
Aggregating CVSS Base Scores for Semantics-Rich Network Security Metrics

Pengsu Cheng∗, Lingyu Wang∗, Sushil Jajodia† and Anoop Singhal‡

∗Concordia Institute for Information Systems Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

Email: {pen che,wang}@ciise.concordia.ca

†Center for Secure Information Systems, George Mason University, Fairfax, VA 22030-4444, USA

Email: jajodia@gmu.edu

‡Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Email: anoop.singhal@nist.gov

Abstract—A network security metric is desirable in
evaluating the effectiveness of security solutions in dis-
tributed systems. Aggregating CVSS scores of individual
vulnerabilities provides a practical approach to network
security metric. However, existing approaches to aggre-
gating CVSS scores usually cause useful semantics of
individual scores to be lost in the aggregated result. In this
paper, we address this issue through two novel approaches.
First, instead of taking each base score as an input,
our approach drills down to the underlying base metric
level where dependency relationships have well-defined
semantics. Second, our approach interprets and aggregates
the base metrics from three different aspects in order to
preserve corresponding semantics of the individual scores.
Finally, we confirm the advantages of our approaches
through simulation.

I. INTRODUCTION

Today’s critical infrastructures and enterprises are
increasingly dependant on the reliable functioning of
distributed systems. In securing such systems, a network
security metric is desirable since you cannot improve
what you cannot measure. By applying a security metric
immediately before, and after, deploying security solu-
tions, we can judge those solutions’ relative effective-
ness in a direct and precise manner. Such a capability
will make securing networks a science, rather than an
art.

The Common Vulnerability Scoring System (CVSS)
is a widely adopted standard [10], which allows security
analysts and vendors to assign numerical scores to vul-
nerabilities based on their relative severity. CVSS scores
of known vulnerabilities are already available through
public vulnerability databases (e.g., the NVD [11]).
CVSS thus provides a practical foundation for develop-
ing network security metrics. On the other hand, CVSS
is mainly intended for ranking individual vulnerabilities.
It does not directly provide a way for aggregating indi-
vidual scores into an overall metric of network security.
Naive ways for aggregating scores (e.g., taking the

average or maximum value) usually lead to misleading
results, whereas existing attack graph-based approaches
can achieve improved results [5], [3], [14].

In this paper, we first observe that most existing
approaches to aggregating CVSS scores may cause
useful semantics of individual scores to be lost in two
ways. First, vulnerabilities’ dependency relationship is
currently either ignored or handled in an arbitrary way,
which brings doubts to the metric results and prevents
their adoption. Instead of taking the base score as a
black box input, we break it down to the underlying base
metrics in which dependency relationships have well-
defined semantics. Second, only the attack probability
is currently considered for aggregating CVSS scores,
which may limit the scope of application and lead to
misleading results since different aspects will demand
different algebra for aggregating the scores. To address
this issue, we interpret and aggregate CVSS scores
from three aspects, namely, probability, effort, and skill.
Finally, we confirm the advantages of our approach
through simulation.

The contribution of this paper is three-fold. First,
the novel approach of base metric-level aggregation
can preserve more semantics and consequently produce
more meaningful metric results. Second, interpreting
and aggregating CVSS scores from different aspects
allows different semantics to be extracted from CVSS
scores, and consequently may broaden the scope of
application for the CVSS standard itself. Third, to the
best of our knowledge, the simulation presented in
this paper is among the first efforts on numerically
evaluating security metrics.

The rest of this paper is organized as follows. Sec-
tion II reviews background information. Section III
presents the base metric-level aggregation. Section IV
addresses three different aspects. Section V presents
simulation results. Finally, Section VI reviews related
work and Section VII concludes the paper.

mailto:anoop.singhal@nist.gov
mailto:jajodia@gmu.edu
mailto:che,wang}@ciise.concordia.ca

II. PRELIMINARIES

We first briefly review the CVSS standard to make
our paper more self-contained. We then demonstrate
limitations of existing approaches through an example.

A. The CVSS Standard

In CVSS, each vulnerability is assigned a base score
(BS) ranging from 0 to 10, based on two groups of
totally six base metrics [10]. These base metrics will
stay constant over time, and across different user en-
vironments. Optionally, the base score can be adjusted
with temporal and environmental scores to reflect time
or application-specific factors (the temporal and envi-
ronmental scores are generally not available in vulner-
ability databases, and are not considered in this paper).
Specifically,

•	 The Exploitability metric group measures the
relative difficulty to exploit a vulnerability:

–	 AccessV ector measures the distance from
which the vulnerability can be accessed. Possi-
ble values include Local (e.g., physical access
required), AdjacentNetwork (e.g., accessible
from local subnets), and Network (e.g., ac-
cessible from the Internet).

–	 AccessComplexity measures the complex-
ity to exploit the vulnerability once an at-
tacker has the required access. Possible val-
ues include High (e.g., admin/root privilege
required), Medium(e.g., user privilege re-
quired), Low (e.g., exploitable with default
account).

–	 Authentication measures the amount of re-
quired authentication effort. Possible values
include Multiple (e.g., authentications re-
quired at both OS and applications), Single
(e.g., authentication required at OS only), and
None (e.g., no authentication required).

•	 The Impact group measures the potential con-
sequences of exploiting a vulnerability. For each
metric in this group, the possible values are
None (e.g., no impact to confidentiality), Partial
(e.g., modification of some files possible), and
Complete (e.g., resource rendered completely un-
available).

The six base metrics will be mapped to fixed numer-
ical values (details omitted) and used to calculate the
base score (BS) with the base equation (see Equation 1).

B. Limitations of Existing Approaches

Figure 1 shows a toy network with two hosts (1
and 2) on different subnets and an attacker’s host 0

in the Internet. We consider two cases based on this
network. In Case 1, we assume host 1 to be a UNIX
server running a telnet service and host 2 a Windows
XP workstation running the Universal Plug and Play
(UPnP) service. In Case 2, host 1 and 2 swap their OS
(and corresponding services). In both cases, the firewalls
disallow any traffic except accesses to those services.

firewall firewall

host 0 host 1 host 2

Case 1: vtelnet Case 1: vUPnP

Case 2: vUPnP Case 2: vtelnet

Case 1:

Case 2:

〈vUPnP,1,2〉〈vtelnet,0,1〉

〈vtelnet,1,2〉〈vUPnP,0,1〉

〈root,1〉

〈root,1〉

Figure 1. An Example Network

〈root,2〉

〈root,2〉

We assume the telnet service contains the vulnera-
bility CVE-2007-0956 [11], denoted by vtelnet, which
allows remote attackers to bypass authentication and
gain system accesses via providing special usernames
to the service. Also, the UPnP service contains the
vulnerability CVE-2007-1204 [11], denoted by vUP nP ,
which is a stack overflow that allows attackers on the
same subnet to execute arbitrary codes via sending
specially crafted requests. Table I shows their CVSS
base metrics [11]. By applying Equation 1, we can
calculate the base score BS = 7.6 for vtelnet and
BS = 6.8 for vUP nP .

Average and Maximum: First, consider two naive
ways for aggregating the CVSS scores, taking the
average value (7.2 in both Case 1 and 2) and maximum
value (7.6 in both cases), respectively. Since the average
and maximum values are both defined over a set, they
do not depend on where vulnerabilities are located in
a network, or how they are related to each other. For
example, if we assume the UNIX server in Figure 1 to
be the only important asset, then intuitively the overall
security is quite different between Case 1 (an attacker
can directly attack the UNIX server on host 1) and Case
2 (he/she must first compromise the Windows worksta-
tion on host 1 before attacking host 2). Nonetheless,
by taking the average or maximum value, we cannot
distinguish between the two cases.

Attack Graph-Based Approach [14]: The above
naive approaches lead to misleading results because
they ignore causal relationships between vulnerabilities.
Such causal relationships can be modeled in attack

2

BS = round to 1 decimal((0.6 ∗ Impact + 0.4 ∗ Exploitability − 1.5) ∗ f(Impact))

Impact = 10.41 ∗ (1 − (1 − ConfImpact) ∗ (1 − IntegImpact) ∗ (1 − AvailImpact))

Exploitability = 20 ∗ AccessV ector ∗ AccessComplexity ∗ Authentication

f (Impact) = 0 if Impact = 0, 1.176 otherwise (1)

Metric Group Metric Metric Value of vtelnet Metric Value of vUP nP

Exploitability
Access Vector
Access Complexity
Authentication

Network (1.00)
High (0.35)
None (0.704)

Adjacent Network (0.646)
High (0.35)
None (0.704)

Impact
Confidentiality
Integrity
Availability

Complete (0.660)
Complete (0.660)
Complete (0.660)

Complete (0.660)
Complete (0.660)
Complete (0.660)

Base Score (BS) 7.6 6.8

Table I

THE CVSS BASE METRICS AND SCORES OF TWO VULNERABILITIES

graphs, as illustrated in the lower portion of Figure 1.
Each triple (v, h1, h2) inside an oval represents an
exploit of vulnerability v on host h2 from host h1; each
pair (c, h) represents a security-related condition c on
host h.

The attack graph-based approach [14] converts the
CVSS base scores into probabilities. The probabilities
are then aggregated based on following causal relation-
ships: An exploit is reachable only if all of its pre-
conditions are satisfied (that is, a conjunction); a condi-
tion is satisfied as long as one reachable exploit has that
condition as its post-condition (that is, a disjunction).

In Case 1 of our example, we would assign
7.6/10 = 0.76 to (vtelnet, 0, 1), and 6.8/10 = 0.68 to
(vUP nP , 1, 2) (and 1 to both conditions). We can then
calculate the new value for (root, 1) to be 0.76 and
(vUP nP , 1, 2) and (root, 2) to be 0.76 × 0.68 = 0.52.
Similarly, we will obtain the same result for Case 2.
At first glance, this might seem reasonable since the
attacker is exploiting the same two vulnerabilities in
both cases. However, upon more careful observation,
this is not the case. First, we recall that the vulnerability
vUP nP (CVE-2007-1204) requires the attacker to be
within the same subnet as the victim host. In Case 1,
exploiting vtelnet on host 1 helps the attacker to gain
accesses to local network, and hence makes it easier to
exploit host 2. In contrast, in Case 2, there is no such
effect due to the reversed order of exploits. Clearly, this
difference between the two cases cannot be captured by
the identical result 0.52 produced by this approach.

Bayesian Network (BN)-Based Approach [3]: Next
we consider the Bayesian network-based approach [3].
The lower left-hand side of Figure 2 shows the BN
corresponding to Case 2 of our example. The lower
right-hand side of Figure 2 depicts the corresponding
Conditional Probability Table(CPT) for each exploit in

Case 2. The probability of reaching the goal state,
which is assumed as exploiting both vulnerabilities in
this example, can be calculated as P (vtelnet = T) = �

vUP nP ∈{T,F } P (vtelnet = T, vUP nP) = 0.52.

vtelnet

vUPnP

0.76

0.68

vtelnet

T F
0.76 0.24

vUPnP

vtelnet T F
T 0.8 0.2
F 0 1

Goal State

vUPnP

vtelnet

0.68

0.72

vUPnP

T F
0.68 0.32

vtelnet

vUPnP T F
T 0.76 0.24
F 0 1

Goal State

Figure 2. Bayesian Network-Based Approach [3]

The upper left-hand side of Figure 2 depicts the
BN for Case 1. Since exploiting vtelnet on host 1
makes it easier to exploit vUP nP on host 2, according
to this approach, we should assign to P (vUP nP =
T |vtelnet = T) a value higher than the one directly
derived from the base score (that is, 0.68). If we assign,
say, 0.8, then the possibility of achieving the goal state
is P (vUP nP = T) =

�
vtelnet∈{T,F } P (vUP nP =

T, vtelnet) = 0.61. This result is more accurate since
it reflects the dependency relationship between the two
exploits. However, note that we have chosen an arbitrary
value 0.8 because this approach does not provide means
for determining that value, which is clearly a limitation.

III. BASE METRIC-LEVEL METRIC AGGREGATION

This section presents our approach to aggregating
CVSS base metrics in order to remove the aforemen-
tioned limitations of existing approaches.

3

http:T,vtelnet)=0.61

A. Overview

Our key observation is that all the existing approaches
discussed in the previous section take the CVSS base
scores as their inputs; the base score is regarded as
a black box, and the underlying base metrics are not
involved in the process of aggregating scores. However,
we notice that the dependency relationships between
vulnerabilities are usually only visible at the level of
base metrics, which prevents those approaches from
properly handling such relationships.

Instead of working at the base score level, our ap-
proach drills down to the underlying base metric level.
To build intuitions, we revisit the example shown in
Figure 1. In that example, the dependency relationship
can be easily modeled at the base metric level as
follows. When an attacker successfully exploits vtelnet
on host 1, he/she can gain accesses to the local network
of host 2, which is required for exploiting vUP nP on
host 2. At the base metric level, this simply means the
AccessV ector metric of vUP nP , which has the value
AdjacentNetwork, should be replaced with Network,
since the attacker is effectively accessing vUP nP re-
motely (using host 1 as a stepping stone).

With this adjustment to the base metric
AccessV ector, we can apply Equation 1 to recalculate
a new effective base score, which is equal to 0.76 in
this case. Clearly, similar to the BN-based approach [3],
our approach also produces a result higher than the
original value 0.68. However, unlike the arbitrary value
chosen in [3], our result has inherited the well defined
semantics from the base metrics.

The final score corresponding to Case 1 shown in
Figure 1 can now be calculated as P (vUP nP = T) = �

vtelnet∈{T,F } P (vUP nP = T, vtelnet) = 0.58. In
Table II, we summarize our discussions about the above
example and compare the results produced by different
approaches.

B. The Formal Approach

We are now ready to formalize our approach 1. We
assume an attack graph is given as a directed graph
G = (E ∪ C, {(x, y) : (y ∈ E ∧ x ∈ pre(y)) ∨ (x ∈ E ∧
y ∈ post(x))}) where E, C, pre(), and post() denote
a set of exploits (each of which is a triple (v, hs, hd)
denoting an exploit of vulnerability v on host hd from
host hs), a set of security-related conditions, a function
that maps an exploit to the set of its pre-conditions, and

1Due to space limitations, we will only present the model and
leave out algorithms for constructing the model, which are essentially
modified versions of BN construction algorithms.

a function that maps an exploit to the set of its post-
conditions, respectively [1].

We call a condition initial condition if it is not the
post-condition of any exploit. A sequence of exploits
is called an attack sequence if for every exploit e in
the sequence, all its pre-conditions are either initial
conditions, or post-conditions of some exploits that
appear before e in that sequence. We say an exploit
'	 'e is an ancestor of another exploit e, if e appears

before e in at least one minimal attack sequence (that is,
an attack sequence of which no subsequence is a valid
attack sequence).

We also assume the CVSS base metrics can be
obtained for each exploit e as a vector bm of six numeric
values, each of which corresponds to a base metric [10].
We will use the notation bm[AV], bm[AC], . . . , bm[A]
to denote each corresponding element of the vector
bm. Finally, we assume the dependency relationships
between exploits are given using a function adj(), as
formalized in Definition 1. That is, how the base metric
of an exploit e is affected by another exploit e' will be

'reflected in the given value of adj(e, e ,m).
Definition 1: Given an attack graph G with the set

of exploits E, define a function adj() : E × E ×
'{AV,AC, Au,C, I, A} → [0, 1], and call adj(e, e ,m)

the adjusted value for metric m of exploit e due to e'.
Next, we formalize the concept of effective base

metric and effective base score in Definition 2. For each
exploit e, the effective base metric simply takes the orig-
inal base metric if no adjusted value is given. Otherwise,
the effective base metric will take the highest adjusted
value defined over any ancestor of e (note that an exploit
may be affected by many exploits in different ways,
leading to more than one adjusted values), because a
metric should always reflect the worst case scenario
(that is, the highest value) 2. The effective base score
basically applies the same equation to effective base
metrics instead of the original metrics. In the definition,
both effective base metric and score can be defined
with respect to a given subset of exploits, which will
be necessary later for the discussions in Section IV.

Definition 2: Given an attack graph G with the set of
exploits E, the adjusted values given by function adj(),
the CVSS base metric vector bm for each e ∈ E, and
any E' ⊆ E (E' will be omitted if E' = E), we define

•	 the effective base metric vector ebm of e with
respect to E' as

–	 ebm[m] = bm[m], for each m ∈

2This also explains how a mutual dependency between two exploits
will be handled, that is, by taking the dependency that yields the
higher aggregated value.

4

http:T,vtelnet)=0.58.In

�

Approaches Case 1 Case 2 Summary

Average 7.2 7.2 Ignoring causal relationships
(exploiting one vulnerability enables the other) Maximum 7.6 7.6

Attack graph-based approach [14] 0.52 0.52
Ignoring dependency relationships
(exploiting one vulnerability makes the other easier)

BN-Based approach [3] 0.61 0.52 Arbitrary adjustment for dependency relationships
Our approach 0.58 0.52 Adjustment with well-defined semantic

Table II

COMPARISON OF DIFFERENT APPROACHES

' {AV,AC,Au , C, I, A}, if adj(e, e ,m) is not
'defined for any ancestor e of e in E ' .

' ' –	 ebm[m] = adj(e, e ,m), if adj(e, e ,m) is the
'highest value defined over any ancestor e of

e in E ' .
•	 the effective base score ebs of e as the base

score calculated using Equation 1 with base metrics
replaced by corresponding effective base metrics.

Definition 3 formalizes a Bayesian network (BN)-
based model for aggregating the effective base scores.
The directed graph is directly obtained from the attack
graph. The conditional probabilities are assigned ac-
cording to the causal relationships between an exploit
and its pre- and post-conditions. Since the dependency
relationships between exploits are already reflected in
our definition of effective base scores, the BN needs
not to explicitly model them. With the BN model, we
can easily calculate the probability of satisfying any
given goal conditions (or equivalently, the probability
of important network assets being compromised).

Definition 3: Given attack graph G with exploits E,
and the effective base score ebs for each e ∈ E, we
define a Bayesian network B = (G, Q) where

•	 G is the attack graph interpreted as a directed graph
with each vertex representing a random variable
taking either T (true) or F (false), and the edges
representing the direct dependencies among those
variables.

•	 Q is the collection of conditional probabilities
assigned as the following.

–	 P (c = T |e = T) = 1, for each e ∈ E
satisfying c ∈ post(e).

–	 P (e = T | � (c = T)) = ebs/10.∀c∈pre(e)

C. An Example

We now illustrate our approach by applying it to the
example shown in Figure 3. The left-hand side shows a
fictitious attack graph in which the dotted lines indicate
dependency relationships, whose details will be given
shortly. The right-hand side gives the corresponding
model obtained by applying our formal framework as
introduced above.

Specifically, we assume exploit B will give an at-
tacker accesses to local network, which is required
for exploiting D (since its base metric AV is Local),
as indicated by the dotted line from B to D. This
dependency relationship is modeled using the function
adj() on the right-hand side. Also, we assume that
exploit C does not require an authenticated account
(its base score Au is None), and exploiting C will
give attackers the required account for exploiting D,
as indicated by the dotted line from C to D, and
modeled using the function adj() on the right-hand
side. Therefore, we can replace the base metric of
exploit D with its effective base metric, as shown on
the right-hand side, in order to calculate its effective
base score as 8.77 (we assume the impact metrics
to be Complete, Complete, and Partial). We then
calculate P (D = T) using the BN model shown in
Figure 4 as P (D = T) = P (D = A,B,C∈{T,F }
T |B, C)P (C|A, B)P (A)P (B) = 0.27.

A B

T F T F

0.943 0.057 0.795 0.205

C
A B T F
T F 0 1
F F 0.877 0.123
T T 0.877 0.123
F T 0.877 0.123

D

A B C T F
F F F 0 1
T F F 0 1
F T F 0 1
T T F 0 1
F F T 0.795 0.205
T F T 0.795 0.205
F T T 0.877 0.123
T T T 0.877 0.123

Figure 4. The BN Model

IV. THREE ASPECTS OF CVSS SCORES

We first demonstrate the need for interpreting and
aggregating base scores from three aspects in Sec-
tion IV-A. We then extend our approach in Section IV-B
and illustrate it through an example in Section IV-C.

A. The Need for Different Aspects

The CVSS base metrics and scores can be interpreted
in different ways. In this paper, we will consider three
aspects of such metrics and scores (note that each metric
or score may potentially be interpreted in one or more
of those three aspects).

5

c

c0

A

C

c1

ci4

B

i1 ci2 ci3 Adjusted Values:
adj(D, C, AV) = 7.95
adj(D, B, Au) = 6.33

Base Scores:
Exploits AV AC Au bs

A
B
C
D

Network
Network
Network

Local

Low
Medium
Medium
Medium

None
Single
None

Single

9.43
7.95
8.77

6

D Effective base metric of D:
ebmD = (Network, Medium, None)

cgoal
Effective base score of D:

ebsD = 8.77

Figure 3. An Example Attack Graph (Left) and The Corresponding Model (Right)

•	 First, as discussed in the previous section, the
difference in scores may indicate different prob-
abilities of attacks. For example, the numeri-
cal score assigned to the AccessV ector metric
value of AdjacentNetwork is lower than that
of Network, which can be interpreted as that a
vulnerability requiring local accesses has a lower
attack probability than one that is remotely acces-
sible.

•	 Second, we can also interpret the difference in
scores as the minimum amount of time and effort
by an average attacker. For example, a vulnerability
requiring multiple authentications at both OS and
applications will likely demand more time and
effort than one that requires no authentication.

•	 Third, the difference in scores may also im-
ply the minimum skill level of an attacker
who can successfully exploit that vulnerability.
For example, exploiting a vulnerability with its
AccessComplexity score as High will likely
require more skills than exploiting one that has the
value Low.

Interpreting the CVSS scores from different aspects
will also require different methods for aggregating such
scores. We demonstrate this fact through an example.
Figure 5 shows a network consisted of four hosts (host
1 through 4) and another host on the internet (host 0).
We assume there are firewalls between the hosts that
prevent any traffic except those indicated by lines shown
in the figure. We also assume host 1 through 4 each has
a vulnerability, denoted by a letter inside parentheses.
Finally, we assume the base scores are partially ordered,
that is, vulnerability B is more severe than all others,
and A is more severe than C (for simplicity, we do not
explicitly distinguish between base scores and effective
base scores in this example). We now consider how
the scores should be aggregated for each of the three
aspects.

host 0 host 1 host 2 host 3

(B)

host 4

(C)(A)

(D)

Figure 5. An Example of Different Aspects

•	 First, suppose we have assigned probabilities PA,
PB , PC , and PD to those four vulnerabilities based
on the base scores. Also suppose host 3 is our
main concern. The probability of host 3 being
compromised can be calculated as P = PA ∗(PB ∗
PC /(PB + PD)) ∗ PC . Next, suppose we remove
host 4 from the network. The probability will
change to P = PA ∗PB ∗PC , which is now smaller
(i.e., host 3 is less likely to be compromised).
This is reasonable since, by removing host 4, an
attacker now has only one choice, that is, to reach
host 3 via host 2. Finally, suppose we further
remove host 2 from the network, the probability
now becomes P = PA ∗ PC , which is larger. This
is also reasonable since an attacker now only needs
to compromise host 1 before reaching host 3.

•	 Next, by considering a different aspect, the effort
of an attacker, we can derive a different story. First,
suppose we have assigned some effort scores FA,
FB , FC , and FD to the four vulnerabilities based
on their base scores (we will discuss how the effort
scores should be defined later).
Without considering dependency relationships, the
effort spent on exploiting vulnerabilities will
clearly be additive. Therefore, addition is the nat-
ural way to aggregate the effort scores. However,
there is one more complication. In this example,
an attacker may compromise host 3 in two ways,
either through host 2 or host 4. Since a metric

6

http:Au)=6.33

should measure the worst case scenario, it should
yield the minimum effort required to compromise
host 3. That is, F = FA +FB +FC (note that FB

is less than FD due to our assumption).
If we remove host 4 from the network, we can
easily see that the effort score will remain the same,
F = FA +FB +FC , instead of becoming smaller,
like in the above case of attack probability. This
is reasonable since vulnerability D is not on the
minimum-effort attack sequence so its removal will
not affect the effort score. If we further remove
host 2 from the network, we can see that the effort
score now reduces to F = FA + FC .

•	 Finally, by considering the third aspect, the skill
level of an attacker, we can derive yet another story.
First, suppose we have assigned some effort scores
SA, SB , SC , and SD to the four vulnerabilities
based on their base scores. Based on our assump-
tion, we have that SB is the smallest among the
four and SA is less than SC . It is now easy to see
that to compromise host 3, the minimum level of
skills required for any attacker is SC regardless of
which sequence of attacks is being followed. Also,
whether we remove host 4 or host 2 (or even host
1) from the network does not affect the skill score.

B. Aggregating Scores for Different Aspects

We now formalize our approach to aggregating scores
for the effort and skill aspects. For both aspects, we will
only consider the exploitability metric group, that is, the
first three elements of the effective base metric vector.

In Definition 4, the formula and constants are merely
designed to convert the exploitability score (defined in
CVSS as the multiplication of the three metrics) to the
same domain as the CVSS base score for consistency.
The effective base metric vector of each exploit is now
defined with respect to a given subset of exploits since
whether a base metric needs to be adjusted will depend
on which attack sequence is involved.

Definition 4: Given an attack graph G with the set of
exploits E and the effective base metric vector ebm for
each e ∈ E with respect to some E ' ⊆ E, we define for
e both the effort score es(e) and skill score ss(e) with

0.6395respect to E ' as	 − 0.2794.ebm[AV]∗ebm[AC]∗ebm[Au]
Although both scores are defined in the same way,

they will need to be aggregated differently, as demon-
strated in the previous section. Definition 5 formalizes
the way we aggregate those scores. Roughly speaking,
for aggregating effort score, we find an attack sequence
whose summation of effort scores is the minimum
among all attack sequences (although such an attack
sequence is not necessarily unique, the minimum value

is always unique); for aggregating skill scores, we find
an attack sequence that whose maximum effort score is
the minimum among all attack sequences.

Definition 5: Given an attack graph G with the set
of exploits E, and the effort score es(e) and skill score
ss(e) for each e ∈ E, we define

•	 the accumulative effort score of e as
F (e) = min({� es(e ') : q is an attack e1∈q
sequence with e as its last element}) (here es(e ')
is defined with respect to q).

•	 the accumulative skill score of e as
' S(e) = min({max({ss(e ') : e ∈ q}) :

q is an attack sequence with e as its last element})
(here ss(e ') defined with respect to q).

C. An Example

Now we demonstrate how our approach can be ap-
plied to calculate the accumulative effort and skill scores
through a more elaborated example. The left-hand side
of Figure 6 shows an example attack graph in which
two attack sequences can both lead to the assumed goal
condition. In the upper right-hand side we show CVSS
metrics of the vulnerabilities. The dashed lines in the
attack graph indicate dependency relationships between
the exploits. Specifically, the adjusted AccessV ector
metric value of C should be Network and the adjusted
Authentication metric value of F should be None.

The calculated cumulative effort scores and cumula-
tive skill scores are shown on the lower right-hand side.
Note that in calculating the scores for each sequence,
we need the effort and skill scores that are defined with
respect to that sequence. In particular, exploit F has two
different effort and skill scores, since its effective base
metric Authentication is adjusted in sequence q2 (due
to exploit E) but not in sequence q1.

V. SIMULATION

This section presents simulation results 3. Our objec-
tive is to compare our approach to existing ones through
numerical results and to examine how close those results
are to the statistically expected results represented by
simulated attackers. To the best of our knowledge, the
simulation presented here is among the first efforts on
experimentally evaluating network security metrics.

We employ the Boston university Representative
Internet Topology gEnerator(BRITE) [2] to generate
simulated network topologies. Vulnerability information
is injected into the generated network topologies to
obtain network configurations. Finally, attack graphs are

3To the best of our knowledge, there do not exist public datasets
that contain a sufficient number of real world attack graphs which can
be used for experiments.

7

 ci1

c0

c1 c2

c3 c4

cgoal

E

C

B

A

D

F

AV AC Au es, ss
vA
vB
vC
vD
vE
vF

Network
Network
Local
Local
Network
Network

Low
Medium
Low
Medium
Medium
Medium

None
None
None
None
Single
Single

1
1.21
1 (w.r.t. q1)
3.49
1.59
1.59 (w.r.t. q1)
and 1.21 (w.r.t. q2)

Attack Sequence Effort F (F) Skill S(F)
q1 : A → B → C → F
q2 : A → B → D → E → F

4.8
8.5

1.59
3.49

Figure 6. An Example Attack Graph (Left) and The Effort and Skill Scores (Right)

generated from the configurations using the standard
two-pass procedure [1]. All simulations are conducted
on a computer equipped with a 3.0GHz CPU and 8GB
RAM.

The objective of the first two simulations is to evalu-
ate our approach from the aspect of attack probability, as
detailed in Section III. For simplicity, we assign random
base metrics to vulnerabilities, and dependency rela-
tionships to pairs of vulnerabilities, while leaving more
realistic approaches for future work. We then apply both
our approach and the existing BN-based approach by
Frigault et al. [3] to calculate the probability of attacks
with respect to a set of randomly chosen goal condi-
tions. We also compare our results to the percentage
of simulated attackers (each of which is modeled as a
random subset of exploitable vulnerabilities) who can
successfully reach the goal conditions.

In Figure 7, the X-axis is the average effective base
score of all vulnerabilities in each network divided by
10, denoted by β. The Y -axis is either the aggregated
score of attack probability (for both our approach and
the approach by Frigault et al.) or the percentage
of successful attackers. Each result is the average of
500 simulations on different network configurations.
The curve Simulation corresponds to the simulated
attackers, which is used as a baseline for comparison.
The line β corresponds to the naive approach of taking
the average base score among all vulnerabilities in a
network, which is clearly inaccurate.

In Figure 7, the curve S0 corresponds to our approach
and the curve S1 the approach by Frigault et al.. Clearly,
our result is closer to the simulated attackers than theirs.
Also, our probability is always higher than theirs due
to the proper handling of dependency relationships. In
Figure 7, we have assigned dependency relationships to
n pairs of randomly chosen vulnerabilities where n is
drawn from a uniform distribution on [0, 3]. Figure 8
shows a similar simulation, except that we increase the
amount of dependency relationships to n pairs where
n is now drawn from a (uniform distribution on [0, 5].
The results show that our approach is still very close to

the simulated attackers, whereas Frigault’s result further
deviates from the baseline results.

The objective of the next simulation is to study the
deviation of aggregated scores from the baseline of
simulated attackers. For this purpose, Figure 9 depicts
the results computed on 800 different networks. The
X-axis is the percentage of simulated attackers who
can reach the goal conditions, and the Y -axis is the
aggregated probability score. The dots S0 and S1 cor-
respond to the results of our approach and Frigault’s,
respectively. The two solid lines labeled with S0 and S1

represent the average probability score within each 0.05
interval of the X-axis. The two polygon areas depict the
distribution of aggregated scores produced by the two
approaches. As we can see from the figure, our results
evenly spread around the simulated attackers’ results
(represented by the diagonal line), whereas Frigault’s
results are almost always lower.

The next simulation aims to evaluate our approach
from the skill aspect. For this purpose, each simulated
attacker is randomly assigned a skill level based on
exponential distribution (significantly less attackers pos-
sess a higher level of skills). Each simulated attacker
can only exploit those vulnerabilities whose skill scores
(as defined in Section IV) are no greater than the
attacker’s assigned skill level. In Figure 10, the X-axis
is the percentage of successful simulated attackers, and
the Y -axis is either the skill score produced by our
approach or the skill level of simulated attackers. Each
result is the average of 100 simulations. The curve Skill
metric is the cumulative skill score of our approach;
the curve Minimal skill corresponds to the lowest skill
level of simulated attackers among those who can reach
the goal conditions. We can see that those two curves
almost overlap each other, indicating the accuracy of our
approach. The curve Average skill shows the average
skill level among successful simulated attackers, which
has the same trend, but is always higher than our result.
The curve Vulnerability average shows the average skill
score of all vulnerabilities to be not so good a metric.

The last simulation evaluates our approach from the

8

1 1

0.9
S0
S1

0.9
S0
S1

0.8 Simulation 0.8 Simulation
β β

0.7 0.7

0.6

0.5

0.4 P
ro

ba
bi

lit
y 0.6

0.5

0.4P
ro

ba
bi

lit
y

0.3 0.3

0.2 0.2

0.1 0.1

0
0

0.2 0.4 0.6 0.8
Parameter β in vulnerability assignment

1 0
0

0.2 0.4 0.6 0.8
Parameter β in vulnerability assignment

1

Figure 7. The Probability Aspect Figure 8. Increased Dependency Relationships

0.6

0.7

0.8

0.9

1

S0
S1
S0 average
S1 average
Simulation

7

8

9

10

11
Skill metric
Minimal skill
Average skill
Vulnerability average

P
ro

ba
bi

lit
y 6

E
ffo

rt
S

ki
ll

0.5
5

4

3

2

1

0
0

0.1 0.2 0.3 0.4 0.5
Success rate of simluated attackers

0.6 0.7

Figure 10. The Skill Aspect

30

35
Effort metric
Minimal effort
Average effort
Vulnerability average

25

0.4

0.3

0.2

0.1

0
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Success rate of simluated attackers

0.8 0.9 1

Figure 9. Distribution of Probability Scores

effort aspect. For this purpose, each simulated attacker
is randomly assigned aneffort threshold based on expo-
nential distribution (less attackers are willing to spend
more effort). We assume each simulated attacker will
only exploit those vulnerabilities whose effort scores
(as defined in Section IV) are no greater than the
attacker’s assigned effort threshold. In Figure 11, the X-

20

axis is the percentage of successful simulated attackers,
and the Y -axis is either the effort score or the effort
threshold (of simulated attackers). The curve Effort
metric is the cumulative effort score of our approach;
the curve Minimal effort and Average effort respectively
correspond to the lowest and average effort threshold
of those simulated attackers who successfully reach the
goal conditions. Again, we can see our effort scores
closely match the minimum required effort and follow
the same trend as the average effort.

VI. RELATED WORK

General reviews of security metrics are given in [7].
An early effort measures the difficulty of attacks in

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Success rate of simluated attackers

Figure 11. The Effort Aspect

terms of time and efforts based on a Markov model [12].
More recently, several security metrics are proposed by
aggregating CVSS scores based on attack graphs [3],
[16]. The minimum efforts required for executing each
exploit is used as a metric in [13]. A mean time-to-

9

compromise metric is proposed based on the predator
state-space model (SSM) used in the biological sciences
in [8]. Homer and Ou propose using MinCostSAT for
automated network reconfiguration with numeric cost
assigned to each configuration [4]. Attack surface mea-
sures how likely a software is vulnerable to attacks [9].
In this paper, we limit our discussions to known vul-
nerabilities. A few recent work attempt to rank zero
day attacks, including ordering different applications in
a system by consequences of having a single zero day
vulnerability [6], and a metric model based on counting
the total number of zero day vulnerabilities that an
network can resist [15].

VII. CONCLUSION

In this paper, we have addressed two important lim-
itations of existing approaches to aggregating CVSS
scores, namely, the loss of useful semantics in handling
dependency relationships and the loss of semantics
from different aspects. We have proposed the novel
approaches of handling dependency relationships at the
base metric level, and aggregated CVSS metrics from
three different aspects. The simulation results confirmed
the advantages of our approach. Future work will be
directed to incorporating temporal and environmental
scores, considering other aspects for interpreting the
scores, and experiments with more realistic settings.
Acknowledgements The authors thank the anonymous
reviewers for their valuable comments. This material
is based upon work supported by National Institute of
Standards and Technology Computer Security Division
under 70NANB11H126, by the US Army Research Of-
fice under MURI grant W911NF-09-1-0525 and DURIP
grant W911NF-11-1-0340, by the Air Force Office of
Scientific Research under grant FA9550-09-1-0421, and
by Natural Sciences and Engineering Research Coun-
cil of Canada under Discovery Grant N01035. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsoring
organizations.

REFERENCES

[1] P. Ammann, D. Wijesekera, and S. Kaushik.	 Scalable,
graph-based network vulnerability analysis. In Proceed-
ings of CCS’02, 2002.

[2] Boston university representative internet topology gen-
erator. Available at http://www.cs.bu.edu/brite/.

[3] M.	 Frigault, L. Wang, A. Singhal, and S. Jajodia.
Measuring network security using dynamic bayesian
network. In Proceedings of ACM workshop on Quality
of protection, 2008.

[4] J. Homer and X. Ou. Sat-solving approaches to context-
aware enterprise network security management. IEEE
J.Sel. A. Commun., 27:315–322, April 2009.

[5] J. Homer, X. Ou, and D. Schmidt. A sound and practical
approach to quantifying security risk in enterprise net-
works. Technical report, Kansas State University, 2011.
Available at.

[6] K. Ingols, M. Chu, R. Lippmann, S. Webster, and
S. Boyer. Modeling modern network attacks and coun-
termeasures using attack graphs. In Proceedings of AC-
SAC’09, pages 117–126, Washington, DC, USA, 2009.
IEEE Computer Society.

[7] A. Jaquith. Security Merics: Replacing Fear Uncertain-
ity and Doubt. Addison Wesley, 2007.

[8] D.	 Leversage and E. Byres. Estimating a system’s
mean time-to-compromise. IEEE Security and Privacy,
6(1):52–60, 2008.

[9] K.	 Manadhata, J. Wing, M. Flynn, and M. McQueen.
Measuring the attack surfaces of two ftp daemons. In
ACM workshop on Quality of Protection, 2006.

[10] P.	 Mell, K. Scarfone, and S. Romanosky. Common
vulnerability scoring system. IEEE Security & Privacy
Magazine, 4(6):85–89, 2006.

[11] National	 vulnerability database. available at:
http://www.nvd.org, May 9, 2008.

[12] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting
with quantitative evaluation tools for monitoring opera-
tional security. IEEE Trans. Software Eng., 25(5):633–
650, 1999.

[13] J. Pamula, S.	 Jajodia, P. Ammann, and V. Swarup. A
weakest-adversary security metric for network configu-
ration security analysis. In Proceedings of the 2nd ACM
workshop on Quality of protection, pages 31–38, New
York, NY, USA, 2006. ACM Press.

[14] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia.
An attack graph-based probabilistic security metric. In
Proceedings of The 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security (DB-
Sec’08), 2008.

[15] L. Wang, S. Jajodia, A. Singhal, and S.	 Noel. k-zero
day safety: Measuring the security risk of networks
against unknown attacks. In Proceedings of the 15th
European Symposium on Research in Computer Security
(ESORICS’10), 2010.

[16] L. Wang, A. Singhal, and S. Jajodia. Measuring network
security using attack graphs. In Proceedings of the 3rd
ACM workshop on Quality of protection (QoP’07), New
York, NY, USA, 2007. ACM Press.

10

http:http://www.nvd.org
http://www.cs.bu.edu/brite

