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Abstract 

 
The National Institute of Standards and Technology’s Intelligent Systems 

Division has been researching several areas leading to safe control of manufacturing 
vehicles to improve automated guided vehicle (AGV) safety standards. The research 
areas include:  

 AGV safety and control based on advanced two-dimensional (2D) sensors that 
detect moving standard test pieces representing humans; 

 Ability of advanced 3D imaging sensors, when mounted to an AGV or 
forklift, to  detect stationary or moving objects and test pieces on the ground 
or hanging over the work area; and 

 Manned forklift safety based on advanced 3D imaging sensors that detect 
visible and non-visible regions for forklift operators. 
 

Experiments and results in the above areas are presented in this paper.  The 
experimental results will be used to develop and recommend standard test methods, 
some of which are proposed in this paper, and to improve the standard stopping 
distance exception language and operator blind spot language in AGV standards. 
 
1 Introduction 
The Mobile Autonomous Vehicles for Manufacturing (MAVM) Project at the National 
Institute of Standards and Technology (NIST) has been researching methods to improve 
safety standards for automated guided vehicles (AGV), automated functions for manned 
powered industrial vehicles, and forklift operator visibility.  Specifically, members of the 
MAVM Project have been involved in: 
 the American National Standards Institute/Industrial Truck Standards Development 

Foundation (ANSI/ITSDF) B56.5-2005 Safety Standard for Guided Industrial 
Vehicles and Automated Functions of Manned Industrial Vehicles and 

 the ANSI/ITSDF B56.11.6-2005 Evaluation of Visibility From Powered Industrial 
Trucks.    
 
The ANSI/ITSDF B56.5 standard “defines the safety requirements relating to the 

elements of design, operation, and maintenance of powered, not mechanically restrained, 
unmanned automatic guided industrial vehicles and automated functions of manned 
industrial vehicles.” [1]   
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ANSI/ITSDF B56.11.6 “establishes the conditions, procedures, equipment and 
acceptability criteria for evaluating visibility from powered industrial trucks.” [2]  The 
MAVM Project has addressed specific areas of these two standards by developing test 
methods that could potentially lead to improving these standards and to provide safe 
control of manufacturing vehicles.    

 
Background NIST involvement in ANSI/ITSDF B56.5  

In 2010, NIST suggested improvements to the B56.5 standard including a new test 
piece, test piece coatings, and non-contact sensor and vehicle performance requirements 
for detecting static test pieces in the vehicle path.  The committee voted to accept the 
improvements and the standard was revised and published.  However, the standard still 
includes an exception for obstacles suddenly appearing at less than the minimum AGV 
stopping distance. The exception states: “Although the vehicle braking system may be 
performing correctly and as designed, it cannot be expected to function as designed 
should an object suddenly appear in the path of the vehicle and within the designed safe 
stopping distance. Examples include, but are not limited to, an object falling from 
overhead or a pedestrian stepping into the path of a vehicle at the last instant.” [1]  The 
term “safe stopping distance” refers to the distance between the leading edge of the 
sensing field and the vehicle structure. For this paper, the B56.5 ‘exception zone’ on the 
AGV will be called the ‘stop zone’ which is typically the label given to this programmed 
area for current safety sensors. 

To support the 2010 B56.5 improvements, NIST performed experiments using 3D 
imaging sensors to detect static test pieces in the AGV path.  NIST researchers then 
reviewed the data and subjectively considered whether or not the test piece was detected 
appropriately by the sensor (i.e., if there were compelling data demonstrating that a test 
piece was detected).  The experiments demonstrated that static test pieces could be 
detected using current 2D and advanced 3D imaging sensors mounted to a static AGV 
[3].  However, to prove that detection is possible in a real system, a computer algorithm 
would need to be developed to detect test pieces and provide the appropriate slow or stop 
command to the AGV. 

In experiments conducted in 2011 and 2012, NIST researchers  used 2D and 3D 
imaging sensors mounted to an AGV.  In contrast to the 2010 experiments where the test 
piece was static, in these experiments the AGV and the test piece were both moving.  The 
test piece entering the AGV path was detected by the sensors and the distance of the test 
piece to the AGV was calculated and analyzed.  Two different test methods were used to 
measure the dynamic test piece distance from a dynamic AGV: 1) AGV navigation and 
control data were compared to ground truth and 2) a generic video and grid method using 
no AGV navigation information was compared to ground truth.  Method 1 experimental 
setup, data collection, software and results are detailed in [4] and results are briefly 
described in this paper.  Method 2 experiments and results are detailed in this paper.  
Additionally, 3D imaging sensor data were collected and are described and shown in this 
paper.  3D imaging appears to be useful for detecting both static and dynamic and 
ground-based and overhanging obstacles.  Future experiments to incorporate 3D imaging 
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data to implement slowing and stopping control for AGVs are planned.  As a start, NIST 
has attached  3D imaging sensors to forklifts where sensor data were input to software 
algorithms that control alert lights.  The forklift alerts experiment is further described in 
this paper. 
 
Background NIST support for ANSI/ITSDF B56.11.6  

A large number (80 %) of forklift accidents involve pedestrians. Such accidents occur 
on average once every three days [5]. The B56.11.6 standard allows up to 20 % of the 
regions surrounding a forklift to be obscured from the operator.  Nonetheless, operators 
are typically declared at fault for the accidents.  B56.5 and several other standards are 
based on B56.11.6.  The MAVM Project has been researching forklift safety [6] [7] 
because forklift accident rates are so high and B56.5 includes manned forklifts with 
automated functions.  Onboard sensors integrated with semi-autonomous vehicle control 
can detect obscured regions and may improve safety.  However, B56.11.6 measurement 
methods provide only information about how much of the area is not visible to the 
operator.  Advanced operator visibility measurement technology and methods could 
potentially map obscured regions, as well as suggest optimal sensor mounting locations 
and the fields of view (FOV) needed to detect obstacles in obscured  regions.   

The MAVM Project is exploring the use of advanced visibility measurement 
technology for manned industrial vehicles to improve standard test methods.  This paper 
provides preliminary test and analysis methods for advanced operator visibility 
measurement. The experimental results provided here will be used to help develop further 
tests and standard test methods for inclusion in AGV standards, as well as to develop 
improved standard stopping distance exception language.  This paper also includes 
preliminary operator visibility tests and proposed test methods for using advanced 
technology with an explanation of how the technology can provide required standard 
results.  Results and conclusions are also presented. 
 
2 Dynamic Experiments 
Two different test methods, 1 and 2, were implemented for detecting when a dynamic test 
piece entered the path of a moving AGV within the AGV stop zone.  Test Method 1 used 
AGV navigation and control data compared to ground truth.  Method 1 results and issues 
are briefly discussed in section 2.1 and are detailed in [4]. Test Method 2 used an 
alternative, generic, video-grid method using no AGV navigation information and was 
also compared to ground truth.  Method 2 is detailed in section 2.2.   

  
2.1 Method 1 Dynamic Experiments and Results 

Several sensors were mounted to the NIST AGV, as shown in Figure 11. The AGV 
was programmed to move in a straight line to a chosen navigational point.  Both two- and 

                                                 
1 Certain trade names and company products are mentioned in the text or identified in an illustration in 
order to adequately specify the experimental procedure and equipment used.  In no case does such an 
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navigation sensor 
 
top 3D LIDAR sensor 
 
light bar 
 
vertical 2D LADAR sensor 
 
3D Kinect sensor 
 
bottom two 3D LIDAR 
sensors 
 
horizontal 2D safety 
LADAR sensor 

Figure 1 – NIST AGV 

three-dimensional (2D and 3D) sensors were used to collect data, including: a color 
camera, an infrared camera, two different types of 3D light detection and ranging 
(LIDAR) sensors and two 2D line-scanning laser detection and ranging (LADAR) 
sensors, mounted horizontally and vertically where one was a safety rated sensor.  The 
safety sensor was mounted to scan horizontally at a height of 10 cm above the floor.  It is 
a sensor typically used in industry as a non-contact safety sensor for AGVs.  The data 
from the 3D imaging sensors will be used in future efforts to research their effectiveness 
at detecting obstacles, especially overhanging obstacles discussed in section 4 of this 
paper.  The safety sensor data, collected simultaneously with the 3D sensor data, were 
used for dynamic obstacle detection and for AGV control.  The safety sensor was used to 
detect ground-based obstacles. 
 

Two types of ‘AGV 
stop’ control tests were 
performed: controlled 
braking and low-level 
emergency stop (e-stop) 
control.  

B56.5 states that  
“Controlled braking may be 
provided” and is “a means 
for an orderly slowing or 
stopping of the vehicle.”  
Controlled braking was used 
to demonstrate continuous 
AGV control to reduce AGV 
energy upon detection of an 

obstacle within the 
programmed AGV path and 

at any range within the detection limit of the safety sensor.  B56.5 states that “Emergency 
braking shall be provided for all vehicles. The emergency brake shall be mechanically set 
and require power or force from a source external to the brake to release.” In the case of 
the NIST AGV, there is no mechanical brake and instead, the vehicle coasts to a stop 
when the safety sensor detects an obstacle in the AGV path and while in the mode we call 
“low-level emergency stop (e-stop) control.”  However, the NIST AGV integrates the 
safety sensor directly into the AGV drive amplifiers, which is typical of industrial 
AGV’s, and must use an electrical reset from a wireless safety system to externally reset 
the AGV to drive after an e-stop. 

A sled was designed and built to repeatably move the B56.5 standard test pieces 
across the AGV path and within the AGV exception zone (see Figure 2).  A modular, 
                                                                                                                                                 
identification imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the products are necessarily the best available for the purpose. 
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Figure 3 – Data from the safety 
sensor when mounted on the AGV 
and moving towards the shiny flat 

plate test piece. 

laser-based measurement system with 250 µm accuracy was used to measure the ground 
truth locations of the sled and AGV. [8]  The sled was pulled using a winch that began 
motion when the AGV tripped a tape switch on the floor.  The tape switch positions were 
chosen so that the test piece entered and passed through the programmed safety sensor 
stop zone before the AGV could strike the sled components.  The stop zone measured 2 
m along the AGV path by 0.8 m wide.  Open and confined spaces were other parameters 
in the NIST experiments.   

 Method 1 experimental 
results showed an average of 
a 0.5 m measured difference 
between the onboard 
navigation AGV position 
and safety sensor test piece 
detection positions and the 
ground truth for the AGV 
and test piece positions.  
These results showed that 
the test pieces may or may 

not have been in the exception zone when they were detected.  If the test piece was 
detected in front of the exception zone, the AGV was required to stop according to the 
B56.5 standard and therefore, the results could not be used in the exception zone test 
results.  Low-level, emergency braking tests were performed and used to demonstrate that 
low-level, emergency braking can reduce the AGV’s kinetic energy when test pieces are 
within the AGVs exception zone and can also control an AGV stop.  However, the stop 
position always occurred beyond the test piece path indicating that the test piece would 
have been struck.  Controlled braking tests were also performed and demonstrated that 
once the test piece entered the AGV path within the stop zone, the AGV decelerated to a 

stop faster than using only the emergency 
braking, where the vehicle coasted to a stop.   
More details are provided in reference [4], which 
describes potential sources of experimental 
errors. Also, there was a lot of noise in the data 
from the safety sensor.  Therefore, there could be 
an error of up to +/-250 mm, depending on 
which point in this cloud was selected by the 
algorithm as the location at which the test piece 
first entered the AGV path.  Previous 
experiments using highly reflective test pieces 
that were detected by a light-emitting sensor 
instead of a laser range scanner showed similar 
results. [9]   

Figure 3 shows data collected from the 
safety sensor for a static, shiny flat plate in the 

 
Shiny flat plate test 
piece location 
 
 
Safety sensor data 
 
 
1 m markings 
 
AGV location 

Figure 2 – Test setup showing the AGV, path, and test 
piece sled.  
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AGV path.  As the AGV attempted to move towards the plate, it repeatedly stopped and 
started due to “spikes” in the data.  Figure 3 shows the distances between the AGV and 
the plate.  The spikes in the data are instances that caused the AGV's controller to 
determine that the plate is much closer than it actually is, causing it to stop.   

The sensor and AGV industries are aware of this phenomenon and provided the 
following reason for it: Reflectors and very bright light blind the safety sensor because 
the light source emits infrared energy at the same frequency as the infrared of the safety 
sensor. The safety sensor follows UL 61496 Electro-Sensitive Protective Equipment [10] 
and EN 61496 [11].  These standards require the sensor to shut down for highly reflective 
surfaces. The industry also says that to correct the situation, the sensor should be angled 
to reflect light away from the source or, if possible, the reflective surface should be 
dulled.  
2.2 Method 2 Dynamic Experiments 

Method 2 is a more generic test method than Method 1 and is meant to be applied to 
any AGV or semi-autonomous forklift that may or may not have navigation or scanning 
LADAR sensing and therefore, provides measurement without requiring information 
from the vehicle.  Method 2 is detailed in the following sub-sections.   

2.2.1 Method 2 Experimental Setup 
Test Method 2 used a printed grid on paper taped to the floor in the AGV path within 

the same test spaces used in Method 1.  The grid was 4 m (L) x 1 m (W) and was divided 
into 20 cm segments marked with bold lines.  These 20 cm segments were further 
subdivided into 5 cm sections marked with lighter lines.  The grid was labeled every 1 m.  
For each 1 m x 1 m square, diagonal lines were drawn from the corners to provide 
additional location information and for easy review of particular squares (see Figure 8).   

The 70 mm diameter x 400 mm tall vertical cylinder test piece was mounted on a 
short cart with wheels, which was used to push the test piece into the AGV path.  For 
Method 2, a change was also made to stop the test piece in the AGV path instead of 
passing it through the path.  This ensured that the test piece simulated a pedestrian or 
obstacle that was definitely in danger of being hit by the AGV.  A video camera was 
mounted in the laboratory ceiling to capture the end of the AGV path where the AGV 
would slow or stop.  However, the camera could have been placed anyplace where it 
could capture the entire test space (approximately 4 m wide) if it had a high enough 
resolution to clearly view the 5 cm or smaller grid blocks.  At the start position, a 
photosensor, Photosensor 1, was placed on the floor next to the AGV so that the emitted 
laser beam was along the edge of the AGV stop zone.  The emitted beam was reflected 
back to the photosensor by a reflector placed beyond the AGV stop zone.  Although not 
used in the analysis, the onboard safety sensor data were also collected to determine 
when it detected the test piece entering the stop zone.  Detection occurred when a yellow 
light, that was connected to the safety sensor and onboard the AGV, turned off.  The 
researchers used the safety sensor detection to ensure that the photosensor was properly 
placed along the edge of the stop zone.  The two sensors are not continuously aligned 
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during dynamic tests since the AGV moves from side to side by approximately 10 cm in 
some tests when heading to the end waypoint.  However, photosensor and safety sensor 
detection times are typically within a few hundredths of a second of each other. The 
AGV, traveling at 1 m/s, moves at most 5 cm within this time.  Photosensor 1 tripped a 
light that was pointed towards the video camera.  The light turned off once the test piece 
crossed the beam. 

Similarly, the beam from a second photosensor, Photosensor 2, crossed the AGV path 
to detect the approaching AGV and was used to turn on a second light.  It was placed 1 m 
from the point where the test piece was pushed into the path.  The 1 m distance was 
chosen to ensure that the test piece would be struck when the AGV traveled at 1 m/s and 
was well within the vehicle stop zone and distance at this speed.  When the Photosensor 2 
light turned on, the test piece was pushed into the path with a long bar. The person 
pushing the cart attempted to stop it in the AGV path.    

For different experiments, the AGV 
was programmed to travel at 0.5 m/s, 1 
m/s, or 2 m/s along a straight line and to 
stop at a waypoint approximately 10 m 
from the start point.  To ensure that the 
AGV was positioned at a repeatable start 
location, a calibration method was used 
that made use of a video camera mounted 
to the vehicle.   Figure 4 shows the AGV 
start point calibration setup.  Two posts 
were set at approximately 5 m and 10 m 
along a line at an angle from the AGV so 
that when the AGV is at the start location, 
the two posts are aligned in the camera’s 
field of view (FOV).   Also, a thin bar was 
clamped to the rear AGV bumper pointing 

down to a spot marked on the floor.  This ensured that the vehicle was positioned at the 
same start point while the camera/post setup was used to ensure proper vehicle 
orientation.   

Ground truth was captured for Test Method 2 experiments using the same 
measurement system  as in Method 1.   The ground truth system was used to track the 
AGV position during the experiments.  It was also used to measure several points on the 
paper grid so that the positions obtained from the video images could be registered to the 
ground truth coordinate frame.  Post processing was then used to analyze the validity of 
the grid method as compared to ground truth. 

Test Method 2 experiments included three researchers: one to set up and start the 
AGV, one to push the test piece into the vehicle path, and one to begin the video and 
ground truth systems.  One or two people would normally be required for manufacturers 
to implement Test Method 2 with their AGV. 

 a  b
Figure 4 – AGV start point calibration 
setup showing: (a) aligned posts within 

the onboard camera FOV and (b) clamped 
bar on the AGV rear bumper pointing 

down to a start point on the floor. 

back 
post 
 
front 
post 
 
video 
camera
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2.2.2 Method 2 Data Collection  
Video data were collected for Test Method 2 experiments to capture the Photosensor 

1 light change, the onboard safety sensor detect light change, the test piece motion and 
stop location, and the AGV motion and stop position.  The video replay capability had to 
allow frame-by-frame review of the experiment to gain approximate location information 
of the test piece and AGV.  Figure 5 shows snapshots from the overhead video of Test 18 
including when: (a) the test piece crosses Photosensor 1, (b) the test piece is detected by 
the AGV safety sensor, (c) the AGV hits the test piece (or when the test piece stops in the 
AGV path), (d) the AGV stops.   

In Figure 5 d, the test piece is shown beneath the vehicle and in front of the wheel.  
The test piece was never run over by the AGV.  A front shroud could be added to the 
AGV so that the test piece always stays in front of it. 

 

  
a                                                            b 

  
c                                                                             d 

Figure 5 – Snapshots from the overhead video showing when: (a) the test piece crosses 
the photo-sensor, (b) the test piece is detected by the AGV safety sensor, (c) the AGV hits 

the test piece (or when the test piece stops in the AGV path), (d) the AGV stops. 
 
Using Figure 5, Test 18, as an example, the video shows that: at time 15:12, the test 

piece crossed the Photosensor 1 line; at time 15:14, the test piece was detected by the 
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AGV safety sensor; at time 15:28, the test piece was hit by the AGV and therefore the 
test piece stopped moving across the AGV path; and at 17:28, the AGV stopped. 

2.2.3 Method 2 Grid Test Results 
Figure 6 shows the AGV and test piece positions for each of the Figure 6 images, 

used to determine the decrease in energy from the AGV where:  
 d1 = distance between the AGV and test piece when the test piece first enters the 

exception/stop zone as measured by the Photosensor 1.  This number is slightly 
different from the point when the test piece is first detected by the AGV safety sensor.  
For these experiments, the location where the test piece was first detected by the 
safety sensor was ignored. 

 d2 = the distance between the location where the test piece first enters the stop zone 
as measured by the Photosensor 1 and where the AGV stops. 

 d3 = the distance between d2 and d1 i.e., the deceleration distance – used to show a 
reduction in AGV energy applied to the test piece. 

Parameter d3 therefore provides a 
comparison of the two braking methods, 
low-level emergency stop versus 
controlled braking.  

Two pieces of information were 
captured from the tests: 1) comparison of 
braking distances for the two methods 
and 2) the energy reduced for the two 
different braking methods.  Velocity 
versus distance travelled was plotted for 
all tests.  Figure 7 shows plots from tests 
using the three AGV speeds, including: 
(a) 0.5 m/s, (b and c) 1 m/s, and (c) 1.2 
m/s.   Figure 7 (b and c) were separated 

into two graphs for clarity.  The points where the test pieces triggered Photosensor 1 are 
also indicated in Figure 9. 

Tests 1 to 7, not shown, were tests where a static test piece was placed in the AGV 
path and the AGV stopping distance was checked to ensure that the current standard test 
method to ensure that the AGV stops prior to making contact with an obstacle was 
correctly followed.  These tests showed that no contact was made using either braking 
method.  The controlled braking tests allowed the vehicle to continuously measure 
separation distance and decelerate to a stop within a few centimeters of the test piece 
whereas the low-level emergency stop demonstrated a single stop was issued and 
produced an approximate 0.3 m separation distance to the test piece from the AGV when 
traveling at 1 m/s.   

Figure 7 (a) shows comparison of the two braking methods at 0.5 m/s velocity for 
Tests 6 and 7.  In this case, the braking distance is longer for the controlled braking 

Figure 6 – Overhead view of the AGV and 
test piece positions for Test Method 2. 



 

10 
 

because the vehicle actually needed less than 2 m distance to stop and therefore 
decelerated at a rate that was appropriate for the vehicle speed.  Figure 7 (b and c) shows 
results of Tests 9 to 19 for 1 m/s AGV velocity. Results clearly showed a difference in 
low-level stop and controlled braking with shorter stopping distance for controlled 
braking and which equates to a faster reduction in AGV kinetic energy. 

Figure 7 (d) shows results of the tests with the AGV moving at 1.2 m/s. These test 
results show that the velocity stays at about 1.2 m/s for some time before there is a 
sudden drop in velocity, i.e., there was a delay in reaction.  In these tests, results showed 
that controlled braking may have slightly higher reduction in energy, although the data 
plots are not very conclusive to determine the best braking method.   

 

   
a                                                                                     b 

   
c                                                                                     d 

Figure 7 – Grid test results showing plots of AGV velocity versus distance for AGV 
velocities of: (a) 0.5 m/s, (b and c) 1 m/s, (d) 1.2 m/s. In these plots, solid lines show 

controlled braking and dashed lines show low- level stop.  The various markers indicate 
when the test pieces entered the AGV path.  

 
Potential sources of the delay in reaction may be due to:  

 mechanical issues (e.g., time lag) from when the safety sensors detects the test piece 
to when the brakes are applied,  
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Avg 1 m/s low 

lev d3

Avg 1 m/2 cnt 

brak d3 difference

0.72                  0.23  68%

Avg 2 m/s low 

lev d3

Avg 2 m/2 cnt 

brak d3 difference

0.71                  0.56  22%

1 m/s tests

2 m/s tests

 software issues where the AGV controller computes a deceleration such that there 
appears to be enough time to stop and therefore does not apply the brakes until later 

 or a combination of these two potential sources of error. 
Static tests proved that the vehicle could detect, at 1.2 m/s programmed velocity, a static 
test piece in the AGV path and stop within the 2 m stop zone programmed into the safety 
sensor.  Therefore, the safety sensor most likely detected the test piece.  Further tests are 
required to determine the exact source of error.  

Table 1 shows a summary of parameter d3 
results for tests with AGV velocities of 1 m/s 
and 1.2 m/s.  Results clearly show that a 
reduction in distance, and therefore reduced 
AGV energy, is higher for controlled braking 
versus low-level emergency stop when the 
vehicle coasts to a stop.  Electrical or 
mechanical braking could be used to stop the 
vehicle during an emergency stop and may also 
greatly reduce the energy similar to controlled 
braking. Coasting to a stop can also represent 
the typical braking distance required for a heavy 
industrial AGV and demonstrates that this 
braking method is not variably controlled to 
ensure payload stability or cause other potential 
benefits.   

2.2.4 Method 2 Ground Truth 
Ground truth for the locations of the test pieces along the grid was obtained using a 

computer image-processing approach and the same laser-based measurement system 
described in section 2.1. 

The computer image processing phase 
used images captured from the overhead 
video by extracting the images that were 
manually identified (as described in Section 
2.2.2) as the instances when the test piece first 
enters the AGV’s path (Figure 5 a) and when 
the test piece stops moving (Figure 5 c). The 
captured images were then corrected for 
distortions caused by the camera’s lens using 
a lens distortion model that was derived 
through a camera calibration routine. This 
routine involved taking pictures of a 
checkerboard pattern in various orientations 
within the camera’s field-of-view (see Figure 

Table 1 – Controlled braking versus 
low-level emergency stop 

Figure 8 – Ten images of a 
checkerboard pattern placed within the 
camera’s field-of-view used for 
calibrating the camera’s intrinsic 
parameters. 
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8) and then processing those images through a series of camera calibration algorithms to 
obtain the camera’s intrinsic parameters (i.e., lens distortion). 

Next, the images showing the test pieces were undistorted using the intrinsic 
parameters obtained as described above and then the images were transformed into the 
local coordinates of the laser-based measurement system. The transformation parameters 
between the undistorted camera images and the local coordinate system were determined 
by first measuring thirty-eight locations within the printed grid using the laser-based 
measurement system. The same grid locations were then manually selected in one of the 
camera’s images in order to obtain their pixel coordinates. Using the two corresponding 
sets of 2D coordinates a projective transformation was found between them using a 
computer algorithm. 

Finally, the positions of the test pieces were determined. For example, a circle with 
the same diameter as the cylindrical test piece was visually centered (in the image) on the 
circular part of the test piece (see Figure 9).  
 

  
a                                                                  b 

Figure 9 – The process of visually fitting a circle to the bottom of the test piece cylinder 
(a. overall view, b. close-up view of the test piece). 

 
The coordinates of the center of the circle correspond to the coordinates of the center of 
the test piece on the printed grid in the local coordinate system. 

The ground truth coordinates of the test pieces for all tests were determined using the 
method described in this section. These coordinates, along with the corresponding ground 
truth coordinates of AGV (obtained from the laser-based measurement system) at the 
instant when the test piece crossed the photo-sensor and when the AGV stopped, were 

projected onto the midline of the printed grid 
(along its long, or X, axis). The distances d1, d2 
and d3 were then calculated as described in 

Section 2.2.2. 
Table 2 shows the averages and standard 

deviations, for all the dynamic tests, of the errors for 
d1, d2, and d3, where the error is equal to the 
difference between the distances obtained using the 
video grid-based and ground truth methods. The 

results show that the video grid method can be used to calculate distances between the 
test piece and the AGV (along the X axis) of the grid with an error of between 4 cm and 6 

Table 2 –Errors in d1, d2 and d3. 
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cm of the actual (ground truth) distance.  However, the standard deviation is very large 
indicating large variability in the calculated distances.   Some sources of error include: 
 
Video method 
 Visual selection of frame.  If the selection of the frame was off by one, the difference 

in distance would be about 3 cm based on an AGV velocity of 1 m/s and video frame 
rate of 30 Hz. 

 Visually estimating location within a 5 cm x 5 cm square 
 

Ground truth 
 Camera intrinsic and extrinsic calibration errors 
 Instrument error 
 Measurement of the grid points 
 Manual alignment of circle to bottom of cylinder in determining D1 
 Grid paper misalignments, printing 

 
Table 3 shows the average values for d3 calculated from the ground truth 

measurements for the tests in which the AGV was travelling at 1 m/s and 2 m/s. In Table 
3, the d3 distances are sorted for the tests in which the AGV was stopped using either the 
low-level stop or controlled braking. In addition, the differences between the d3 values 
during the low-level stop and controlled braking tests are shown as a percentage 
reduction in distance travelled. 

Test Method 2 proved useful for 
measuring that the test piece did enter the 
exception zone and that controlled braking 
was better than low-level stop for 1 m/s AGV 

speeds.  At a minimum, reduced energy was 
evident for both methods when the test piece 
entered the exception zone.  Therefore, NIST 
recommends that ANSI/ITSDF B56.5 modify 
the current language for this clause to reflect 
this fact.  Language could be included to 
require that the manufacturer show, through 
tests similar to test method 2, that the test piece 

did enter the stop zone and that at various speeds the energy was reduced to a safe level.  
 

3 Overhanging Obstacles 
The current ANSI/ITSDF B56.5: 2012 standard states that obstacles must be measured 
throughout the contour area of the vehicle including any onboard equipment and  
payload.  Figure 10 shows a typical arrangement of 2D LADAR imagers mounted on  an 
AGV and configured to measure the AGV contour area as the AGV moves forward.  As 
shown in the figure, there are large regions within the contour area that are not visible 

Table 3 – d3 values for low-level stop 
vs. controlled braking based on ground 
truth measurements. 
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even though there are four 2D sensors. With the rapid advancements of 3D imaging 
systems, replacing or augmenting the 2D sensors with one 3D imaging system could be 
feasible.  Additionally, the use of a 3D imaging system could greatly reduce the regions 
not in the field of view of any sensor.    

Research of 3D imaging sensors for use on AGV’s is ongoing at NIST [3, 12] and in 
other organizations [13] [14].  Figure 11 shows the test pieces used in experiments 
reported in this paper: (a) stationary black flat plate positioned above the floor and in 
front of a ladder that is overhanging (i.e., the bottom of the ladder is not in the AGV path 
but the upper portion is in the AGV path) the AGV’s path, (b) side view of the 
overhanging plate, and (c) a dynamic mock forklift tine, overhanging the AGV path.     

The plate and tine were painted a flat black color to minimize signal return to imaging 
sensors – a conservative case.  The overhanging obstacles shown in Figure 11 will not be 
detected by Sensor 3 (see Figure 10).  They may be detected by Sensor 1 (see Figure 10) 
but the detection may not be soon enough for the AGV to stop without hitting the 
obstacle.  A combination of controlled braking and Sensor 1 may however reduce the 
vehicle energy.  The overhanging obstacles may be detected by the vertical scanning 
sensors labeled 2 and 4 in Figure 10.  

 

                               
 a  b 

Figure 10 – Graphics showing (a) front and (b) side views of the NIST AGV with four 
front 2D safety sensors and the undetected regions. The red lines depict the planar 
regions sensed by the 2D sensors.  The gray arc depicts the sensed areas from the 

vertically-mounted sensors.  The undetected region includes a top region that is never 
detected by the sensor and therefore, extends indefinitely. 

 
To determine if a vertical scanning LADAR can indeed detect the overhanging 

obstacles, such a sensor was mounted on the NIST AGV in the approximate location 
shown in Figure 10 (a) sensor #2 and is the blue sensor shown in Figure 11 (c).  The 
sensor was connected to the controlled braking input of the AGV controller so that it 
could brake when an obstacle was detected.  The results showed that the sensor detected 
the moving forklift tine, the static overhanging ladder, and plate when the plate was 
placed in-line with the sensor, and that the AGV stopped before contacting the obstacles.  
However, in industry, the plate may not be in the sensor’s FOV and therefore may be 
undetected unless a sensor with a wider FOV or a 3D sensor was used. 

Obstacles will not 
be detected until 
AGV reaches this 
line. 
 
Undetected when 
AGV is stopped 
between sensors 2 
and 4. 

1 
1 

2 

3 

4 
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   a  b c 
Figure 11 – View of (a) black flat plate from the front (b) flat plate from the side, and (c) 
mock forklift tine overhanging the AGV path. Both a and c are viewed from just behind 

the vertical LADAR. 
 

In addition to the vertical LADAR, two different types of 3D imaging sensors were 
mounted on the AGV.  Three flash LIDAR 3D imaging sensors were mounted on the 
AGV (see Figure 1).  The three sensors were positioned to detect regions in front of the 
vehicle. The other type of 3D imaging sensor was a Kinect sensor as shown in Figure 3.  
None of the 3D sensors were connected to the vehicle controller; they were only used to 
collect data during the Method 1 experiments.   

Figure 12 a, b, and c show some results from one of the flash LADAR and Figure 12 
d, e, and f show results from a 3D Kinect sensor detecting the static overhanging plate.  
For these experiments, the AGV was moving at 1 m/s.   Figure 12 also shows that floor-
based obstacles can be detected.       

In Figure 12 (a - c), the results were obtained from the center, top sensor and the 
sensor detected the plate at all ranges with the range from the AGV to the plate 
decreasing from Figure 12 (a) to Figure 12 (c). Figure 12 (a) shows the plate as a blue 
rectangle and Figures 12 (b and c) show the plate as a red rectangle; the color in Figure 
12 is based on range with red indicating objects closer to the vehicle.  Results from the 
two other 3D LIDAR sensors are not included in this paper because they were set to 
detect regions to the side of the AGV.  The Kinect sensor results in Figure 12 (d - f) also 
detected plate and even the ladder behind the plate.  Neither sensor would be sufficient, 
based on their limited FOV’s, to detect the entire AGV contour region at a distance or 
very close to the vehicle and therefore, a combination of these sensors must be required. 
 

Mock 
forklift tine 

Vertical LADAR 
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 a b c  

    
 d e  f 
Figure 12 – Snapshots of data collected with (a, b, c) the 3D LIDAR  sensor and (d, e, f) 
the Kinect sensor of an overhanging black plate statically positioned in the AGV path.  

Note the overhanging ladder in the background across the AGV path in the Kinect data. 
 

4 3D Measurements of Dynamic Test Pieces 
As mentioned earlier, measurements were taken simultaneously using 3D LIDAR and a 
Kinect sensor during the dynamic tests.  Figure 13 shows snapshots of the AGV path 
when the test piece, a shiny flat plate, slid in front of the AGV within the stop zone.  
Figure 14 a, b, c shows results from a 3D LIDAR sensor: (a) before the test piece entered 
the zone, (b) when the test piece was in front of the vehicle, and (c) as the test piece exits 
the path showing the (red) vertical posts supporting the sensors for the ground truth 
instrument.  Similarly, Figure 13 d, e, f show results from the Kinect sensor: (d) when the 
test piece is just entering the zone, (e) when the test piece was in front of the vehicle, and 
(f) as the test piece exits the path showing the (red) vertical ground truth detector posts.  
Based on Figure 12, a shiny, flat plate is detectable by a 3D sensor.     

Similarly, an overhanging black mock forklift tine was attached to the sled and 
pushed into the AGV path.  The vertical scanning LADAR detected the tine and stopped 
the vehicle prior to contacting it.  3D data were collected using the LIDAR and the 
Kinect sensors during these tests.   

Figure 14 shows snapshots of the Kinect sensor data and clearly shows the tine 
entering the AGV path. The 3D LIDAR sensor data showed similar results.   

Figure 15 shows (a) a photo of a mannequin in the AGV path; (b) 3D Kinect snapshot 
of the mannequin; (c) a photo of a mannequin after being detected by the vertical 
scanning LADAR; (d, e) 3D imaging sensor data from a 3D LIDAR sensor and (f, g) the 
Kinect sensor of the mannequin entering the AGV path. In the dynamic tests, the 
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mannequin was pushed into the AGV stop zone where the mannequin’s right knee 
entered the path first and was detected with enough time to stop the vehicle using 
controlled braking without making contact with it.   
 

   
 a b  c 

   
 d e  f 

Figure 13 – Snapshots from (a, b, c) 3D LIDAR and (d, e, f) 3D Kinect sensors of the 
standard shiny flat plate test piece passing from  left to right across the AGV path during 

the dynamic tests. Note the color changes of the test piece as it gets closer to the AGV 
signifying different ranges from the sensor. 

 

   
 a  b c  
Figure 14 – Snapshots of data collected from the Kinect sensor of a black, mock forklift 
tine entering the AGV path. Note the overhanging ladder in the background crossing the 

AGV path. 
The experimental data collected from 3D sensors on an AGV show that these devices  

can be useful for detecting obstacles in the AGV’s path.  However, research is  needed on 
the use of 3D sensors to detect obstacles and to signal the AGV to slow or stop.   

Advanced 3D imaging sensor technology used in our experiments may also prove 
useful for manned industrial vehicles by providing the operator with alerts to slow or stop 
the vehicle when obstacles are located in occluded regions.  NIST has performed research 
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using 3D sensors mounted on a forklift to provide the operator with alerts.  Figure 16 
(top-left) shows a forklift backing up and nearing a piece of equipment and (bottom-left) 
shows the operator alert light turned on to indicate the region from which the alert 
originated.  For these tests, a rear, downward-looking sensor and a rear-facing 3D sensor 
were used to obtain the data and an algorithm was developed to issue an alert. 

   
 a b c 

    
 d  e f g 
Figure 15 – (a) Photo of a static mannequin in the AGV path; (b) 3D Kinect snapshot of 

the static mannequin; (c) stopped AGV prior to contact with a mannequin that was 
pushed into the AGV stop zone; (d, e) 3D imaging sensor data from a 3D LIDAR sensor 

and (f, g) the Kinect sensor of the mannequin entering the AGV path. 
 
An onboard computer computed in real time that an obstacle was in the vehicle’s path 

and provided an output to an operator alert light.  Figure 16 (right) shows the results of 
using a sensor mounted on the forklift tine frame to detect high or elevated objects.   The 
3D image (Figure 16 lower right) shows data when the sensor detected ceiling joists.  It 
also shows green floor regions where there are no obstacles in vehicle path.  

The research results in this section show that 3D imaging sensors can detect static and 
dynamic objects, on the ground or overhanging, that are in the path of a vehicle and 
enable the vehicle to stop without hitting the object.  Although these sensors are not 
safety rated, they show potential for use on AGVs. It would be expedient for the 
ANSI/ITSDF B56.5 standard committee to develop test methods that can be used by all 
AGV manufacturers and users in anticipation of the time when these sensors are safety 
rated and broadly used. 

Some  suggested modifications to the ANSI/ITSDF B56.5 language to include 3D 
sensors would be:  
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 static, overhanging, standard test pieces must be detected at the same distance as the 
current static, ground-based test pieces;  

 dynamic standard test pieces must also be detected when they enter the contour area 
of the vehicle path, regardless of whether they are overhanging or not, and prior to 
contact with the vehicle;  

 obstacles that enter the exception (stop) zone of the AGV must be detected and it 
must be shown that the vehicle energy is reduced to a safe level as determined by the 
committee; 

 Although 3D sensors are not yet safety rated, AGV non-contact safety sensors may be 
augmented by 3D sensors to provide improved obstacle detection.   

 manned powered industrial vehicles may improve detection of obstacles within 
occluded regions by using non-contact safety sensors and/or by using 3D sensors that 
are not safety rated.  
 

 
Figure 16 – (top-left) 3D LIDAR sensors mounted on a forklift and integrated with simple 
operator alerts. The obstacle is behind the forklift and (bottom-left) the alert indicates the 

location of the obstacle relative to the forklift, (right) high-lift obstacle detect sensor 
mounted on the forklift frame and raised (upper right inset photo is shown reversed from 

the data) to capture data of the ceiling joists. 
 

The ideal situation would be if 3D imaging sensors were safety rated.  Therefore, it 
would be advantageous if the sensor industry could provide 3D safety rated sensors for 
the AGV industry as it would expand the market for such sensors.                                         
 
5 Manned Vehicle Visibility 
 
5.1 Current Standard 
The current ANSI/ITSDF B56.11.6 standard, soon to be called B56.11.6.1, includes a test 
method that uses a row of lights positioned where a forklift operator’s head would be and 
shadows cast by the lights on a test board marked with a grid pattern. The shadows are 

Ceiling joist 
being detected  
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equivalent to occluded regions and are 
quantified by counting the grid blocks.  
Figure 17 (a) shows a standard test 
using a forklift and (b) a mannequin 
placed in the same shadowed region.  
The current method shows that there 
are occluded regions but does not 
specify their exact locations.  Occlusion 
is caused by vehicle obstructions. 
Advanced imagers could be mounted to 
detect obstacles/pedestrians in these 
occluded regions. The current light 
method provides only the direction 
having occluded regions and not the 

positions on the forklift where sensors might be mounted. 
 
5.2 Advanced  Detection of Obstacles in Occluded Regions 
Advanced 3D imaging  systems, for example stereo vision, LIDAR and LADAR  sensors, 
along with high performance computers and software algorithms, can more accurately, 
than using the light/shadow method, characterize the regions occluded from the 
operator’s viewpoint in a manned vehicle.  Manufacturers can use this information to 
locate onboard sensors and to determine the type of sensor and the FOV required.  The 
onboard sensor information could then be used to  alert a forklift operator of a pedestrian 
crossing the vehicle path and to slow/stop the vehicle if necessary.   

To demostrate how an advanced 3D imaging system could be used to characterize the 
occluded regions in a forklift,  such a 
system was located at the approximate 
position of an operator’s head according 
to visibility standard test methods inside 
a forklift. A 360° (H) by about 320° (V) 
scan was performed.  The set-up time 
was about 15 minutes and the scan time 
was about 5 minutes.  The 3D point 
cloud is shown in Figure 18.  The black 
regions are shadows cast by obstacles 
(e.g., cab frame)  where the operator 
would not be able to see.  In this 
demonstration, the forklift was  
unloaded.  Further tests will be 

performed using a laser scanner.  Algorithms will be developed to quantify the sizes of 
occluded regions. Advanced pedestrian detection will be tested using 2D and 3D  sensors.  

Figure 18 – (left) forklift with scanner 
located at the operator’s head location and 
(right) data plot from the scanner showing 

(black) occluded regions. 

a                                    b 
Figure 17- Shadows: (a) on a test board as 

specified in the standard, (b) using a 
mannequin instead of the test board. 
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Additionally, operator alerts and semi-autonomous control of the forklift will be 
demonstrated addressing the B56.5 automated functions of manned industrial vehicles.  
   
5.3 Suggested modifications to ANSI/ITSDF B56.11.6  
Currently, there is no discussion in ANSI/ITSDF B56.11.6 that describes other, advanced 
visibility test methods.  Since the committee is harmonizing ANSI/ITSDF B56.11.6 with 
ISO/FDIS 13564-1 [15] and should they wish to add clause 8 “Other test methods” from 
ISO 13564-1, NIST suggests some modifications to this clause.  In its current form, this 
clause may be incorrectly interpreted and may cause conflicting outcomes and/or other 
issues of visibility measurement tests.  The clause is repeated here for the convenience of 
the reader: 

“Other test methods (such as alternate light recording, cameras, computer imaging, 
lasers, etc.) may be used to conduct the test provided the alternate method duplicates 
the test with lights and produces the same results as the light method.” 

 
The following are reasons for suggesting the changes:  
 The “other test methods (such as alternate light recording, cameras, computer 

imaging, lasers, etc.)” is actually a series of ‘technologies,’ not test methods, and 
therefore, the clause as written is incorrect.  The list also does not describe 
combinations of technologies that could potentially produce the same or better results 
than the light method.  In addition, the other test methods could be a combination of 
the light method and a method that includes other technologies (e.g., cameras).  

 Potential misinterpretation of the technologies is evident.  The word “laser” can be 
interpreted as 1) a laser as a light source in place of the lamp as described in the 
standard, or 2) a laser-based 3D imaging system (e.g., laser scanner) which emits 
laser light and uses time-of-flight range measurement to detect objects in the 
environment, i.e., to measure visible and non-visible objects as seen from by the 
operator.   

Given the two interpretations, appropriate text is needed for clarification.  Also, if 
the second interpretation were allowed, the phrase, “produces the same results as the 
light method,” cannot occur with a scanning or flash LADAR (laser detection and 
ranging) system.   

We assume the text: “same results as the light method” specifies the overall 
percentage of occluded regions for each test and therefore, we also include it in the 
proposed improvement.  However, it may be clearer to the reader to include the text: 
“as shown in clause 10.2.1 and Table 3 (ISO/FDIS 13564-1).” 

  “Computer imaging” should be replaced with the more well known “image 
processing.” 

 
 The text: “duplicates the test with lights,” can be interpreted as the test must include 

the use of lights, possibly even using the same lights as detailed in the standard.  No 
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additional lights are required for scanning or flash LADAR systems and therefore, 
this text should be removed. 

 
A new clause 6 Other Test Methods has been proposed by NIST to the ANSI/ITSDF 

B56.11.6.1 based on past experience with advanced measurement systems at NIST [16] 
17]. The new clause is based on ISO/FDIS 13564-1 clause 8 Other Test Methods.  
However, the proposed wording corrects the clause and provides more specific 
information with regard to the type of technology being used, including recording 
technologies used with the current light method and 3D imaging technologies.  To help 
the reader better understand the proposed addition of a new clause 6, the following are 
examples of how the proposed “Other Test Methods” could be performed.  
 
Proposed change:  

6.1  Recording technologies  
Other test methods that use recording technologies such as light recording or cameras 
and halogen lamps or alternate light sources such as light emitting diodes or lasers 
may be used to conduct the test provided these methods duplicate the standard test 
procedures in clauses 4 and 5 and produce the same results as the light method. 

 
Example measurement and analysis method when using Cameras: 

Measurement method 1:  Lighting equipment, as defined in clause 3, using test 
procedures that adhere to clauses 4 and 5 with shadows captured using a camera that 
images the entire test object.   
Analysis method 1:  Image processing is used to determine light (visible) or dark 
(occluded) regions for each test. 
Measurement method 2:  An array of cameras is used instead of an array of lights as 
defined in clause 4.4 Light Source Array.  The test procedures adhere to clauses 4 and 
5 with visible test object areas captured using the array of cameras. 
Analysis method 2:  Image processing is used to determine visible regions of the test 
object for each test. 

 
Proposed change:  

6.2  3D imaging technologies 
Other test methods that use 3D imaging technologies (such as laser scanners), 
computer modeling, and virtual test objects may be used to conduct the test provided 
these methods duplicate the standard test procedures in clauses 4 and 5, where the 3D 
imaging systems replace the halogen lamps, and produce the same results as the light 
method.  

 
Example measurement and analysis method when:  

Using 3 Dimensional (3D) Imaging from the Operator Cab: 
Measurement method:  A 3D imaging system (e.g., laser scanner) is used to measure 
3D spatial information and positioned at each light origin according to clauses 4 and 
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5.   (Note: it is possible that data do not need to be collected from all light origins, but 
a subset may be sufficient. For example, three locations instead of 13 locations along 
the light bar may be sufficient.)  This information is then used to create a 3D visibility 
model from the vantage point of the vehicle operator.  In a computer simulation 
environment, place a virtual test object and the 3D visibility model relative to each 
other according to clauses 4 and 5.  Create a list of each light location for each test 
according to clauses 4 and 5.   
 
Analysis method:  Use a ray casting method on a computer to perform the following: 
a. Set the origin of the ray at a light origin. 
b. Project uniformly spaced rays onto the virtual test object.  
c. Repeat steps a and b for all light locations for that test. 
d. Calculate the light and dark regions according to clauses 4 and 5. 
e. Report the test results. 

 
Using a Virtual Test Environment and 3 Dimensional (3D) Imaging 
Measurement method:  A 3D imaging system (e.g., laser scanner) is used to measure 
3D spatial information about the vehicle (e.g., from several locations within the 
operator cab and external to the vehicle).   This information is then used to create a 
3D model of the vehicle.  In a computer simulation environment, place a virtual test 
object and the 3D vehicle model relative to each other according to clauses 4 and 5.  
For each test, create a list of each light location according to clauses 4 and 5.   
 
Analysis method:  Use a ray casting method on a computer to perform the following: 
a. Set the origin of the ray at a light origin. 
b. Project uniformly spaced rays onto the virtual test object.  
c. Repeat steps a and b for all light locations for that test. 
d. Calculate the light and dark regions according to clauses 4 and 5. 
e. Report the test results. 

 
6 Advanced Prediction of Obstacles  
Both unmanned and manned powered industrial vehicles could benefit from knowing that 
a pedestrian or obstacle is approaching the vehicle path.  Several technologies are 
available on the market, including for example, on and off-board vehicle cameras, 
LADAR, radio frequency identification (RFID), and ultra wideband (UWB) sensors. 
RFID and UWB sensors allow non-line of sight detection of obstacles.   

 Planned research at NIST will include evaluating the performance of RFID systems 
in the prediction of obstacles approaching the AGV and semi-autonomous forklifts paths. 
This information will be used to slow or stop the vehicle.  The RFID non-line of sight 
capability is ideal for tracking moving obstacles anywhere in the laboratory and augments 
the line-of-sight sensors discussed earlier in this paper.   
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7 Conclusions 
The NIST Mobile Autonomous Vehicles for Manufacturing Project evaluated automated 
guided vehicle (AGV) control based on 2D laser imaging safety sensors that can detect 
static and dynamic, standard test pieces representing humans and manufacturing 
equipment.  Experiments and results were presented.  Both controlled braking and low-
level emergency braking control, as described in ANSI/ITSDF B56.5, were tested.  
Results showed that both braking methods reduced vehicle energy as standard test pieces 
moved into or were placed in the AGV path and within the exception/stop zone.  In 
particular, the controlled braking method decelerated and stopped the vehicle within a 
shorter distance than the low-level stop method (coasting to a stop). This indicated that 
the energy transferred to an obstacle would be less for the controlled braking method than 
for the low-level stop method. 

Two methods, Methods 1 and 2, were used to determine the performance of an AGV 
when an obstacle entered the AGV’s path within the stop zone.  Both test methods can be 
used to determine reduced energy as a function of controlled braking or low-level stop. 
Method 1 involved the use of onboard vehicle information from the navigation and safety 
sensors, but results did not correlate well with those from a reference instrument.  Method 
2 was developed to avoid using onboard vehicle information and therefore, would be 
easier for the AGV industry to implement.  Method 2 involved the use of a video camera 
and a paper grid.  Preliminary results show that Method 2 is a viable method, would be 
easier to use, and the results correlated well with those from a reference instrument.  
Further research will be performed to refine Method 2.  This Method can then be used to 
generate the data needed to support recommended improvements to the stopping distance 
exception language in AGV standards.   

Various 3D imaging sensors were used to detect overhanging obstacles.  The tests 
showed that overhanging obstacles could be detected by the 3D sensors – even a low cost 
3D sensor.  These results show promise for the use of these advanced sensors on AGV’s.   
Suggested changes to ANSI/ITSDF B56.5 to allow the use of 3D imaging sensors were 
presented. 

A demonstration of possible visibility measurements was performed using advanced 
3D imaging technology on a forklift.  Proposed changes to ANSI/ITSDF B56.11.6 were 
described including examples of how potential tests methods could be performed. 

Future NIST efforts related to the safe control of AGVs and forklifts in 
manufacturing environments include:  
 tests using low reflectivity test pieces located next to similarly-colored walls,  
 additional overhanging obstacle tests with AGV control based on 3D imaging sensor 

data, and 
 radio frequency identification to predict pedestrian intent to enter the AGV path.     
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