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Abstract 

We report additional tests of our “extended Lee model” for calibrating turbine meters.  The model accounts for 1) 
Reynolds number (Re) dependent drag and lift, 2) bearing static drag and 3) bearing viscous drag.  Initially, we tested this 
model using a dual−rotor, 2.5−cm−diameter turbine meter and flow measurements spanning a 200:1 range 
(50  Re  109,000) with liquid mixtures spanning a 42:1 kinematic viscosity range 
(1.2 × 106 m2 / s  ν  50 × 106 m2 / s).  The model correlated the volumetric flow data within 3.6 % over the entire Re 
range.  The same data had a maximum deviation of 17 % from the commonly used Strouhal versus Roshko (or Re) 
correlation.  In this work, we tested the model using three different single−rotor turbine meters with diameters of 2.5 cm, 
1.6 cm, and 1.9 cm and flow measurements spanning a 75:1 range (140 < Re < 102,000) with liquid mixtures spanning a 
12:1 kinematic viscosity range (1.2 × 106 m2 / s  ν  14 × 106 m2 / s).  The model correlates the flow data within 2.3 % 
for all three meters over the entire Re range.  The same data had a maximum deviation of 4.8 % from the commonly used 
Strouhal versus Roshko (or Re) correlation.  Therefore, the model works well for single−rotor and dual−rotor meters.  The 
model shows that static bearing drag is responsible for fanning (or non−convergence) of multiple−ν calibration curves.  
However, as with the dual−rotor meter, the model begins to fail at low Re numbers where the bearing drags dominate the 
rotor’s behavior, causing corrections as large as 26 % of the calibration factor.     
 
Nomenclature 
 
A cross sectional area of flow [m2]  

C’
D (Re) 

 
fluid drag coefficient that is a function of 
Reynolds number with turbine geometric 
constants included [m−3]  

 
C’

D0 

 
constant of C’

D (Re) in the laminar rotor 
boundary layer range [m−3] 

 
C’

Di 
 
constants of C’

D (Re) in the transition − 
turbulent rotor boundary layer range [m−3] 
with i = 1, 2, 3, or 4 

CB0
 

 
constant representing the static drag of the 
ball bearings [kg m2 / s2] 

CB1 
 
constant representing the viscous drag on 
the ball bearings [m3] 

 
C’

B0 
 
constant in term representing the static 

drag of the ball bearings divided by 
2

r  
[kg / s2] 

  
C’

B1 
 
constant in term representing the viscous 

drag on the ball bearings divided by 
2

r  
[m] 

 
d

 
diameter of the meter casing [m] 

 
f

 
rotor blade frequency [s−1] 

 
I 

 
moment of inertia of ball bearings [kg m2] 

 
K 

 
meter factor based on angular frequency, 
ω / Q [rad / m3] 

 
Kf 

 
meter factor based on frequency, f / Q 
[m−3] 

 
Ki

 
ideal meter factor, ωi / Q [rad / m3] 

 
Q

 
volumetric flow [m3 / s] 

r
 

 
root mean square of meter hub and rotor 
tip radii [m] 

 
Re

 
Reynolds number = du / ν 

 
Relam 

 
laminar region Reynolds number  

 
Returb 

 
turbulent region Reynolds number  

ReKpeak 
 
Re corresponding to the maximum K 
factor of the multiple−ν calibration curves  

 
Ro 

 
Roshko number =  f d2 / ν 

 
St 

 
Strouhal number = Kf π d

3 / 4 
 
TB 

 
ball bearing retarding torque [kg m2 / s2] 
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TD 

 
torque due to Re−dependent forces 
[kg m2 / s2] 

 
Tr 

 
retarding torque [kg m2 / s2] 

Trotation 
 
torque due to angular acceleration 
[kg m2 / s2] 

 
u 

 
velocity of fluid entering the rotor  [m / s2] 

  

 
average angle between rotor axis and rotor 
blade corresponding to the 

root−mean−square radius r  [rad]  
 
η

 
absolute viscosity  [N s / m2] 

 
ν

 
kinematic viscosity = η / ρ  [m2 / s] 

 
ρ 

 
density [kg / m3] 

 
ω 

 
angular frequency [rad / s] 

 
ωi 

 
ideal angular frequency [rad / s] 

 
1.  Introduction 
Turbine flow meters are widely used to measure the flow 
of valuable fluids such as natural gas and petroleum 
products.  In many cases the meters are calibrated with 
one fluid and used with another fluid.  The property that 
effects turbine meter calibration is kinematic viscosity 
defined as the ratio 
(absolute viscosity) / (density) = η / ρ = ν.  Even when a 
turbine meter is calibrated and used with a single fluid, ν 
might change between the time of calibration and the 
time of use because ν has a strong 
temperature−dependence.  Because there is poor 
understanding of how ν affects turbine meter 
calibrations, expensive, extra calibrations occur.  For 
instance, in petroleum custody transfer (billing) 
applications, a turbine meter is field re−calibrated each 
time the product in the pipeline changes [1].  In other 
applications, a single turbine meter is used to measure 
flows of fluids with very different kinematic viscosities 
such as jet fuel (1.2 × 106 m2 / s) and hydraulic oils 
(16 × 106 m2 / s to 100 × 106 m2 / s).  To ensure 
accurate flow measurements over such a wide range of 
kinematic viscosities it is necessary to understand how ν 
effects meter performance and when the effects of ν 
should be considered for low−uncertainty measurements.  
 
Previously, we presented a physical model called “the 
extended Lee model” (ELM) that explains the influence 
of ν on turbine meter performance [2]. The model is 

consistent with the common observation that calibrations 
made using fluids with different values of ν coincide at 
large Reynolds numbers (Re) and spread out (fan) at 
lower values of Re; see Figure 1.  The model explains 
the fanning as a consequence of bearing static drag.  In 
our prior work, we tested the ELM using a dual−rotor, 
2.5−cm−diameter turbine meter and flow measurements 
spanning a 200:1 range (50  Re  109,000) with liquid 
mixtures spanning a 42:1 ν range 
(1.2 × 106 m2 / s  ν  50 × 106 m2 / s).  The model 
correlated the volumetric flow data within 3.6 % over 
the entire Re range.  We successfully applied the ELM to 
measurements taken from each of the rotors separately 
and the measurements from the sum of the rotors 
simultaneously.  The goal of this paper is to further test 
the ELM by fitting it to multiple−ν calibration curves 
from meters that differ in size and design from the meter 
used in our prior paper [2].  We used three single−rotor 
turbine meters having 8 blades, 4 blades and 6 blades 
and with nominal diameters of 2.5 cm, 1.9 cm, and 
1.6 cm respectively.    
 
Physical models for the turbine meter based on the 
momentum and airfoil approaches were publish by Lee 
and his colleagues [3, 4] and by Rubin et al. [5] in the 
1960s.  Their work and others’ are included in Baker’s 
turbine meter review article [6] and are described in Ref. 
[2], where we derived the ELM.  These prior works 
simplified the effects of bearing drag terms because they 
considered such torques as constant over the Re range of 
interest [3, 4].  Because they simplified the bearing drag 
terms, they did not explain why multiple−ν calibration 
curves fan at small Re values.  They focused on the 
upper end of the meter range, where the meter factor 
(Kf = f / Q) is an approximately linear function of Re or 
the Roshko number (Ro).  In this region, the calibration 
data for various kinematic viscosities collapses onto a 
single calibration curve.  To optimize meter design for 
rangeability and linearity, prior researchers have focused 
on the relationship between meter geometry and 
performance.  Instead of improving turbine meter 
design, this work aims to use a physical model to explain 
the shape of the turbine meter calibration curve and the 
fanning observed as a function of ν at low Re values.   
 
Figure 1 shows the multiple−ν calibration curves for 
each of the meters.  The solid lines in Figure 1 are the 
meter factors K calculated from the ELM when 
coefficients related to Re−dependent drag and lift on the 
rotor and bearing drag are fitted to the measurements.  
The wide range of flows and kinematic viscosities 
exposes several phenomena seen in all of the meters and  
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(a)  2.5−cm Turbine Meter 

 

(b)  1.9−cm Turbine Meter 

(c)  1.6−cm Turbine Meter 

Figure 1:  Calibration curve of (a) the 2.5−cm, (b) the 1.9−cm 
and (c) the 1.6−cm turbine meter with various ν solutions of 
PG+W.  The symbols are measured data and the solid lines are 
the ELM fit to the data. 

that are well explained by the ELM: 1) there is a peak in 
the meter factor at a  Re value (Re length scale is the 
inner diameter of the meter casing) that we call ReKpeak 
that occurs when flow across the rotor changes from 
laminar to turbulent and is not necessarily coincident 
with the beginning of the fanning phenomenon, 2) meter 
factor versus Re plots work well in what we call the 
“ν−independent range” of the turbine meter, where the 
separation of different ν curves is less than the long term 
reproducibility of a calibration performed in the same 
fluid, and 3) at Re < a meter specific value, a fanning of 
the curves occurs.  We have named the range of the 
calibration curve where fanning occurs the 
“bearing−dependent range” because the bearings are 
responsible for the fanning phenomenon [2].   
 
2.  Materials and Methods 
United States Pharmacopeia grade (i.e., safe for human 
consumption) propylene glycol was mixed with reverse 
osmosis water to generate mixtures (PG+W) ranging in 
kinematic viscosity from 1.2 × 106 m2 / s to 
14 × 106 m2 / s at 21 °C.  The National Institute of 
Standards and Technology (NIST) 20−L hydrocarbon 
liquid flow standard was used to generate calibration 
curves at temperatures between 20 °C and 22 °C [7] for 
three single−rotor turbine meters having 8 blades, 4 

blades and 6 blades and with nominal diameters of 
2.5 cm, 1.9 cm, and 1.6 cm respectively.  The NIST 
standard is a piston prover (Figure 2).  The motor−driven 
piston works like a syringe pump.  It sweeps a known 
volume during a known period of time through the 
cylinder generating a known flow through the meter.  
The frequency measured from the meter during the 
known  volumetric flow gives the meter specific Kf 
factor.  The prover has a 95 % confidence level 
uncertainty of 0.074 % (All uncertainties herein are 
approximately 95 % unless otherwise stated).  To avoid 
cavitation, the system was pressurized to approximately 
260 kPa.  Data were collected over the range of 
operation of the NIST 20−L prover (1.5 L / min to 114 
L / min).  For each PG+W mixture, 5 data points were 
taken at each flow.  For a given flow, meter repeatability 
ranged from 0.02 % to 0.28 % with the 1.9−cm meter 
having the worst repeatability. 
 
We determined the ρ and ν of each mixture as a function 
of temperature.  The resulting ρ and ν data agree with 
other reports of PG+W properties within 1 % [8, 9].  For 
calibrations, the required accuracy of ν depends upon the 
Re range of the calibration.  By definition, low 
uncertainty is not required in the ν−independent range of 
the turbine meter [2].  However, accurate ν values are 
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necessary to obtain low−uncertainty calibrations in the 
bearing−dependent range.  To determine the accuracy 
required for ν in the bearing−dependent range for each 
meter we computed the partial derivative of the ELM 
with respect to ν, normalized by multiplying by ν / K, 
(ν / K) / (∂K / ∂ν).  We found that a 1 % error in ν will 
introduce a 0.1 %, 0.3 % and 0.3 % error in the 
measured flow for the 2.5−cm, 1.9−cm and 1.6−cm 
turbine meter, respectively, at the lowest Re measured.  
 

Figure 2:  NIST’s 20−L piston prover with the 2.5−cm, 
single−rotor turbine meter installed.   
 
3.  Extended Lee Model for the Turbine Flow Meter 
The relationship between the fluid flow through a 
turbine meter and its rate of rotation is dependent on 
many parameters that are impractical to measure with 
low uncertainty, e.g., blade angles, tip clearance and 
bearing friction.  Hence our goal is not to derive a 
physical model that attempts to relate precisely measured 
meter geometry to the meter calibration.  Instead we 
seek the functional form of the physical model that we 
can fit to flow calibration data.  The model coefficients 
determined from our test flows and kinematic viscosities 
during calibration can then be used to interpolate data for 
other conditions. 
 
In the literature, there are two approaches that account 
for the calibration curves for turbine flow meters.  The 
first approach describes fluid driving torques in terms of 
aerodynamic lift and drag via airfoil theory.  The second 
describes it in terms of momentum exchange [10].  We 
have chosen the momentum approach because it leads to 
the functional form of the calibration curve without 
knowledge of the meter’s internal geometry.  The ELM 
has been derived in detail previously [2].  The derivation 
is summarized here starting with the fundamental 
expression of the turbine meter Lee model based on the 
momentum approach: 

 

r

2 2

tan
,

T
K

Q rA r Q

 


    (1) 

 

where, i

tan
.K

rA




 
 
The ideal K factor (first term on the right hand side of 
Equation 1) is reduced by the retarding torques (second 
term) to obtain the real K factor. 
 
We previously extended the Lee model by including 
expressions for the retarding torques related to fluid drag 
and bearing friction drag.  This led to the finding that 
bearing drag is responsible for the fanning in the 
multiple−ν calibration curves. 
 
3.1. Fluid Drag and Other Reynolds Number 
Dependent Forces 
There are several Re−dependent phenomena that 
influence the shape of turbine meter calibration curves.  
These include 1) the fluid drag on the entire rotor 
including that on the blade surfaces, blade tips, and the 
rotor hub, 2) lift on the blade surfaces due to air foil 
behavior, and 3) changes in the velocity profile entering 
the turbine meter body.  A generalized Re−dependent 
function in the form of the retarding torque term in 
Equation 1 is: 
 

D
D2 2

'T
C (Re).

r Q
  (2) 

 
The drag coefficient in Equation 2 is not dimensionless: 
geometric constants give it units of m3. 
 
In our prior application of the ELM to turbine meter 
calibration data [2], we assumed that the fluid drag on 
the rotor surfaces was the dominant Re−dependent 
phenomenon and used the functional forms for laminar 
and turbulent boundary layers.  The functional form for 
the turbulent boundary layer used was: 
CD1´ + CD2´ / log10Re.  But when this function was fitted 
to present calibration data, the residuals at larger Re 
values were not random.  We attribute this to numerous 
Re−dependent phenomena occurring in different parts of 
the turbine meter (blade surface, hub, tips, velocity 
profile), each with different length scales and transition 
Re values.  Furthermore, at high rotor frequencies, the 
tip and hub drag terms will grow but the turbulent 
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boundary layer expression does not capture the growth.  
The complexity of these phenomena and our incomplete 
knowledge of the turbine’s geometry make it impractical 
to separate these phenomena into individual terms.  
Therefore, in this work, to better fit the measured data in 
the transition and turbulent ranges we used a 3rd order 
polynomial in 1 / log10Re.  As in our previous work, the 
laminar boundary layer functional form worked well for 
all three turbines. 
 
In our prior application of the ELM [2], the laminar to 
turbulent transition was assumed to occur at a particular 
Re value.  This approach worked well for the 1.9−cm 
and the 1.6−cm turbines in this study too.  But the 
2.5−cm turbine calibration data has a broad transition 
region that was fitted better by including an 
intermittency factor x = (Re – Relam) / (Returb – Relam).  
The intermittency factor varies between 0 and 1 between 
Relam and Returb, and gives a linear transition over a range 
of Re values instead of at a single value [11].  Therefore 
the Re−dependent term used in this work is: 
 

 

   

4
D0

102 2 0.5
1

lam

lam turb lam

lam turb

turb

1 / (log )

where  0 for , 

 – / –

for   and

1  for 

iD

Di

i

CT
x x C Re

r Q Re

x Re Re

x Re Re Re Re

Re Re Re

x Re Re

 


  

 



 

 



 

(3) 

 
3.2.  Bearing Drag 
There are three components involved in the torque due to 
bearing drag, TB [3]: one is independent of rotor speed 
and has the form of Coulomb−type friction or static drag 
(CB0), a second that increases linearly with rotor speed 
and is due to viscous drag in the bearing (CB1 ρ ν ω) and 
a third that increases with the square of the rotor speed, 
due to axial thrust and dynamic imbalance of the rotor 
system (CB2 ω

2).  The third component is insignificant 
for all the meters that we studied as expected for 
well−balanced rotors.  The parameters CB0 and CB1 are 
meter specific constants that are derived in detail in our 
previous work [2].  They have the dimensions of 
kg m2/s2 and m3 respectively.  The bearing drag torque 
can be written as: 
 

B B0 B1 .T C C    (4)

 
Equation 4 is rearranged in the form of the retarding 
torque in Equation 1, to obtain:  

' '
B0B B1

2 2 2 2
,

CT C

r Q Q Q



 
   (5) 

 

where '
B0 B0

2/C C r and '
B1 B1

2/C C r .  Equations 3 and 
5 can be inserted into Equation 1 to yield the model 
equation: 
 

 
' '

' B0 B1
i D 2 2

,
C C

K C Re
Q Q Q

 


     (6) 

 
where the Re−dependent term is written as C’

D (Re) for 
convenience to represent the right hand side of Equation 
3.  Equation 6 can be solved for Q to yield the working 
equation: 
 

 

 

' '
'D B0i

1

'
Di

1 1 4

.

2

B

C Re CK
C

Q
C ReK


  

 

   





  
      

 
  
 

 
(7) 

 
For each meter, we determined the coefficients in 
Equation 7 from flow calibrations using liquids of 
various ν.  Then, each meter can be used to measure 
unknown flows using the known calibration coefficients 
and fluid properties, and counting the frequency output 
by the meter.  
 
The ELM (and Equation 7) can be written in terms of the 
Ro instead of Re.  Ro has the advantage that no iteration 
is necessary when the flow meter is used while Re 
requires iteration because it is flow dependent. Here we 
use Re because it is the dimensionless quantity that 
indicates whether a flow is laminar or turbulent and it is 
used in the literature in empirical functions for the drag 
coefficient. 
 
4.  Fitting the ELM to Measured Data 
Because of the complicated shape of the multiple−ν 
calibration curves, we initially fitted the model to the 
data by trial and error while observing the standard 
deviation and the minimum and maximum of the 
residuals.  Then, we optimized the coefficients using a 
least squares fit algorithm.  For a more detailed 
explanation see Ref. [2].  
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For each meter the coefficients that optimize the fit of 
the model to the measured data, the transition Re value 
for the Re−dependent term and the maximum Re value 
where fanning begins are listed in Table 1.   
 

Table 1: Values for the fitted coefficients in the physical 
model. 

 
5.  Residuals of the ELM Fits 
Figures 3(a) to 3(c) show the ratio of the K factor 
calculated from our model to the measured K factor (the 
ratio of the solid lines and symbols respectively in 
Figure 1) for all PG+W mixtures tested for the three 
turbine meters in this study.   
 
Figure 3(a) shows that for Re > 3500, the model fits the 
data from the 2.5−cm turbine within 0.11 % and for 
Re < 3500 within 1.33 %.  The root mean square (RMS) 
deviation of the model from measured data is 0.45 %.   
 
Figure 3(b) shows that for Re > 12000 (ReKpeak ≈ 12000), 
the model fits the measured data from the 1.9−cm 
turbine within 0.07 % and for Re < 12000 within 1.67 %.  
The RMS deviation of the model from measured data is 
0.76 %.   
 
Figure 3(c) shows that for Re > 3000 (ReKpeak ≈ 3000), 
the model fits the measured data from the 1.6−cm 
turbine within 0.27 % and for Re < 3000 within 2.29 %.  
The RMS deviation of the model from measured data is 
0.68 %.   
 
In the bearing−dependent region, an average curve was 
fit between the highest ν curve and the lowest ν curve.  If  

(a)  2.5−cm Turbine Meter 

(b)  1.9−cm Turbine Meter 

(c)  1.6−cm Turbine Meter 

Figure 3:  (a) to (c) The K factor calculated from the ELM 
divided by the measured K factor.  (a) The ELM fits the 
measured data for the 2.5−cm turbine within 0.11 % at 
Re > 3500 (shaded region).   (b) The ELM fits the measured 
data for the 1.9−cm turbine within 0.07 % at Re > 12000 
(shaded region).  (c) The ELM fits the measured data for the 
1.6−cm turbine within 0.27 % at Re > 3000 (shaded region). 
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the average curve is used to predict the meter factor it 
will result in uncertainties as large as 3.45 % for the 
2.5−cm turbine, 4.25 % for the 1.9−cm turbine and 
4.76 % for the 1.6−cm turbine.  Therefore, the worst 
fitted K factor from the model is at least two times more 
accurate than using an average curve approach for the 
multiple−ν curves.  The good agreement between the 
fitted model and the measurements from these meters, as 
well as the dual−rotor meter previously modeled [2], 
gives us confidence that the ELM captures the major 
physical phenomena. 
 
6.  ELM Explains the Measured Data 
The fitted ELM allows us to understand the complex 
behavior of the turbine meter in various flow ranges, 
including the fanning observed in the bearing−dependent 
range.  The individual terms of Equation 6 are plotted in 
Figure 4(a) to 4(c) versus Re for each meter studied.  
The agreement between the fitted model and the 
measured data is excellent considering that the total of 
all model corrections are as large as 36.3 % of the ideal 
meter factor Ki. 
 
Figure 4 plots the Re−dependent term, C’

D (Re), the 
bearing static drag term, C’

B0 / (ρ Q
2), and the bearing 

viscous drag term, C’B1 ω ν / Q2, as percentages of Ki 
versus Re.  At Re = ReKpeak, the Re−dependent correction 
is at its minimum, causing the peak in the calibration 
curve (Figure 1) where the turbine is closest to the ideal 
behavior.  As shown in Figure 4, the Re−dependent term 
dominates at the higher Re numbers and its dominance 
and Re−dependence leads to the ν−independent range of 
turbine meter performance shown in Figure 1.  The 
Re−dependent term is consistent with the collapsing of 
data onto a single calibration curve on the commonly 
used plots of K vs. Re or Strouhal (St) vs. Ro.  
 
The bearing static drag term is responsible for the 
fanning observed in the calibration curve at the lower 
flows shown in Figure 1.  Its proportionality to 1 / Q2 
leads to several, separate curves dependent on ν when 
plotted vs. Re.  The fanning observed in the normal 
presentation of turbine meter data (K vs. Re or St vs. Ro 
plots) is primarily a consequence of this term’s 
dependence on flow, not Re.  The fanning observed at Re 
values larger than ReKpeak is clearly shown in Figure 4(a) 
and to a lesser extent in Figure 4(c) because the bearing 
static drag term still influences these turbines at Re > 
ReKpeak, where the transition from laminar to turbulent 
flow occurs (at the Re−dependent term  minimum). 
 
 

(a)  2.5−cm Turbine Meter 

(b)  1.9−cm Turbine Meter 

(c)  1.6−cm Turbine Meter 

Figure 4:  The individual terms of Equation 6 plotted as a 
percent of Ki.  (a) The 2.5−cm turbine has total corrections to 
Ki as large as 14.2 %.  (b) The 1.9−cm turbine has total 
corrections to Ki as large as 36.3 %.  (c) The 1.6−cm turbine 
has total corrections to Ki as large as 30.8 %. 
 
The bearing viscous drag correction was previously 
shown to have a hybrid behavior [2]:  At higher Re 
values, it is well collapsed by Re, but the collapsing fails 
at lower values.  An explanation for this is, at higher 
flows where the turbine operates near the ideal model, ω 
is proportional to Q and the bearing viscous drag term 
can be approximated by C’

B1 ν / Q, a term that is 
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proportional to 1 / Re and hence collapses to a single 
curve when plotted vs. Re for various ν values.  
However, at low flows, the corrections to the ideal 
model become significant as ω is no longer proportional 
to Q, leading to a separation of the multiple−ν curves.  
Hence, the bearing viscous drag term can be partially 
responsible for fanning of the multiple−ν calibration 
curves.  In contrast with our previous work, this hybrid 
behavior is not evident in the present measurements, 
probably because the present measurements do not 
extend to the very low values of Re (Re < 100) where the 
hybrid behavior was previously observed.  
 
Each of the ELM corrections is dominant under different 
Re or ν conditions, leading to the complex calibration 
curves shown in Figure 1.  Because the 1.9−cm meter’s 
calibration curves are the least complex with respect to 
the fanning occurring at Re values below the transition 
to laminar flow, we use it to illustrate how the correction 
terms explain the calibration curve’s shapes.  The 
maximum deviation between sequential ν calibration 
curves was calculated and found to decrease as ν 
increases.  (For example: the maximum difference 
between the two lowest ν curves is 7.5 % per centistoke; 
the maximum difference between the two highest ν 
curves is 0.46 % per centistoke).   The bearing static 
drag term dominates the other two mostly Re−dependent 
corrections at low Re values and at lower kinematic 
viscosities.  Because this term is responsible for the 
fanning phenomenon, the fanning is strongest under 
these conditions.  As the corrections for fluid drag and 
viscous bearing drag become stronger than this 
correction, the fanning is reduced.  (For example see 
Figure 5). 
 
The 2.5−cm turbine meter has the most complex 
calibration curves of the meters tested.  The peak in the 
calibration curve is not coincident with the beginning of 
the fanning phenomenon.  The peak in the calibration 
curves of the 2.5−cm meter occurs at Re ≈ 1900 but the 
fanning begins at Re ≈ 3800.  This is because the 
transition from laminar to turbulent conditions and the 
flow at which bearing drag terms become significant do 
not coincide.  This is true for the 1.6−cm meter too; the 
peak in the calibration curves occurs at Re ≈ 3000 but 
the fanning begins at Re ≈ 5500.  The percent fanning 
was determined by the percent difference in the upper 
and lower calibration curves.  In this region fanning at 
Re values larger than ReKpeak is limited to less than 
0.63 % for the 1.6−cm meter whereas fanning is as large 
as 1.60 % for the 2.5−cm meter.  Fanning in the 1.9−cm 
meter’s calibration curves only occurs at Re < ReKpeak.  

Figure 6 shows the same calibration curves presented in 
Figure 1, however, expanded to see details near the peak 
and the start of the fanning of the multiple−ν curves.   
 

Figure 5:  Contribution of correction terms for the 1.9−cm 
meter at the lowest Re tested for each ν.  The bearing static 
drag correction is compared to the other two corrections 
combined (the bearing viscous drag correction + the 
Re−dependent correction).  
 
7. Further Investigation of Static Bearing Drag  
The residuals plotted in Figure 3 are not random in the 
bearing−dependent range, indicating that there are 
observable phenomena missing from the ELM.  This is 
not surprising given that this is the least understood part 
of the multiple−ν calibration curves and until recently 
the reason for the fanning phenomenon was not well 
studied.  The separation of the multiple−ν curves 
produced by the fitted ELM does not exactly match the 
measured data in the fanning region.  Because the 
bearing static drag term is the most significant correction 
in this region, we hypothesize that the physical model 
for the bearing static drag is incomplete. Therefore, we 
attempted to measure the static bearing behavior using a 
“bearing spin down test” under near vacuum conditions.   
 
Examining the spin down under vacuum removes the 
viscous and Re−dependent drag forces from the rotor.  If 
the ELM bearing static drag term is correct, the turbine 
frequency will decrease linearly with respect to time. 
 
The relationship between angular acceleration and the 
torque associated with it is: 
 

rotation

d
I T ,

dt


  (8) 
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(a)  2.5−cm Turbine Meter (b)  1.9−cm Turbine Meter 

(c)  1.6−cm Turbine Meter 

Figure 6: The calibration curves for (a) the 2.5−cm turbine, (b) 
the 1.9−cm turbine and (c) the 1.6−cm turbine. The error bars 
shown are the uncertainty of the 20−L primary standard 
(0.074 %).  The solid lines are from the ELM and the symbols 
are measured data. 

 
where I is the moment of inertia of the rotor.  From the 
ELM, the torque imposed on the bearings is given by 
Equation 4.  Equating the two torques gives: 
 

0 1B B

d
I C C

dt


   (9) 

 
Equation 9 shows that in the absence of fluid property 
effects (i.e. vacuum), the change in angular frequency 
with respect to time is constant. 
 
The experimental setup to measure the bearing spin 
down is shown in Figure 7(a).  The spin down test was 
performed on the 2.5−cm meter only because the other 
turbines did not spin long enough to collect data.  The 
meter was installed upstream of a vacuum pump and a 
large buffer volume.  A valve was installed upstream of 
the meter.  The volume was evacuated until the pressure 
(measured just downstream of the meter) reached a 
minimum (0.6 kPa to 1.0 kPa).  Then the valve was 
opened to allow air to rapidly flow through the meter 
causing the rotor to spin.  The vacuum was left on and 
the valve was closed while the turbine spun down until it 

stopped turning.  The results of these experiments are 
presented in Figure 7(b).  The difference between the 
spin down behavior in the presence of air compared to 
that in vacuum is due to the bearing viscous drag and the 
Re−dependent forces imposed by air on the rotor.  The 
spin down curve under near vacuum is essentially a 
straight line (the curve shown has an RMS deviation 
from a straight line of 2.3 %, two other curves from 
repeated measurements have RMS deviations of 2.7 % 
and 0.6 %).  The residuals from the fit to a straight line 
are random.  This confirmed that in the absence of drag 
pertaining to fluid properties, the drag acting on the rotor 
is effectively constant.  Therefore, the ELM imperfection 
in capturing fanning remains unexplained but we suspect 
it is because there are numerous Re−dependent 
phenomena occurring in different parts of the turbine 
meter (blade surface, hub, tips, velocity profile), each 
with different length scales and transition Re values. 
 
8.  Conclusions 
Equation 6 is a physical model, termed the extended Lee 
model, or ELM, for the turbine meter that incorporates 
1) fluid drag and other Re−dependent forces on the rotor, 
2) bearing static drag, and 3) bearing viscous drag.  The 
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model accounts for the calibration curves generated 
using fluids of various kinematic viscosities from a 
dual−rotor, 2.5−cm turbine meter [2] and single−rotor, 
2.5−cm, 1.9−cm and 1.6−cm turbine meters.  Using 
measured data from a 2.5−cm, dual−rotor meter the 
ELM was previously shown to correlate the volumetric 
flow within 0.2 % in the ν−independent Re range and 
within 3.6 % in the bearing−dependent Re range despite 
corrections as large as 61 % of the ideal K factor.  This 
gave us confidence that the model captures the major 
physical phenomena and can be used to understand the 
complex behavior of turbine meter calibration curves, 
particularly in the bearing−dependent Re range.  At that 
time we could only speculate about how well the model 
might correlate measured data from meters of varying 
design and size.  Therefore, here we tested how the ELM 
could be fitted to measured data from three single−rotor 
meters having 8 blades, 4 blades, and 6 blades with 
diameters of 2.5 cm, 1.9 cm, and 1.6 cm respectively.   
 
(a) 
 

(b) 

Figure 7:  (a) Schematic of experimental setup to measure the 
spin down of the turbine meter rotor.  (b) Graph of the spin 
down behavior of the 2.5−cm, single−rotor turbine meter in 
the presence of air (100 kPa) and near vacuum (≤ 1 kPa).    
 
For metering fluids in the ν−independent range, the 
ELM is not necessary for low−uncertainty flow 
measurements because the commonly used St vs. Ro (or 

K vs. Re) presentations of multiple−ν calibration curves 
collapses data to within 0.1 %.  This is well within the 
long−term reproducibility of the turbine meter.  
However, the ELM does greatly reduce the uncertainty 
in measuring low flows that are in the 
bearing−dependent range of the meter and it explains 
why changes in ν cause fanning of the calibration curves 
in this range.   
 
This paper raises the question of whether it is valuable to 
perform multiple−ν calibrations on turbine flow meters 
in order to obtain the coefficients in the ELM.  We do 
not recommend such a calibration because 1) as the 
meter ages it is likely the behavior of the bearings will 
change making these correction terms unstable, and 2) a 
multiple−ν calibration is costly.  To maintain 
low−uncertainty measurements that are cost effective we 
recommend buying a meter that operates in the 
ν−independent range for the application at hand.  
However, calibrations at a minimum of two kinematic 
viscosities are valuable, not for determining ELM 
coefficients, but for identifying where fanning begins so 
that the meter is only used in the ν−independent range. 
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