
0 )N ] with respect to φ, we find that

ZD
XM

contains local constraints, so that the mapping of
Eq. (9) is D-non-Abelian relative to φ. It is, however,
D-Abelian in the basis ψ that diagonalizes the σx

r
, with

respect to which we recover the traditional self-duality of
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= σx
r

= �σz
r

= σx
r
σx
r+e1

= σz
r
σz
r+e2

FT
Not FT

FIG. 2. The quantum XM model (shown on top) is self-dual
as indicated by the arrow on the left, and it is dual to the
planar orbital compass model, as indicated by the arrow on
the right. Direct and dual lattices are indicated with solid
and dashed lines, respectively.

the XM model [8, 16]. In the bond-algebraic approach to
dualities, the role of the FT is encoded in the change of
basis φ 7→ ψ realized by a direct product of Hadamard
operators H satisfying HσzH = σx.
The bond algebra of the XM model has another local

representation [2, 8, 18],

σx
r
7→ σz

r
σz
r+e2

, �σz
r
7→ σx

r+e2
σx
r+e1+e2

. (11)

The corresponding dual TMs

T̃D1 =
∏

r

ehσ
z
r
σz
r+e2 , T̃D0 =

∏

r

eKpσ
x
r
σx
r+e1 , (12)

yield an alternative dual partition function Z̃D
XM

=

Trφ[(T̃
D
1 T̃

D
0 )N ]. With φ the basis that diagonalizes the

σz
r
, we obtain a PF with local, four-spin constraints. Rel-

ative to this basis the duality of Eq. (11) is D-non-
Abelian. It is an open problem whether there is a choice
of basis for which Z̃D

XM
is an unconstrained canonical en-

semble making the duality D-Abelian. An alternative
may be to remove these constraints by reinterpreting
them as gauge symmetries.
It is important to recall at this point that a TD maps

a G-model on a lattice Λ to an essentially unique dual
model supported on the dual lattice Λ∗ [3], and the XM
model is self-dual under such TDs. In contrast, the bond-
algebraic duality of Eq. (11) results in a model with a
Hamiltonian that differs from that of the XM model. We
conclude that this bond-algebraic duality is not a TD.
Non-Abelian dualities.— Next, we show that bond-

algebraic dualities exist for G-models with non-Abelian
G and no TDs. For example, consider the Euclidean

lattice version [10] of the SU(2) principal chiral field
[19]. This model involves an SU(2)-valued field u(x) =
(

u11 u12
u21 u22

)

∈ SU(2) with action

SPCh =
1

2λ0

∫

dtdx tr(∂0u
∗.∂0u− ∂1u

∗.∂1u) . (13)

The lower dot denotes matrix multiplication, u∗(x) is the
Hermitian-conjugate field, and tr is the 2×2-matrix trace.
Since u∗(x)u(x) = 1, the lattice Euclidean path integral
reduces to

ZPCh =

∫

{ur}

e
1

2λ0

∑
r
Re{tr(u∗

r+e1
ur)+tr(u∗

r+e2
ur)} (14)

on the square lattice with SU(2) as the EDFs’ config-
uration space. Note that if we replace SU(2) by U(1)
we obtain the XY -model, for which there is a D-Abelian
duality to the solid-on-solid model [2].
To express ZPCh in terms of row-to-row transfer oper-

ators. we use covariant pairs of standard representations
of SU(2) and the continuous functions C0(SU(2)) on
SU(2), both acting on wavefunctions on SU(2). A gen-
erating set for C0(SU(2)) is given by (U)µν (µ, ν = 1, 2),
where (U)µν(u) = uµν . Thus U is a matrix-valued func-
tion. The standard representation of SU(2) has infinites-
imal generators J = (Jx, Jy, Jz) for multiplication on the
right. If we write u = e−iθn̂·~σ/2, θ a finite angle, and n̂
a unit vector, then eiθn̂·J |v〉 = |v.u〉 for the formal basis
of wavefunctions |v〉. The row-to-row transfer operators
are given by

T0 =
∏

i

e
1

2λ0
Re{tr(U∗

i .Ui+1)}, (15)

T1 =
∏

i

∫

du ehRe{tr(u)}eiθn̂·Ji , u = e−iθn̂·~σ/2, (16)

for a parameter h dependent on λ0. The products are
over the EDFs in a row. To recover Eq. (14), the trace
Trφ[(T1T0)

N ] is expanded with respect to the basis |v〉.
To define a bond-algebraic duality, we use the genera-

tors ji of left multiplication, which satisfy eiθn̂·ji |ui〉 =
|u.ui〉. These generators can be related to actions
defined by J and U by the identity [20] jia ≡
∑

b=x,y,z tr(U
∗
i σ

aUiσ
b)Jib/2, such that [ji, Jj ] = 0. The

bond algebra generated by the local bonds Ji and
U∗
i .Ui+1 can be transformed to local bonds according to

Ji 7→ −ji + Ji−1, U∗
i .Ui+1 7→ Ui. (17)

Proving that the mapping is induced by a unitary op-
erator requires adding boundary terms to complete the
algebra, checking that the images of the EDFs’ operators
are generated by corresponding covariant pairs of repre-
sentations and applying the Stone-von Neumann-Mackey
theorem [21] (see the Supplemental Material). It follows
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that

TD0 =
∏

i

eλ1Re{tr(Ui)} , (18)

TD1 =
∏

i

∫

du eλ2Re{tr(u)}eiθn̂·(−ji+Ji−1) (19)

are unitarily equivalent to the corresponding TMs T0 and
T1. Note that the dual variables Ĵi, Ûi

Ĵi = −ji + Ji−1, Ûi = · · · .U∗
i+2.U

∗
i+1.U

∗
i (20)

that are the unitary images of the EDF operators under
the duality are, as expected on general grounds, non-
local collective modes. The string defining Ûi extends
to the boundary of the system, and its specific form is
determined by the chosen boundary conditions.
To obtain a dual PF, we expand the trace with re-

spect to the basis |vi〉 for each i. The PF ZD
PCh

=
Trψ[(T

D
1 T

D
0 )N ] is then given by (r = ie1 + je2)

∫

{ur}

e
∑

i,j
1

2λ0
Re{tr(u∗

i,j .ui,j+1)+tr(ui,2j)}
∏

i+j=even

δ(1,�ui,j),

where �ui,j = u∗i,jui,j+1ui+1,j+1u
∗
i+1,j (see the Supple-

mental Material). As for ZD
XM

, we obtain a PF with local

constraints on a checkerboard. We do not know whether
there is a choice of basis that removes such constraints.
We have discussed dualities for classical models, which

also apply to Euclidean path-integral representations
of quantum problems. This is the context in which
the problem of non-Abelian dualities is typically stated.
However, as explained in detail in Ref. [2], bond-
algebraic dualities provide a unified approach to classical
and quantum dualities, so we can use essentially the same
techniques to obtain dualities for any quantum mechani-
cal model. The bond algebra of a quantum Hamiltonian
H =

∑

Γ hΓ is the algebra generated by the local or quasi-
local bonds hΓ, and a bond-algebraic quantum duality is
given by a mapping hΓ 7→ hDΓ to an algebraically equiva-
lent dual set of local or quasi-local bonds. As before, one
can typically show that the isomorphism is induced by a
unitary transformation, in which case HD =

∑

Γ h
D
Γ is

unitarily equivalent to H . Take, for example, the d = 1,
infinite chain, SU(2) equivalent of the Z2 transverse-field
Ising Hamiltonian

HPCh =
∑

i

[
1

2
J2
i +

λ

2
(tr(U∗

i .Ui+1) + tr(U∗
i+1.Ui))], (21)

which is not self-dual, but has a duality to

HD
PCh

=
∑

i

[
1

2
(−ji + Ji−1)

2 +
λ

2
(tr(U∗

i ) + tr(Ui))], (22)

as follows from Eq. (17) (see the Supplemental Material).
Quantum dualities are remarkably simpler than classical
dualities. They do not depend on a choice of basis, and

so the distinction between D-Abelian and D-non-Abelian
becomes irrelevant.
Contributions to this work by NIST, an agency of the

US government, are not subject to copyright laws.
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SUPPLEMENTAL MATERIAL TO THE

NON-ABELIAN DUALITY PROBLEM

We present mathematical details and clarify technical
issues of results reported in the accompanying paper The
non-Abelian Duality Problem.

THE ISING MODEL REVISITED

In this section we explain how to choose the basis
for expanding the traces when determining partition
functions from products of transfer matrices. We illus-
trate the main concepts by example and use the two-
dimensional Ising model [1] to show that bond-algebraic
dualities may display both D-Abelian and D-non-Abelian
features. The partition function of the Ising model is
given by (r = ie1 + je2)

ZI[K1,K2] =
∑

{σr}

exp[
∑

i,j

(K1σi,jσi+1,j +K2σi,jσi,j+1)],

(23)
and can be expressed as ZI[K1,K2] = Trφ[(T1T0)

N ] in
terms of the transfer matrices

T0 =
∏

i

eK1σ
z
i σ

z
i+1 , T1 =

∏

i

(eK2 + e−K2σxi ), (24)

provided the trace is expanded in the basis φ = {|φk〉}
that diagonalizes the Pauli matrices σzi .
The mapping

σzi σ
z
i+1 7→ σzi , σxi 7→ σxi−1σ

x
i , (25)

illustrated in Fig. 3 defines an isomorphism of bond alge-
bras that is induced by a unitary mapping. Thus T0, T1
are dual and unitarily equivalent to

TD0 =
∏

i

eK1σ
z
i , TD1 =

∏

i

(eK2+e−K2σxi σ
x
i+1). (26)

σxi−1 σxi σxi+1σzi σ
z
i+1σzi−1σ

z
i

σzi−1 σzi σzi+1
σxi σ

x
i+1σxi−1σ

x
i

Φd

x

FIG. 3. Duality isomorphism of bond algebras associated with
the transfer matrices of the Ising model.

To compute a partition function from the dual trans-
fer matrices via the expression ZD

I
= Trψ[(T

D
1 T

D
0 )N ], we

need to specify a basis ψ = {|ψk〉}. The expansion of
the trace obtained by inserting resolutions of the iden-
tity with respect to this basis must be recognizable as

the partition function of a local system. In particular,
the coefficients of the expansion must be non-negative,
so that they can be written as Boltzman weights, and
they must be products of local terms consistent with the
expansion. For example, set ψ = φ, the basis of the pre-
vious paragraph. Then, as will become clear below, it is
convenient to split TD1 = TD1oT

D
1e, where

TD1o =
∏

io

(eK2 + e−K2σxioσ
x
io+1), (27)

TD1e =
∏

ie

(eK2 + e−K2σxieσ
x
ie+1), (28)

with io = 2i+1, ie = 2i, i ∈ Z. We can label the members
of the basis |φk〉 in terms of strings σ of Ising variables
±1 at sites i so that σzi |σ〉 = σi|σ〉 . With these labels,
the basis members are written as |σ〉. We now compute
ZD

I
= Trφ[(T

D
1oT

D
1eT

D
0 )N ] by expanding the trace as

Trφ[(T
D
1oT

D
1eT0)

N ] = (29)
∑

{σ1},··· ,{σ2N}

〈σ1|T
D
1o|σ2〉〈σ2|T

D
1eT

D
0 |σ3〉 · · ·

· · · 〈σ2N−1|T
D
1o|σ2N 〉〈σ2N |TD1eT

D
0 |σ1〉,

where {σj}, j = 1, · · · , 2N , describes the state of row j.
Note that TD0 is diagonal in the chosen basis. Further,

〈σj |T
D
1o|σj+1〉 = (30)

∏

io

〈σio,jσio+1,j |e
K2 + e−K2σxioσ

x
io+1|σio,j+1σio+1,j+1〉,

and a similar factorization holds for 〈σj |T
D
1e|σj+1〉. The

splitting TD1 = TD1oT
D
1e was introduced to ensure this fac-

torization. We can evaluate Eq. (29) by applying shifted
forms of the identity

〈σ′
1σ

′
2|e

K2 + e−K2σx1σ
x
2 |σ1σ2〉 =

= e
K2
2 (σ′

1σ1+σ
′

2σ2)δ(σ′
1σ1, σ

′
2σ2). (31)

It follows that

ZD
I

=
∑

{σr}





∏

i+j=even

δ(σi,jσi,j+1, σi+1,jσi+1,j+1)





× exp
[

∑

i,j

(K2

2
σi,jσi,j+1 +K1σi,2j+1

)

]

. (32)

The interactions in ZD
I

are illustrated in Fig. 4.
The last factor in Eq. (32) for ZD

I
can be identified

as a Boltzmann weight for a physical system with local
interactions, one of the requirements for a good choice
of basis to expand the trace in. However, the expression
for the partition function in Eq. (32) also introduces lo-
cal (delta function) constraints to account for the fact
that the dual Boltzmann weights vanish for some config-
urations. It is preferable to find a basis ψ where all the
Boltzmann weights are strictly positive so that there are
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FIG. 4. Interactions and constraints in the dual partition
function Z

D

I . The crosses highlight the sites where the classi-
cal Ising variables couple to a inhomogeneous external field of
magnitude K1. The heavy vertical lines indicates a nearest-
neighbor Ising interaction of magnitude K2/2. The staggered
distribution of plaquettes with round corners indicates the
distribution of four-spin delta constraints.

no constraints. For the Ising model, one can find such a
basis by inspection. Let ψ be the basis that diagonalizes
the Pauli matrices σxi . Then one can check that

ZI[K1,K2] = Trφ[(T1T0)
N ]

= Trψ[(T
D
1 T

D
0 )N ] = AZI[K

∗
1 ,K

∗
2 ] (33)

with sinh(2K∗
1 ) sinh(2K2) = 1 = sinh(2K∗

2 ) sinh(2K1).
The proportionality factor A is an analytic function of
the couplings and size of the system [2]. We then recover
the Kramers-Wannier self-duality of the Ising model.

The duality of the Ising model expressed by Eq. (32)
is not a self-duality. The Kramers-Wannier self-duality
as derived above is the result of combining the bond-
algebraic mapping of Eq. (25) with a suitable choice
of basis ψ. The dual partition function according to
Eq. (32) has restructured the interactions drastically,
but has left the couplings K1,K2 essentially unchanged.
Nevertheless, such dualities reveal key properties of tra-
ditional dualities. For example, consider the two-point
correlator 〈σm′,n′ σm,n〉. In the limit in which (m′, n′)
is infinitely far from (m,n), this correlator defines the
square of the order parameter. We can compute the cor-
relator in the dual model of Eq. (32) as

〈σm′,n′ σm,n〉 = (34)

=
Trφ[T

(N−n′) σzm′ T (n′−n) σzm T n]

Trφ[TN ]

=
Trφ[(T

D)(N−n′) µzm′ (TD)(n
′−n) µzm (TD)n]

Trφ[(TD)N ]

= 〈µm′,n′ µm,n〉,

where T = T1T0, T
D = TD1 T

D
0 (see Eq. (27)), and σz 7→

µzm = σzmσ
z
m+1σ

z
m+2 · · · , the dual Pauli spin operator

from Eq. (25). Hence

µm,n = σm,nσm+1,nσm+2,n · · · . (35)

In the dual model ZD
I
, the string correlator 〈µm′,n′ µm,n〉

is (in the limit of infinite separation) the square of the
order parameter. Thus, for example, if K < Kc, ZI is
in its ferromagnetic phase, corresponding by duality to a
phase of ZD

I
dominated by strong correlations of string

collective modes.

DUALITY OF THE SU(2) PRINCIPAL CHIRAL

FIELD: HAMILTONIAN FORMULATION

This section discusses a duality for the finite system

HPCh =
1

2

N
∑

m=1

J2
m +

λ

2

N−1
∑

m=1

Re tr(U∗
m+1.Um). (36)

The Hamiltonian HPCh can be obtained as the time-

continuum limit [3, 4] of the partition function of Eq.
(14) of the accompanying paper.

Algebra of a Single Quantum Rigid Rotator

The kinematical algebra of a rigid rotator [5] is defined
by the relations among the canonical variables Ja, a =
x, y, z, Uµν , µ, ν = 1, 2,

J†
a = Ja, (37)

[Ja, Jb] = iǫabcJc, (38)

[J, U ] =
1

2
U.σ, (39)

U∗.U = U.U∗ = 1, (40)

introduced in the accompanying paper. Here σ denotes a
standard Pauli matrix. The low dot denotes matrix mul-
tiplication to distinguish it from tensor multiplication,
and a centered dot denotes the standard Euclidean inner
product. For example, J · J = J2

x + J2
y + J2

z , and

[J, U ] =
1

2
U.σ ↔ [Ja, U

µ
ν ] =

1

2

∑

κ

Uµκσ
κ
a ν . (41)

Eqs. (37) and (40) imply [J, U∗] = −σ.U∗/2.

The algebra above affords a set of position-like oper-
ators U,U∗ and conjugate momenta Ja that suffice to
specify completely the kinematics of quantum tops. It is
useful however to introduce three additional operators

ja ≡
1

2

∑

b

tr(U∗.σa.U.σb)Jb, a = x, y, z (42)
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or just j = tr(U∗.σ.U.(σ · J))/2 for short, having some
very useful properties:

j†a = ja, (43)

[ja, jb] = −iǫabcjc, (44)

[j, U ] =
1

2
σ.U, (45)

[ja, Jb] = 0, (46)

j · j = J · J. (47)

Direct proofs of these relations, based on definition Eq.
(42) and relations (37), (38), (39), (40), can be found in
Sect. of this Supplemental Material. Notice that Eqs.
(43) and (45) imply that [j, U∗] = −U∗.σ/2.

Bond-algebraic Duality Transformation

This section describes the construction of a dual rep-
resentation of the Hamiltonian HPCh of Eq. (36). The
starting point is the selection of a suitable set of bonds
as generators of the bond algebra of interactions. One
convenient choice is

Jm, m = 1, · · · , N (48)

U∗
m+1.Um, U

∗
m.Um+1, m = 1, · · · , N − 1, (49)

We call the algebra they generate APCh. Notice that
HPCh ∈ APCh, but the bond algebra does not include
the position-like operators Um, U

∗
m, m = 1, · · · , N . It

will be useful later to change this by adding a boundary
term

UN , U∗
N , (50)

to the list of generators of APCh. The resulting ex-
tended algebra, still denoted by APCh, does include the
Um, U

∗
m, m = 1, · · · , N , since

Um = UN .(U
∗
N .UN−1). · · · .(U

∗
m+1.Um), (51)

U∗
m = (U∗

m.Um+1). · · · .(U
∗
N−1.UN ).U∗

N . (52)

The extended algebra APCh is simply a direct product
ofN copies of the algebra generated by a single rigid rota-
tor J, U, U∗. However, what is required is an understand-
ing of the structure of APCh from the point of view of the
local interaction terms inHPCh. The relations (other than
commutation) between the bond generators of Eqs. (48),
(49), and (50) are U∗

N .UN = 1, (U∗
m+1.Um).(U∗

m.Um+1) =
1, [Jm,a, Jn,b] = iǫabcJm,c δm,n for m = 2, · · · , N − 1,

[Jm, U
∗
m.Um+1] = −

1

2
σ.U∗

m.Um+1, (53)

[Jm, U
∗
m−1.Um] =

1

2
U∗
m−1.Um.σ , (54)

and at the boundaries, [J1, U
∗
1 .U2] = − 1

2σ.U
∗
1 .U2,

[JN , U
∗
N−1.UN ] = 1

2U
∗
N−1.UN .σ, and [JN , U

∗
N ] =

J1 J2 J3U∗

2
.U3U∗

1
.U2 U∗

3

U1 U2 U3
J2 − j3J1 − j2−j1

Φd

x

FIG. 5. Duality automorphism for the quantum chain of rigid
rotators, shown for three sites (N = 3).

− 1
2σ.U

∗
N . Relations that follow by Hermitian conjuga-

tion from those listed have been omitted.
The goal is to construct a mapping that preserves these

algebraic relations and locality. For instance (see Fig. 5),

U∗
N 7→ UN , U∗

m−1.Um 7→ Um−1, (55)

J1 7→ −j1, Jm 7→ −jm + Jm−1, (56)

form = 2, · · · , N. It is not necessary to specify the action
of this mapping on the jm, since the jm are functions of
Jm, Um, U

∗
m (see Eq. (42)).

As noted in the accompanying paper, to verify that
the bond-algebra mapping defined above is induced by
a unitary map, we can invoke the Stone-von Neumann-
Mackey theorem [6]. In order to do so, we need to verify
that the operators of the elementary degrees of freedom
are transformed into operators of a covariant pair of rep-
resentations as required by the theorem. We can express
the images of the operators in terms of the bonds (in-
cluding the boundary terms) directly. A benefit of doing
so is that these images define collective modes of interest.
The dual momenta Ĵm are by definition the image

Jm 7→ Ĵm, and are obtained directly from Eq. (56),

Ĵ1 = −j1, Ĵm = Jm−1 − jm, (57)

for m = 2, · · · , N . To compute the dual position-like
operators it is necessary to exploit the decompositions
of Eqs. (51) and (52). These decompositions combined
with Eq. (55) yield

Um 7→ U∗
N . · · · .U

∗
m ≡ Ûm, , (58)

and U∗
m 7→ Um. · · · .UN ≡ Û∗

m. It can be checked that the
dual variables Ĵm, Ûm, Û

∗
m commute on different sites,

and satisfy the relations of Eqs. (37), (38), (39), and
(40), as required for a covariant pair of representations.
Similarly to the dual variables, the dual Hamiltonian

is computed as HPCh 7→ HD
PCh

. Hence

HD
PCh

=
1

2
j21 +

N−1
∑

m=1

[1

2
(jm+1 − Jm)2 +

λ

2
Re tr(Um)

]

. (59)

To gain insight into the physical meaning of Eq. (59)
it is useful to discuss the global symmetries of HPCh and
their dual representation. On one hand, the interaction
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terms Re tr(U∗
m+1.Um), m = 1, · · · , N − 1, are invari-

ant under right and left multiplication, Um → Um.v
and Um → v.Um. It follows that HPCh has a global
SU(2) × SU(2) symmetry, with infinitesimal generators

J ≡
∑N
m=1 Jm and j ≡

∑N
m=1 jm that commute with

HPCh. On the other hand, the dual Hamiltonian HPCh

contains the terms Re tr(Um), m = 1, · · · , N − 1, invari-
ant only under the adjoint (anti)action, tr(v∗.Um.v) =
tr(Um). It may seem that a symmetry has been lost.

The duality maps the symmetry generators j, J to dual
symmetry generators

Ĵ =

N
∑

m=1

Ĵm = −j1 +

N
∑

m=2

(−jm + Jm−1), (60)

ĵ =

N
∑

m=1

ĵm =

N
∑

m=1

1

2
tr(Û∗

m.σ.Ûm.(σ · Ĵm)). (61)

The Hamiltonian HD
PCh

commutes with ĵ, Ĵ by construc-
tion (the duality mapping preserves all algebraic rela-
tions), meaning that no symmetry has been lost. Notice
that ĵ presents a highly non-local structure in terms of
Jm, Um, U

∗
m.

Further Results on the Algebra of a Single Quantum

Rigid Rotator

Next it is shown that the operators ja defined in Eq.
(42) satisfy the relations listed in Eqs. (45) and (47). The
first step is to introduce the adjoint representation of the
SU(2) Lie algebra via its double-covering homorphism R
to SO(3), U 7→ R(U), defined implicitly by

U.σa.U
∗ =

∑

b

σbR(U)b a. (62)

Since tr(σa.σb)/2 = δab, R(U) reads

R(U)b a = tr(U.σa.U
∗.σb)/2. (63)

It follows that Eq. (42) can be rewritten as ja =
∑

bR(U
∗)b aJb.

From Eq. (63),

[Ja, R(U
∗)b c] = iǫabdR(U

∗)d c. (64)

Also, [ja, U ] = 1
2

∑

b U.σbR(U
∗)b a = 1

2σa.U, where the
last equality follows from Eq. (62) ( the conjugate re-
lation [ja, U

∗] = −U∗.σa/2 follows in the same way).
Combining this last result with Eq. (64) gives [jb, Ja] =
i
∑

c,d(−ǫadc + ǫcad)R(U
∗)c bJd = 0, and

j · j =
∑

a

(
∑

b

JbR(U
∗)b a)(

∑

c

R(U∗)c aJc) (65)

+
∑

a

(
∑

b

[R(U∗)b a, Jb])(
∑

c

R(U∗)c aJc) = J · J,

where the homomorphism property of R was used to sim-
plify

∑

aR(U
∗)b aR(U

∗)c a = δb c.
To check the commutator [ja, jb], direct computation

gives

[ja, jb] = −iǫdecR(U
∗)d aR(U

∗)e bJc. (66)

Since R(U) ∈ SO(3), detR(U) = 1. It follows that
ǫdecR(U

∗)d aR(U
∗)e b = ǫabfR(U

∗)c f . Then Eq. (66)
simplifies to read

[ja, jb] = −iǫabf
∑

c

R(U∗)c fJc = −iǫabc jc . (67)

It is only left to show that j†a =
1
2

∑

b ([Jb, tr(U
∗.σa.U.σb)] + tr(U∗.σa.U.σb)Jb) = ja.

The commutator vanishes by virtue of Eq. (64).
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