
Algorithm validation using multicolor
phantoms

Daniel V. Samarov1,∗, Matthew L. Clarke2,3, Ji Youn Lee2, David W.
Allen2, Maritoni Litorja2, and Jeeseong Hwang2

1National Institute of Standards and Technology, Information Technology Laboratory,
Statistical Engineering Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA

2National Institute of Standards and Technology, Radiation and Molecular Physics Division,
100 Bureau Drive, Gaithersburg, MD 20899, USA

3Currently with the National Gallery of Art, Washington, DC, 20565, USA
∗daniel.samarov@nist.gov

Abstract: We present a framework for hyperspectral image (HSI)
analysis validation, specifically abundance fraction estimation based on
HSI measurements of water soluble dye mixtures printed on microarray
chips. In our work we focus on the performance of two algorithms, the
Least Absolute Shrinkage and Selection Operator (LASSO) and the Spatial
LASSO (SPLASSO). The LASSO is a well known statistical method for
simultaneously performing model estimation and variable selection. In the
context of estimating abundance fractions in a HSI scene, the “sparse”
representations provided by the LASSO are appropriate as not every pixel
will be expected to contain every endmember. The SPLASSO is a novel
approach we introduce here for HSI analysis which takes the framework
of the LASSO algorithm a step further and incorporates the rich spatial
information which is available in HSI to further improve the estimates of
abundance. In our work here we introduce the dye mixture platform as a
new benchmark data set for hyperspectral biomedical image processing and
show our algorithm’s improvement over the standard LASSO.
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1. Introduction

Hyperspectral imaging (HSI) is a technology commonly used in remote sensing but has re-
cently found increased use in biomedicine, from investigations at the cellular [1] to the tissue
level[2, 3] and often captured in reflectance mode. Measurement accuracy depends on radio-
metric proficiency and the robustness of the algorithm used to extract the desired quantity. Ra-
diometric challenges are both instrument-related (e.g. drift, noise, sensor inhomogeneities) and
scene-related (e.g. glare, topography, light field non-uniformity). These can be minimized by
performing radiometric calibration using artifacts such as wavelength, intensity and reflectance
standards and applying the appropriate corrections. The algorithm on the other hand, needs to
accurately extract the analyte quantity in the presence of signal contaminants such as scattering
and signal interferers arising from undesired absorption and spatial and spectral correlations.
It requires validation against known preparations, closely resembling in properties to the real
samples. In biomedicine, tissue phantoms are prepared for this purpose[4]. These ground-truth
artifacts tend to have short shelf life and are often prepared with other functional considerations
besides optical property. They may also be difficult to prepare reproducibly.

Recently a novel, custom-tailored microarray printing platform was developed[5, 6] to cre-
ate a testbed for characterizing hyperspectral imaging systems and validating algorithm perfor-
mance. This microarray printing system allows for precise sample composition through varia-
tion of dye concentrations and mixture proportions, and high spatial control. The printed sam-
ple spots are imaged using a hyperspectral imager. Details of the preparation of the microarray
prints and image acquisition have been described previously[5]. Briefly, a spotting robot (Spot-
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Bot2, ArrayIt, Sunnyvale, CA) is programmed to print prescribed mixtures of dyes dissolved in
acqueous polyethylene glycol (PEG) on a microscope slide. The spots (∼ 100 µm in diameter)
are spaced 250 µm apart to ensure no signal crosstalk between spots.

The printed dye microarray is a semi-stable, scalable template of mixtures of known compo-
sition for testing algorithm accuracy and to some extent, instrumental limitations. Components
and concentrations can be tailored to approximate optical properties of the specific species in
the actual biomedical measurement. Spatial control allows us to determine the degree of spatial
correlations given a specific optical detection geometry. The dye microarray printing platform
is a method of preparing surrogate validation samples especially for systems which are not easy
to prepare or handle. This method has been shown to be useful in preparing validation artifacts
for fluorescence[7] and absorbance[5] microscopy of biological samples.

In the work presented here we focus on endmember (a signature belonging to a chemical
species, or simply a radiometric artifact such as glare) abundance fraction (i.e. dye concentra-
tion) estimation. This benchmarking sample allows us to see how well an algorithm is capable
of performing with various issues present. It also provides insight into some of the instru-
ment and acquisition limitations such as the imager’s limit of detection for various endmember
mixture proportions and combinations. Similar to complex tissue phantoms, this sample also
exhibits effects of scattering and edge diffraction despite the intent of creating a simple system
of variable absorbance spectra.

In our work here we look to validate the well known LASSO (Least Absolute Shrinkage and
Selection Operator [8]) and a novel method we call SPLASSO (Spatial LASSO [9]) against
the microarray multicolor phantom. The LASSO and SPLASSO are both “sparse” regression
methods (often referred to as basis pursuit in other fields), i.e. they have the property that some
of the regression coefficients (i.e. abundances) are set exactly equal to 0. This property will
be discussed in more detail in Section 2. Methods like these are particularly well suited for
abundance estimation in hyperspectral imaging as they exploit the fact that most pixels in an
image are only composed of a subset of the total number of endmembers present (i.e. some will
have 0 abundance).

1.1. Sample Description

Fig. 1 shows the layout of one of these microarrays consisting of two different dyes. The two
dyes are acid red 1 (AR) and new coccine (NC)[10]. The image on the left is what the array
looks like and on the right is the layout of the locations, relative proportions and concentrations
of each of the dyes. Dye samples are initially prepared in water. Dyes were dissolved in water to
create stock solutions that will provide absorption spectra of similar magnitude (w/w: 4.9% AR;
7.0% NC). These stock solutions are then further diluted and mixed with 75% poly(ethylene
glycol, MW = 600 D) (PEG) for a final PEG concentration of 50% (v/v). For ease of compar-
ison, the highest concentration of each dye sample present in images is designated as 100%
relative concentration. Here, the two right-most columns with “AR” and “NC” written above,
correspond to individual dyes at 100% down to 1% relative concentration. The columns to the
left of this show mixtures of these dyes at varying proportions and concentrations. All together,
three replicate phantoms were generated using these two dyes and the layout described. We
focus on the second and third replicates due to issues with acquisition of the first.

The two dyes we selected for this study were chosen because of their spectral distributions,
shown in Fig. 2. Here relative absorbance measurements (y-axis) were taken at 61 wavelengths
between 400 nm and 700 nm (x-axis) with 5 nm spacing. While the dyes are somewhat spec-
trally distinct there is considerable overlap between them. This overlap presents a considerable
challenge when trying to determine the concentration and proportion of a particular dye at a
given spatial location where two dyes have been mixed. While not presented here, multicolor
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Fig. 1. The design of the microarray printing platform for two dyes. The image on the left
depicts the actual array and the image on the right shows the location, concentrations and
proportion of each of the dyes.

phantoms have been developed where the spectral signatures are more distinct, making esti-
mation of the abundance fraction (somewhat) easier[11, 5, 6]. The two remaining signatures
correspond to the PEG and background spectra.
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Fig. 2. The spectral signatures of the two dyes used in this experiment, as well as the PEG
and background signatures.

The spectral signatures presented in Fig. 2 were estimated from the HSI measurements by
taking the average of a 7×7 pixel region within the 100% dye spot locations for AR and NC.
Similar averages were taken for the PEG spots and the background. Note, prior to obtaining
these spectra, the data cubes were preprocessed using a baseline correction algorithm. These
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four spectra AR, NC, PEG and background are used as the endmembers in our models.
It is important to note that in most cases simply taking the average of a region believed to

contain an endmember, as we do here (where we happen to have an understanding of what
the “ground truth” is) will not yield very reliable results. A widely studied problem in the HSI
literature is estimating how many and which endmembers are present in an image. Some well
known algorithms for determining the number of endmembers include virtual dimensionality
(VD[12]) and hyperspectral signal identification by minimum error (HYSIME[13]). For es-
timating the endmembers themselves, two commonly used approaches are vertex component
analysis (VCA[14]) and the simplex identification via split augmented Lagrangian (SISAL[15])
algorithms. While both these problems are extremely important, and the data presented here can
certainly act as test bed for them. However, since our focus is on abundance estimation we take
what we know to be “ground truth” for the endmembers and leave the exploration of these other
problems to future work.

1.2. Results and discussion

Algorithm performance is measured by looking at how well the estimated dye concentrations
(whose calculation we describe next) and corresponding ratios match up with the design in Fig.
1. Fig. 3 shows a heatmap of the estimated abundances using the LASSO and SPLASSO for
each of the two dyes (we have zoomed in on the dye spots and removed most of the background
regions to ease visualization of the results) for the second of the three replicates (results are
similar for the third). The vertical white lines delineate the different dye mixtures shown at the
bottom and the color bar to the right of each figure shows the range of the estimated abundance
fractions. Note that in each case the fractions are less than 1. There are a number of factors
at play here which could cause this to happen. In particular the complexity of the background
and other features all have an effect on the measured absorbance and resulting estimate of
abundance fractions.
From a qualitative standpoint the SPLASSO algorithm produces a more visually appealing
result as compared to the standard LASSO (less salt-and-pepper artifacts). From a practical
standpoint, this reduces the number of false-positive readings, i.e. saying a dye is present when
it is not and reduces the overall variability in the measurements (as we will see in the following).

In order to estimate the concentration at each dye location we begin by estimating the 100%
concentration values. This is done by calculating the average estimated abundance fractions
from a 7× 7 pixel region centered at the 100% concentration locations for AR and NC (see
Fig. 1 and 3); we call these values AR100, and NC100. Similar 7× 7 regions are then selected
and averages calculated at each spot; we call these values ARi, and NCi, where i ∈ {1, . . . ,45}
denotes the spot location shown in Fig. 4. The final estimated calibrated abundance fraction for
each dye at each location are then calculated as

ARi

AR100
and

NCi

NC100
.

The results for the first replicate is shown in Fig. 5 (again, results for the second are similar).
Each of the barcharts shows the absolute error of our estimate (which we refer to as calibrated
abundance fraction or CAF) from ground truth along the x-axis. The locations of the barcharts
throughout the figure correspond to the dye design shown in Fig. 1. The blue bars display the
results of the SPLASSO and the green bars the LASSO with the bars on the top half of each
plot showing the results for NC and the lower bars AR. The segments at the top of each bar
represent the standard errors of the CAF in the 7×7 region used to find the estimates. The true
concentration and mixing proportions can be found just above each of the plots. As an example,
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Fig. 3. The abundance estimates of AR and NC for the second replicate data set. The color
scale on the right indicates the estimated abundance fractions.
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Fig. 4. Indices of the pure and mixed dye locations.

if we were to look at the top right barchart, which corresponds to the 100% AR and 0% NC dye
spot location, we see that the absolute error for LASSO and SPLASSO for AR the CAF is 0%
(a result of normalizing against the abundance estimate at this location) and is approximately
10% for the SPLASSO and 40% for the LASSO for the NC CAF. Similarly, the barchart just
below that displays the absolute errors for the 50% AR and 0% NC spot and so on.

From these results we can see that both the LASSO and SPLASSO are able to generally cap-
ture the dilution curves of the pure AR (rightmost column) and NC (second from the right) dyes.
In the locations where the two dyes have been mixed, the overall accuracy of the measurements
decrease, however the relationships are still generally captured. On the whole the absolute er-
ror of the SPLASSO estimates as compared to ground truth are smaller and less variable than
the corresponding LASSO estimates (with the exception of a few locations). Additionally the
SPLASSO shows a higher overall sensitivity for estimation of the CAF in lower concentration
mixtures. This improvement in performance is further reflected by the smaller sum of absolute
errors across dye spot locations for the SPLASSO, 8.6 as compared to the the LASSO, 16. Of
interest is that in the regions where one or both dyes are not present, the SPLASSO tends to
produce estimates closer to 0% CAF. In biomedical imaging applications this is particularly
important as avoiding false positives can be as important as identifying true positives.

Given the challenging nature of the two dye mixture data these results are quite promising and
show that both the LASSO and SPLASSO are strong candidates for abundance fraction estima-
tion in HSI. There are several possible reasons why the senstitivity of these algorithms was a bit
low in certain parts of the image. To start, part of the issue may involve a need for improvement
in the image acquisition process itself. However, further development of pre-processing steps
(e.g. background correction) would almost certainly help improve results. Experimental errors
may also play a role. For example, as the relative ratio of one dye increases, dye segregation
due to different surface wetting may introduce local heterogeneity within a single microarray
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Fig. 5. Results from CAF estimation using the SPLASSO and LASSO at each dye location.
In every subplot the corresponding barplots show the absolute errors (x-axis) of the CAF
estimate from ground truth and their corresponding standard errors (vertical line) for the
AR and NC dyes.

spot resulting in differential reflective scattering properties. It is important to emphasize that
these issues will also be present in biomedical samples; having the ability to generally assess
how an algorithm might perform under these circumstances is critical.

For this particular benchmark data set, we conclude that the SPLASSO algorithm is capable
of extracting endmembers of two different chemical substances within the ratio range of 100:50
to 100:100. This also reflects the HSI camera’s general level of sensitity for measuring mixture
proportions. For the sake of space we have not included results for the remaining replicate
measurements; however similar results hold.

2. Methods

While not always the case in practice, it is commonly assumed (as it is here) that at each pixel
the spectral signature is a linear mixture of each of the endmembers present in the scene. Before
providing a more formal description of linear mixing we begin by introducing some notation:
define yi = (yi1, . . . ,yip)T , i = 1, . . . ,n to be the set of spectral response vectors, n corresonding
to the total number of pixels in the image. Let x j = (x1 j, . . . ,xp j)T , j = 1, . . . ,m be the set
endmembers (where each of the p entries maps to a specific wavelength), which are collected
in the matrix X = [x1, . . . ,xm]. Finally let β i = (βi1, . . . ,βim), i = 1, . . . ,n be the set of abundance
vectors whose entries tell us the proportion and concentration of an endmember at a pixel. In
order to ensure that these abundances have a physical meaning it is typically required that each
element of β i be nonnegative and that the sum of the elements of β i are less than or equal to
one. More generally
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yi = Xβ i, subject to βil ≥ 0 and
m

∑
l=1

βil ≤ 1. (1)

Note, it is more commonly assumed in the HSI literature that ∑i βil = 1. This constraint reflects
the assumption that we have captured all or most of the relevant endmembers; however in the
majority of cases this will not be true. One of the major issues with forcing the βil’s to sum
to one is that it has the potential to introduce noise artifacts into the estimates; for example,
if an endmember actually present in the image has not been included, a sum-to-one constraint
may artificially inflate the estimate abundance of another endmember in order to compensate.
Allowing for an inequality as in (1) will help avoid such situations and will generally be more
robust to noise.

As mentioned in the introduction “sparsity” in the abundance vectors β i (i.e. possibly many
βi j’s being equal to 0) arises naturally in hyperspectral imaging as most pixels are typically
composed of only a subset of the m endmembers. For example, in the the dye mixture data we
know that many of the spots are made up of one or a mixture of two dyes. In some applications
large dictionaries of endmembers specific to the types of objects being analyzed are available,
with only a subset of the endmembers in the dictionary being present in the image at all. By
explicitly taking into account the sparse nature of the endmember abundance vectors we are
able to reduce the number of false positives (saying an endmember is present in a pixel when it
is not) and therefore the accuracy of the estimation.

In Sections 2.1 and 2.2 we outline the LASSO and SPLASSO models respectively. Both of
these approaches produce sparse estimates of the abundances and as illustrated in Section 1
produce very good results.

2.1. LASSO

Standard approaches to model building, such as ordinary least squares (OLS) do not produce
sparse results and variable selection procedures traditionally used in conjunction with OLS,
such as best subset selection, encounter difficulties when there are more than a few variables
(as the number of possible combinations to consider quickly becomes intractable). Other short-
comings of subset selection methods are related to the discrete nature in which variables are
added or removed from the model [16], [17].

In order to effectively deal with these challenges regularization techniques which incorporate
an l1 penalty on the coefficient (abundance) vector, such as the LASSO [8] were developed.
Through the introduction of the penalty term these methods are able to simultaneously perform
prediction and variable selection. Sparse regression methods have been shown to be effective
in practice across a wide range of applications and the LASSO and related methods have seen
extensive use in the HSI literature[18], [19]. The form of the LASSO is quite similar to the
linear mixing model described in (1) with the additional constraint that |β |1 = ∑

m
j=1 β j ≤ c, for

some constant c (where | · |1 is the l1 norm). The loss function can then be expressed as

β̂ i(LASSO) = argmin
β i

∥∥∥∥∥yi−
m

∑
j=1

x jβi j

∥∥∥∥∥
2

+λ |β i|1, (2)

where λ is a nonnegative regularization parameter. The l1 penalty term has the effect of contin-
uously shrinking the coefficients toward 0 as λ increases and, for λ sufficiently large it can be
shown that some coefficients are set exactly to 0. Extending this to the abundance estimation
problem requires that the above estimation procedure be repeated for each i, i = 1, . . . ,n.
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To gain some insight into how the LASSO is able to obtain estimates which are exactly 0, we
consider the following special case: suppose that the matrix of endmembers, X is orthonormal,
i.e. XT X = I and I is the identity matrix. Then it can be shown that the solution of the LASSO
problem in (2) has the closed form solution

β̂il(LASSO) = sgn(β̂il(OLS))(|β̂il(OLS)|−λ/2)+, l = 1, . . . ,m (3)

where β̂il(OLS) = xT
l yi is the OLS estimate, and (u)+ = max(0,u). Thus for λ/2≥ |β̂il(OLS)|,

β̂il(LASSO) = 0.
For the more general case where we do not have orthonormality two fast and efficient al-

gorithms have been proposed in the literature to solve (2): one based on least angle regression
(LARS) [20] and a more recent adaptation based on the coordinate descent algorithm [21].
Both these methods provide a significant improvement in computational speed over standard
linearly constrained, quadratic programming approaches; in particular coordinate descent[21]
has been shown to be very efficient for working with larger data sets. Straightforward modifi-
cations of either approach allow us to incorporate the positivity and sum to less than or equal
to one constraints of linear mixing.

2.2. SPLASSO

One of the drawbacks of existing LASSO methods in the context of hyperspectral imaging is
that they ignore the smoothly varying, spatial relationships between pixels and abundances.
While numerous methods exist which capture spatial information in the unmixing and abun-
dance estimation process[22], [18], [23], there are none which combines both the spatial and
sparse behavior found in HSI. In order to effectively leverage this we introduce a spatial penalty
term of the form ∑ j∈N(yi) ||β i−β j||2wi j into the LASSO objective (2) giving us the SPLASSO
loss function

β̂ j(SPLASSO) = argmin
β j

n

∑
i=1

||yi−Xβ i||2 +λ1|β i|1 +λ2 ∑
j∈N(yi)

||β i−β j||2wi j. (4)

Here λ1 and λ2 are nonnegative regularization parameters, N(yi) is the set of neighboring pixels
about yi and wi j ∈ [0,1] is a spatial weight function capturing the similarity between observation
i and its neighbors j ∈ N(yi). The neighborhood defined by N(·) can take on a number of
different forms; for our purposes we take N = Nk, the symmetric k-neighborhood on a regular
2D grid. To illustrate the form of Nk, suppose we are at grid point grs in a M1 ×M2 image,
1 ≤ r ≤ M1, 1 ≤ s ≤ M2. For k = 1 our neighborhood would be defined as the set of points
N1 = {gr−1,s,gr+1,s,gr,s−1,gr,s+1,gr−1,s+1,gr+1,s+1,gr−1,s−1,gr+1,s−1}.

The introduction of the penalty term ∑ j∈Nk(yi) ||β i−β j||2wi j in (4) has the effect of “encour-
aging” the β i’s to be similar to their k-neighbors, introducing a smoothness to the coefficient
vectors. In hyperspectral unmixing this has several appealing aspects: in particular it allows
our estimates to be more robust to instrument and sample variability. Intuitively this makes
sense as the variability introduced from these different sources will tend to be smoothed out. Of
course, as in any smoothing method, care needs to be taken to avoid removing actual features
by oversmoothing.

For this reason appropriate selection of the weights wi j and regularization parameters λ1 and
λ2 are extremely important. In the application of the SPLASSO to hyperspectral imaging it
is desirable to have a weight function which uses both spatial and spectral information. Let
us suppose that the spectral signature, yi whose abundances we are estimating corresponds to
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the rsth pixel in the image (for illustrative purpose we refer to this point as yrs). The spatial
component of the weight function can then be captured by

brs(lm) =

{
1

(r−l)2+(s−m)2 , l ∈ [r− k,r + k],m ∈ [s− k,s+ k] if (l,m) 6∈ (r,s),
0 otherwise.

(5)

Our decision to use (5) is because it provides a decrease in the effect a neighboring pixel has
the further we move out from the current observation being estimated. However, the decrease
is not so rapid as to make the contribution of the surrounding observations negligible. Next, to
leverage spectral information we use the weights

crs(lm) =
yT

rsylm

||yrs||||ylm||
, l ∈ [r− k,r + k],m ∈ [s− k,s+ k], (6)

which is the cosine of the angle between the spectra. This is a similarity measure commonly
used in hyperspectral image analysis applications. For our purposes it is appealing because it
allows our spatial weight function to be adaptive to local features in the image, e.g. if we are at
the edge of an object. We have also found it useful in practice to include a threshold on the angle
between spectra, so that if acos(crs(lm)) > t, t ∈ [0,π] then crs(lm) = 0. Putting the spatial (5)
and spectral (6) weights together the weight function is defined as

wrs(lm) = brs(lm)crs(lm).

To gain insight into the properties of (4) and the role of the regularization parameter λ2
we once again considering the case where X is taken to be orthonormal. Let γ = 1/(1 + λ2),
∑ j∈Nk(yi) wi j = 1, (note, the latter does not need to hold in general, we do so here for illustrative
purposes), αi,l = ∑ j∈Nk(yi) β j,lwi j and

b̂i,l = γβ̂i,l(OLS)+(1− γ)αi,l

then it can be shown that

β̂i,l(SPLASSO) = sgn(b̂i,l)
(
|b̂i,l |−

λ1

2
γ

)
+

. (7)

Looking at (7) we can see that it is quite similar to (3) except that now it the parameter γ con-
trols the tradeoff between the OLS estimate and a smoothly weighted average of its neighboring
pixels.

Similar approaches to solving the LASSO can also be applied to solving the SPLASSO; for
details see [9].

3. Conclusions

As HSI gains momentum in the biological and medical fields, and in particular as it begins to
see a transition from benchtop to bedside, it is critical that the algorithms being used to analyze
the resulting measurements be properly validated. To address these issues a collection of dye
mixture phantoms have been developed which we have shown here can act as an example of
a test bed for algorithm validation. In the context of hyperspectral medical imaging, as the
resulting estimated abundances will be used to make important decisions, accurate quantitative
identification of biochemical entities is critical. Here we have shown that the LASSO and in
particular the SPLASSO, are two candidates well suited to such a task.
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