Compact and robust method for full Stokes
spectropolarimetry

William Sparks,"* Thomas A. Germer,? John W. MacKenty,' and Frans Snik®
'Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

2National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
3Sterrewacht Leiden, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands

*Corresponding author: sparks @stsci.edu

Received 16 April 2012; revised 15 June 2012; accepted 19 June 2012;
posted 20 June 2012 (Doc. ID 166762); published 30 July 2012

We present an approach to spectropolarimetry that requires neither moving parts nor time dependent
modulation, and that offers the prospect of achieving high sensitivity. The technique applies equally well,
in principle, in the optical, UV, or IR. The concept, which is one of those generically known as channeled
polarimetry, is to encode the polarization information at each wavelength along the spatial dimension of a
two-dimensional data array using static, robust optical components. A single 2D data frame contains the
full polarization information and can be configured to measure either two or all of the Stokes polarization
parameters. By acquiring full polarimetric information in a single observation, we simplify polarimetry
of transient sources and in situations where the instrument and target are in relative motion. The
robustness and simplicity of the approach, coupled with its potential for high sensitivity, and applicability
over a wide wavelength range, is likely to prove useful for applications in challenging environments such

as space. © 2012 Optical Society of America
OCIS codes:  120.5410, 260.5430.

1. Introduction

The polarization of light provides a versatile suite of
remote sensing diagnostics. In astronomy, polariza-
tion is used to study the sun and solar system, stars,
dust, supernova remnants, and high-energy extraga-
lactic astrophysical phenomena [1]. The astrophysi-
cal mechanisms by which polarized light is produced
range from scattering phenomena to the interaction
between high-energy charged particles, and mag-
netized plasmas. Beyond astronomy, polarization is
used in remote sensing, medical diagnostics, defense,
biophysics, microscopy, and fundamental experimen-
tal physics, e.g., [2].

Accurate, precision polarimetric methods usually
require rapidly modulating, often fragile, parts and
are inherently monochromatic, e.g., photoelastic
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modulators (PEMs), ferroelectric liquid crystals, or
liquid crystal variable retarders (LCVRs) in tandem
with phase locked photomultipliers, or synchronized
charge shuffling on a charge-coupled device (CCD)
detector for area detection [1]. Lower accuracy tech-
niques typically require sequential measurements of
the target using rotating waveplates and polariza-
tion analyzers. Here we describe a method to encode
polarimetric information over a wide spectrum in a
single data frame, using static optics. This approach
alleviates errors introduced by the need to match se-
quentially acquired data, and eliminates the need
for fragile or rapid modulation, yet may be able to
accomplish high accuracy, precision measurements.
The methods, of course, have their own implicit sen-
sitivities and concerns, as we discuss below.

A particular interest of the authors, which serves
as a useful illustrative example, is the use of preci-
sion circular polarization spectroscopy as a remote
sensing biosignature and a potentially valuable tool
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in searches for biological processes elsewhere in the
universe. The circular polarization spectrum is sen-
sitive to the presence of molecular homochirality, a
strong biosignature, through the combined optical
activity and homochirality of biological molecules
[3,4]. Biologically induced degrees of circular polari-
zation have been found in the range 1072 to 10~ for a
variety of photosynthetic samples, with an important
correlation between the intensity spectrum and po-
larization spectrum [3]. Hence, precision full Stokes
polarimetry and wide spectral coverage are required.
Furthermore, the target scene and instrumentation
may be in rapid relative motion, compounding the
difficulties of acquiring the data using traditional
polarimetric techniques. A large number of photons
must be accumulated in a short period of time. The
techniques presented in this paper may provide a
means to make this type of polarization measure-
ment, in addition to providing a robust method
for acquiring less precise spectropolarimetry in a
straightforward fashion. Furthermore, the approach
is applicable across a wide wavelength range, and, as
well as in the visible, can work equally well in the
ultraviolet, where, for example, chiral electronic
signatures are generally strongest, to the infrared,
where polarimetry goes hand in hand with probes
into the geometry and physical characteristics of
dusty regions of the universe.

A variety of similar concepts are available under
the generic title of “channeled polarimetry” [2].
These typically fall into two classes: channeled ima-
ging polarimetry (CIP) and channeled spectropo-
larimetry (CS), following the terminology of [2]. To
simplify, the CS methods typically encode the polar-
ization information as an amplitude modulation di-
rectly on the spectrum, derived from a polarization
optic whose retardance is a function of wavelength.
As an example, the spectral modulation principle
for linear spectropolarimetry [5] can reach a preci-
sion of at least 2 x 10~* [6]. The CIP methods, by con-
trast, use a polarization optic whose retardance is
spatially varying, so that the polarization informa-
tion is encoded as a set of spatial fringes onto an im-
age [7]. These two approaches, as well as a number of
technical issues that arise in each case, are described
in some detail in [2]. Previous authors have used
multiorder retarders, birefringent wedges, pairs of
birefringent wedges, and Savart plates individually
or in combination for these two applications [5,7-16].
Typically, the polarization information is extracted
from the data using Fourier methods. Another
approach to single-shot imaging polarimetry and
spectropolarimetry is the wedged double Wollaston
device, which yields multiple images on a detector
with polarization axes at different angles and allows
retrieval of the Stokes parameters through combina-
tions of the images [17-19].

The approach explored in this paper is to disperse
the spectral and polarimetric information along two
orthogonal directions, a “spectral” dimension for
the spectroscopy and a “spatial” dimension for the
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polarimetry. The amplitude modulation of the encod-
ing of the polarization information is independent of
the choice of spectral resolution. The two aspects of
the measurement, the spectroscopy and the polari-
metry, may be optimized independently. The com-
plete spectropolarimetric information is encoded on
a single data frame, and may be derived using
straightforward analytical techniques.

Poisson photon counting statistics play a critical
role in astronomical polarimetry. To measure a po-
larization degree of 107", it is necessary to collect
(at least) 10?" photons. For example, to measure
p ~ 1074, it is necessary to accumulate 10® photons.
A typical astronomical CCD has a well-depth ~10°
electrons per pixel, requiring 10® pixel readouts. If
the data are needed in, say, 1 s in one pixel, this mul-
tireadout approach becomes prohibitive. A solution is
to spread the illumination across many pixels, as is
done for high signal-to-noise-ratio photometry with
the Hubble Space Telescope [20]. Making a virtue
of necessity, if we use optics that spread the light of
a spectrum perpendicular to the spectrum, then we
can exploit the width of the broadened spectrum to
encode the polarimetric data.

Sections 2 and 4 discuss a variety of configurations
that accomplish this goal. Section 2 starts with linear
polarization (equivalently any two of the Stokes polar-
ization parameters), followed by a discussion of our
analysis methods in Section 3. Configurations that
enable full Stokes spectropolarimetry are presented
in Section 4. Section 5 describes practical implemen-
tation, sensitivities, and an approach based on cali-
bration. Section 6 provides an example application.
Finally, we make some conclusions in Section 7.

The different embodiments of the underlying ap-
proach described in Sections 2 and 4 highlight differ-
ent aspects of the method. In the end, we anticipate
that the most useful realizations of the concept
will be the double wedge for linear polarimetry,
Subsection 2.B, and the double-double wedge for full
Stokes spectropolarimetry, Subsection 4.B.3. The
other subsections introduce new ideas incrementally,
while these two sections capture the final products
for the two types of polarimetry.

We use the conventional Stokes vector formalism
to quantify the polarization of light with S=
(I,Q,U,V), where I is the total intensity; @, U de-
scribe the linear polarization and V the circular
polarization. The normalized Stokes parameters
(g,u,v) = (Q,U,V)/I represent the fractional polar-
ization state. The degree of polarization is given by

p = /q? + u? + v?, and the direction of linear polar-
ization is given by y = % tan~1(u/q).

2. Concept for Linear Polarimetry

We envisage a spectrum of light broadened in a direc-
tion orthogonal to the dispersion direction and sensed
using a two-dimensional area array such as a CCD.
This broadening can be spread along a segment of a
conventional long-slit spectrograph, for example,
with the length of the entrance slit providing the



spatial dimension in the detected two-dimensional
spectrum. To introduce amplitude modulation along
the slit (x direction), we introduce a retardance gradi-
ent ¢(x) along x using a birefringent wedge (or
wedges) followed by a polarization analyzer, such as
a dichroic polarizer or polarizing prism (see Figs. 1
and 2). It would be possible to carry out the polariza-
tion analysis immediately in front of the detector ar-
ray, as in [7]. However, performing the polarization
analysis as early as possible in the optical path yields
better robustness against polarization introduced
by the instrumentation optics. Furthermore, the po-
larization optics can be more compact and easier to
characterize, since light from all wavelengths is
analyzed using the same optical elements. Hence,
we prefer to insert the polarization optics immedi-
ately adjacent to the spectrograph’s entrance slit,
and allow a long-slit spatial segment to project
through the instrument to become the detector ar-
ray’s spatial dimension.

A. Single Birefringent Wedge

To lay the groundwork, we initially consider just a
single birefringent wedge. The wedge thickness gra-
dient is oriented along the slit, while its fast axis is
oriented 45° with respect to the slit. The analyzer’s
transmission axis is parallel to the slit, though it
could alternatively be orthogonal to it. If we define
the Stokes @ direction as also being parallel to the
slit, then we can consider a uniformly illuminated
slit with the beam entering the slit, orthogonal to
the slit plane. If the incoming light is polarized with
its electric field along the slit (¢ = 1), at the hypothe-
tical tip of the wedge where the retardance is zero,

Birefringent wedge

Slit perpendicular
to page

the polarized light passes through the retarder
and analyzer without hindrance. Moving along the
slit, the retardance increases to the point where it
becomes quarter-wave, and the light is converted to
circularly polarized light after the retarder, and half
of the light transmits through the analyzer. As x and
the retardance increase together, it reaches the point
where there is half-wave retardance. At that point
the polarization is rotated 90° after the retarder,
and none of the light transmits through the analyzer.
At the same distance further along the slit, the retar-
dance is full-wave, the light is completely trans-
mitted, and the cycle is complete. Note that for
typical birefringent materials, the spatial distance
x corresponding to one wavelength of retardance will
depend on the wavelength. In the absence of disper-
sion, the spatial modulation frequency is o 1/4.
Circularly polarized light (v =1) is half trans-
mitted at zero retardance (circularly polarized light
passing through the analyzer). When the retardance
reaches quarter-wave, the light becomes linearly
polarized along the slit direction and all of the light
passes the analyzer. When the retardance is half-
wave, the sign of the circular polarization is flipped
(v = -1), and again, half of the light is transmitted
through the analyzer. Hence, the modulation for v =
1 is similar to the modulation due to ¢ = 1, but out of
phase by a distance corresponding to one quarter
wave of retardance. Light polarized linearly at 45°
(u = 1),1.e., along the retarder fast axis, is unaffected
by the variable retardance along the slit. However, if
we precede the birefringent wedge by an achromatic
(or superachromatic) quarter-wave retarder, with
fast axis along the slit, then the circular polarization
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(Color online) Illustration of the optical bench layout. Light enters a spatially elongated slit, passes through a birefringent wedge

or wedges and a polarization analyzer, and then enters a conventional long-slit spectrograph. A quarter-wave retarder (not shown) may be

inserted before the wedge.
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Fig. 2. (Color online) Concept—the polarization optics imprint
an amplitude modulation on the dimension orthogonal to the dis-
persion direction of the spectrograph. Typically, this direction
corresponds to the spatial dimension along the slit.

parameter V is interchanged with U [5]. Now V is
unaffected by the variable retardance and causes no
spatial modulation, while U causes spatial ampli-
tude modulation, a quarter wave out of phase from
Q. If the input Stokes vectoris (I, @, U, V), the output
intensity I in the spatial direction is

I =0.5(I + Q cos ¢ + U sin ¢). 1

The retardance ¢ maps onto the distance x along the
slit according to ¢ = 2zx(x/X), where the distance

corresponding to a single wave of retardance change
is X = A/(|n, — n.|tan &)}, & is the wedge angle, and
n, and n, are the refractive indices for the o and
e-beams, respectively. If the circular polarization
V is desired rather than U, then the quarter-wave
retarder can be omitted.

If a beam splitting polarizing prism (e.g., a
Wollaston prism) is used as the polarization analy-
zer, then two versions of the spectra are obtained
on the detector. The intensity I, of the orthogonally
polarized beam is

I, =0.5(I-Q cos ¢ —U sin ¢). (2)

The difference of Egs. (1) and (2), divided by their
sum, assuming any transmission differences have
been removed, gives

I’:(I”—IJ_)/(I”+IJ_)=qcos¢+u sin ¢. 3)

Table 1 summarizes this and other algebraic expres-
sions for the spatial modulation in subsequent con-
figurations discussed below. An alternative way to
express Eqgs. (1)—(3) is

I} = 0.5I(1 4 p cos(¢ - 2y)),
I, =0.5I(1 -p cos(¢p — 2y)),
I' = p cos(¢ — 2p), 4)

where the position angle y of linear polarization is
given by y = 1 tan™!(U/Q). From Eq. (4), it is appar-
ent that the spatially modulated profile has an
amplitude of modulation equal to the degree of polar-
ization, and a (spatial) phase zero point that reveals
the angle of polarization.

It is important in using Egs. (1) and (2) that there
not be any significant intensity variations along the
slit on length scales of order X. However, in the “dual
beam” version, Eq. (3), the total intensity I along the
slit has been eliminated [5]. This potentially offers a
means to retain some spatial resolution along the
slit. For example, the image of a star can have very
large intensity changes along a spectrograph slit,
though its polarization is unchanged. Provided the

Table 1. Coefficients of Stokes Parameters for Different Wedge Configurations
Wedges® Beam i, qc U Ve
quw single 0.5 0.5 cos ¢ 0.5 sin ¢
dual cos ¢ sin ¢
quuw' single 0.5 0.5 cos 2¢ 0.5 sin 2¢
dual cos 2¢ sin 2¢
wW single 0.5 0.5(cos ¢ cos 20 + sin ¢ sin 2¢ sin 20) 0.5 cos 2¢ sin 20 0.5(cos ¢ sin 2¢ sin 20 — sin ¢ cos 20)
dual cos ¢ cos 20 + sin ¢ sin 2¢ sin 20 cos 2¢ sin 20 cos ¢ sin 2¢ sin 20 — sin ¢ cos 26
wW' single 0.5 0.5(cos ¢ cos 20 + sin ¢ sin({ — 2¢) sin 20) 0.5 cos({ — 2¢) sin 20 0.5(cos ¢ sin({ — 2¢) sin 20 — sin ¢ cos 26)
dual cos ¢ cos 20 + sin ¢ sin(¢ — 2¢) sin 260 cos({ — 2¢) sin 20 cos ¢ sin(¢ — 2¢) sin 26 — sin ¢ cos 20
ww'WW'  single 0.5 0.5(cos 2¢ cos 20 + sin 2¢ sin 4¢ sin 20) 0.5 cos 4¢ sin 20 0.5(cos 2¢ sin 4¢ sin 26 — sin 2¢ cos 26)
dual cos 2¢ cos 260 + sin 2¢ sin 4¢ sin 20 cos 4¢ sin 26 cos 2¢) sin 4¢) sin 20 — sin 2¢ cos 20

“Notation for wedge configurations: ¢ denotes optional quarter-wave retarder, w denotes thickness gradient ¢,, = 2zx/X, and W denotes
twice the thickness gradient ¢y = 47zx/X. A primed symbol denotes antiparallel wedge direction relative to unprimed. Wedges w have fast
axis at 45° to the slit, w' at —45°; wedges W have fast axis at 0°, except in combination WW’, when they are at 0° and 90°, respectively.
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extent of the image is sufficient to encode the sine
and cosine terms in Eq. (3), we may derive its polar-
ization even in the presence of quite strong intensity
changes. In Egs. (1) and (2), intrinsic intensity
changes would be mixed with amplitude modulation
produced by polarization. Hence, care needs to be
taken in matching the spatial extent of the instru-
mental point spread function to the projected scale
of the retardance variation. Use of Eq. (3) is more
robust against this constraint.

In practice, wedge components available off the
shelf are relatively thick. This introduces a multior-
der retarder effect, exploited in the spectropolari-
meter for planetary exploration (SPEX) concept [5].
A thick birefringent material, followed by analysis
optics, such as those employed here, for a single loca-
tion on the slit, yields spectral modulation, used
to measure the polarization in [5]. Hence, using a sin-
gle wedge, the resulting fringes from polarized light
have a relatively pronounced “slope” because the re-
tardance, implicitly, is varying as a function of both
wavelength and spatial direction. From above, the
complete expression for ¢ is ¢ = 2zx(n, —n,)tan &/A.
Therefore a constant phase ¢, which defines the
appearance of the fringes on the detector, occurs
for x = [¢p/(2xn(n, — n,) tan £)]4. The thickness of the
wedge on the narrow edge effectively adds a constant
to ¢ and hence increases the slope of x versus A.

In principle, analysis methods applied to the ortho-
gonal dimension, discussed in Section 4, can remove
this spectral modulation. The slope also translates to
a constraint on the spectral resolution, as it must be
sufficient to separate the fringes.

B. Double Wedge

An alternative strategy to alleviate the spectral reso-
lution constraint, and at the same time simplify and
render the analysis more robust, is to compound the
first wedge with an identical second wedge reversed
in direction, with its fast axis orthogonal to the fast
axis of the first wedge. The resulting optic, also used
in Babinet—Soleil compensators, is convenient to
work with (it is now a rectangular cuboid; see Fig. 3),
and the reversed signs of birefringence conspire to
yield a zero retardance at the point where the two
retardances are equal, expected to be close to the cen-
ter of the optic. This is the configuration discussed by
[2,7] in the context of imaging polarimetry. In ima-
ging polarimetry, spectral modulation across the
bandpass would be highly problematic, and this con-
figuration goes some way towards eliminating it.
Reference [2] discusses other ways to mitigate bire-
fringence dispersion. When applied to spectropolari-
metry, as here, the effect is to remove the slope from
the fringes and cause them to be approximately par-
allel in the spectral dimension, with spacing conver-
gence to the blue, as a given amount of retardance
corresponds to a greater number of wavelengths.
Using Mueller matrix algebra, it can be shown that
the amplitude modulated profiles for this configura-
tion are, for the single beam, with a quarter-wave

Fig. 3. (Color online) Illustration of the compound birefringent
wedges. A single compound optic may be used for linear polarime-
try (left) and double (both) for full Stokes. The fast axes run at
+45° in the left optic and horizontal and vertical in the right optic,
and the slit direction is horizontal or vertical.

plate used, as above, to impose a sensitivity to Stokes
U rather than Stokes V:

I = 0.5(I 4+ Q cos 2¢ + U sin 2¢) (5)
and for the dual beam,
I' = q cos 2¢p + u sin 2¢. (6)

The essential characteristics of the compound wedge
profiles are the same as the single wedge, though the
spatial frequency is doubled and the multiorder re-
tarder effect with wavelength is removed, making
the fringes essentially parallel to the dispersion di-
rection. The double wedge also yields a quasi-zero or-
der retarder, which has much smaller temperature
dependence than a single wedge.

Figure 4 shows simulations of data frames ob-
tained with 100% polarized light for each of the con-
figurations discussed here, for @, U, and V polarized
light separately. To illustrate the concepts of this sec-
tion, Fig. 5 shows actual long-slit spectra obtained
using one and two quartz birefringent wedges with
a 3° wedge angle, installed in a simple slit spectro-
graph. We inserted the quartz wedges immediately
after the entrance slit of the spectrograph, together
with a quarter-wave plate and analyzer as discussed.
Figure 5 shows fringes obtained when illuminated by
linearly polarized light for both single wedge and
double wedge. These correspond to configurations w
and ww' defined in Table 1, though the wedges are
not compounded in this test. The fringes are clearly
visible when polarized light enters the spectrograph,
and are not visible when unpolarized light is used. A
more formal laboratory validation follows below in
Section 6.
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U/l =100%

A
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Fig.4. Example theoretical data frames for each of the configura-
tions discussed in the text when viewed with 100% polarized light.
Each panel has x running horizontally and wavelength vertically,
increasing up. Parameters correspond to 2 mm in x of a 3° quartz
wedge set, running from 450 to 750 nm. Top row shows 100%
Stokes @, middle row 100% Stokes U, and bottom row 100% Stokes
V. Left to right, in the notation of Tables 1-3, the configurations
are qw, quww', wW, wW’', and ww'WW’. Note that if the quarter-
wave retarder was omitted in the first two columns, U and V,
which show no sensitivity with the quarter-wave retarder, would
be interchanged. For the first two columns, the analyzer angle is
set at 0° and for the remaining three at 45° (see text).

3. Data Analysis Methods

In Egs. (1)-(3), (5), and (6), the Stokes parameters are
coefficients of orthogonal trigonometric functions.
While Fourier methods could be used to retrieve these
coefficients, we prefer a linear least-squares solution.
This enables us to generate formal error estimates,
in addition to providing the Stokes coefficients in a
straightforward fashion. With a least-squares ap-
proach, one can also take the dispersion of birefrin-
gence into account in a more straightforward way
than with Fourier methods. The general methods
are described in Appendix A. If the spatial profile
at a fixed wavelength is given by

Iobs = Ilc + Qqc + ch + ch (7

for a single beam, or
I'=Uy-1)/dy+1,))=q-q.+u-u.+v-v. (8
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Fig. 5. (Color online) Actual spectra obtained with a preliminary
test optical bench: (upper) a spectrum obtained with unpolarized
light, (center) a spectrum with one quartz birefringent wedge and
100% linearly polarized light, and (lower) a spectrum obtained
with two quartz birefringent wedges reversed as in the manner
of the compound optics with 100% linearly polarized light.

for the dual beam formalism, then the terms i, q., u.,
and v, are trigonometric functions whose coefficients
are the Stokes parameters we seek, i.e., Egs. (1)—(3),
(5), (6), and others below. Since these trigonometric
functions take on a set of known values at each x;
along the profile, standard methods can be applied
to solve for their coefficients given an observed inten-
sity profile I (x;) or I'(x;), as described in Appendix
A. The solution depends on the inverse of the curva-
ture matrix, which is derived from products of the
functions i., q., u., and v,. The solution is the inverse
of the curvature matrix, multiplied by a vector de-
rived from the observed profile and the same set of
functions. The covariance matrix is also the inverse
of the curvature matrix, and uncertainties on the
Stokes parameters are taken as the square root of
the diagonal terms of that matrix.

Analytic expressions can be derived for the terms
of the curvature matrix and its inverse. Replacing
the summations by integrals over complete periods,
it may be seen that in a formal mathematical sense,
the Stokes parameters are independent because the
trigonometric functions are orthogonal for most of
the methods described. That is, the integrals of their
products become zero and the inverse of the curva-
ture matrix is diagonal. Hence there is no formal
covariance between the terms. In an instrumental
realization this should translate to no formal cross-
talk between the Stokes parameters. In the cases
where there are off-diagonal terms in the curvature
matrix inverse, we discuss this in the text.



The description so far is idealized, however. In gen-
eral, summations are not over complete periods, and
departures of the wedge characteristics from those
assumed, e.g., the exact value of the slope, and
sampling errors can all yield off-diagonal terms.
We discuss methods to deal with such issues in
Section 5. These terms can generally be included
in the analytic analysis, although the equations
can become complicated depending on which toler-
ances are explored. An example can be found at the
end of Subsection 4.B.3.

It will also be necessary to calibrate a given sys-
tem. The goal of calibration can be either to deter-
mine the (hopefully) small correction factors to the
analytic formulae, or else a completely empirical
calibration approach can be adopted, as discussed in
Subsection 5.B.

To within an order of magnitude, we see in the
analytic solutions, presented in Appendix A, the ex-
pected 1/,/N, dependence for the sensitivity to
which polarization can be measured, where N, is
the number of detected photons.

4. Concept for Full Stokes Polarimetry

The use of precision circular spectropolarimetry as a
biosignature [3] requires accurate, sensitive mea-
surement of the circular polarization spectrum. It is
strongly preferred that all Stokes parameters be
measured in order to better understand the physics
involved and to guard against instrumental cross-
talk, where one Stokes parameter is measured incor-
rectly, through instrumental effects, as another. Here,
we describe two options to acquire full Stokes polari-
metry data. The first, briefly described, is a brute force
approach, where we simply place two versions of the
configurations described above next to one another.
The second approach is to use an additional wedge
or compound wedge with different fast axes and
wedge angles to fully encode all Stokes parameters
on a single data frame using a single optical bench.

A. Two Spectrograph Slits

In Subsections 2.A and 2.B, Egs. (1)-(6), we showed
how to encode two Stokes parameters simultaneously.
By dispensing with the quarter-wave retarder in
those configurations, e.g., using a single wedge single
beam, we have

Ig =0.5(I+ @ cos ¢—V sin ¢).

If a second device is constructed with its wedge fast
axis horizontal, 0°, and analyzer at 45° to the horizon-
tal, then we have

I; =05+ U cos ¢+ V sin ¢).

These two configurations can be processed indepen-
dently, and typically |V| < |Q|, |U|. Following the
formalism of Eq. (4), the influence of a component
of circular polarization v is to shift the phases of
the spatially modulated profiles by amounts, in pixel

space, of 6x = X tan™'(v/q)/(2x) for the first device
and éx = X tan'(v/u)/(2z) for the second device,
where X is the spatial period corresponding to one
wavelength of retardance. For small v, the spatial
shift of the profile is therefore 6x = Xv/2nq and
Sx =~ Xv/2nu, respectively. For example, if the source
is 8% polarized, ¢ = 0.03, if v = 1073 (0.1% circularly
polarized), and if X = 10 pixels, the spatial shift is
0.05 pixels. The accuracy to which the spatial shift
can be determined depends in principle on the total
number of photons rather than the value of X, pro-
vided there are sufficient points within X to properly
sample the profile (see Appendix A). Systematic in-
strumental effects are also likely to enter; however,
measurement to a precision of better than 0.01 pixels
can be achieved in precision astrometry, and these
accuracies ought to be feasible.

B. Double Wedges

A concise solution to acquiring full Stokes spectropo-
larimetry may be obtained by using a more complex
group of birefringent wedges. Our technique is ana-
logous to the dual PEM polarimeters that encode the
different Stokes parameters using different carrier
frequencies. If we follow the first wedge or compound
wedge by a second wedge that has twice the thick-
ness gradient, and a fast axis oriented 45° to the first
one, then the resultant intensity profiles encode the
full Stokes information. The trigonometric functions
involved are more complex than the simple sine and
cosines of above, but they are relatively straightfor-
ward and still orthogonal. This configuration has the
advantage of measuring the full Stokes parameters
completely and simultaneously for a source, without
minor viewing perspective differences in the double
slit option (Subsection 4.A) and without needing
to combine measurements from two essentially
independent polarimeters.

We describe three versions of this concept, though
it is clear that a variety of permutations and options
are available under the umbrella of this general
approach. The first two versions, to illustrate the
principles, are to place a single wedge with twice the
thickness gradient parallel and antiparallel, respec-
tively, after a single wedge oriented as for the linear
polarimetry application above. We conclude with a
discussion of a double compound wedge, in which
the second pair has twice the thickness gradient of
the first. No quarter-wave retarder is required. An
example of a different permutation would be to re-
verse these two compound wedge pairs, which would
result in a potentially more convenient choice of
analyzer angle following the wedges. We defer dis-
cussion of such an option to a later paper and focus
here on providing a proof of concept and demonstra-
tion of the approach. The naming convention used in
the following subsection headings is described in the
footnote to Table 1, which summarizes the terms in
the equations for the amplitude modulation. Table 2
presents formulae for the uncertainties on the nor-
malized Stokes parameters derived using the linear
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Table 2. Error Estimates for Normalized Stokes Parameters for Different Wedge Configurations

Wedges Beam o(q) o(u) o(v)
quw single (2/No)V? (2/N o) V2
dual (2/Nio) V2 (2/N )2
quuw' single (2/Nio) V2 (2/N )2
dual (2/Niyop) V2 (2/Nyop) V2
wW single 2(2/N1)V2(3 + cos 46 + 2 sin 40)712 (2/N )2/ sin 26| 2(2/Not)V2(3 + cos 40 — 2 sin 40)~1/2
dual 2(2/Not)V2(3 + cos 40 + 2 sin 40)~12 (2/Nop)V2/| sin 26) 2(2/N 1) V2(3 + cos 46 — 2 sin 46)~1/2
a . cos cos ¢ sin 172 . cos 460-2 cos { sin 172
wW single 4/ N2 (oo a2 oo coin ) (2/N )"/ | sin 20 /N R (G2 oo g sin i)
dual VN (ietia) (2/ N/ sin 20 N (i)
ww WW’ single 2(2/N1)V2(3 + cos 46 + 2 sin 40)~12 (2/N )2/ sin 26| 2(2/Not)V2(3 + cos 40 — 2 sin 40)~1/2
dual 2(2/Not)V2(8 + cos 46 + 2 sin 46)~12 (2/N o) V2/| sin 26| 2(2/N o) V2(3 + cos 46 — 2 sin 46)~1/2

least-squares methods of Section 3 and Appendix A.
Table 3 gives the error estimates for the unnorma-
lized Stokes parameters. Throughout, we assume
standard (1o), coverage factor £ = 1, uncertainties.

1. Two Individual Parallel Wedges: wW

In this version, we assume the first wedge has a bi-
refringence gradient, described by ¢(x), and fast axis
at 45° to the horizontal, as above. We assume the sec-
ond wedge has twice the retardance 2¢(x) at location
x and has fast axis aligned with the slit, 0°. Addition-
ally, it is necessary to allow the analyzer angle to be
set at angles other than 0°, in order not to lose depen-
dence to the Stokes U parameter. We define the ad-
ditional variable 0 as the angle of the transmission
axis of the analyzer with respect to the horizontal
or slit direction. In the dual beam configuration,
the transmission axis of the second polarized beam
is 6 + 90°. We retain the labelling I and I, for these
two beams, respectively. In practice, there are likely
to be constant offsets and a gradient of the second
wedge not exactly twice that of the first wedge. These
terms can generally be included in the analytic anal-
ysis of Section 3, but for clarity in introducing the
concepts, we set them aside for now. It can be shown
that the amplitude modulated profiles for this config-
uration are, for the single beam,

I = 0.5 + Q(cos ¢ cos 260 + sin ¢ sin 2¢ sin 26)
+ U cos 2¢ sin 20
+ V(cos ¢ sin 2¢ sin 20 — sin ¢ cos 20)), 9)

I, =0.5( - Q(cos ¢ cos 26 + sin ¢ sin 2¢ sin 20)
— U cos 2¢ sin 260
—V(cos ¢ sin 2¢ sin 26 — sin ¢ cos 26)), (10)

and hence, for the dual beam,

I' = q(cos ¢ cos 20 + sin ¢ sin 2¢ sin 20)
+ u cos 2¢ sin 260
+ v(cos ¢ sin 2¢ sin 20 —sin ¢ cos 20). (11)

We see that if & = 0°, then the coefficient of U is
zero and hence we cannot derive the value of U.
There is no particular reason to have the analyzer
at such an angle. For example, in Fig. 4 we use 0 =
45° for the double wedge configurations. However,
the derived variance for each of the Stokes para-
meters is a function of §. Depending on the applica-
tion, it may be helpful to select § to minimize the
variance of the estimate for Stokes V, since Stokes
V is usually orders of magnitude smaller than the
linear Stokes parameters. Below, in Subsection 4.B.3,
we show an example.

2. Two Individual Antiparallel Wedges: wW'’

Ifthe second wedge is placed in the opposite direction
to the first, so as to minimize the geometric angles of
the two wedges together, we have phase gradients of
¢(x) and (¢ — 2¢(x)), respectively, for the two wedges,
where { is a constant, presumed unknown. It can be

Table 3. Error Estimates for Unnormalized Stokes Parameters for Different Wedge Configurations

Weges Beam o(I) o(®) o(U) a(V)

quw single 2NY¥2/nx 22N o) V2/nx 2(2N o) V2
dual

quw  single 2N{2/nx 2(2N )2/ 2(2N ) */nx
dual

wW single 2N{2/nx  4(2Nio/(3 + cos 40 + 2 sin 40))V2/nx  2(2No) Y2/ (nx| sin 26])  4(2Ne/(3 + cos 460 — 2 sin 460))V2/nx
dual

d . cos cos ¢ sin v2 . cos 46-2 cos { sin 2
wW Zlnglle 2Nt10/t2/nx % (Ntut 3IE+124§£249+5<COS ;;) 2(2N )2/ (nx| sin 26)) % (Nm %)
ual

ww'WW' single 2NY2/nx  4(2Nyy/ (3 + cos 40 + 2 sin 40))V2/nx  2(2N o) V2/ (nx| sin 20|)  4(2N,/ (3 + cos 40 — 2 sin 49))V2/nx

dual
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shown that the amplitude modulated profiles for this
configuration are, for the single beam,
I = 0.5(I + Q(cos ¢ cos 20 + sin ¢ sin({ - 2¢) sin 26)
+ U cos(¢ —2¢) sin 20
+ V(cos ¢ sin(¢ — 2¢) sin 26 — sin ¢ cos 260)), (12)
I, =0.5( - Q(cos ¢ cos 20 + sin ¢ sin({ — 2¢) sin 20)
—U cos({ —2¢) sin 260

—V(cos ¢ sin({ — 2¢) sin 260 — sin ¢ cos 20)), (13)
and for the dual beam
I' = q cos ¢ cos 20 + sin ¢ sin({ — 2¢) sin 20)

—u cos({ — 2¢) sin 260

—v(cos ¢ sin(¢ — 2¢) sin 26 —sin ¢ cos 26). (14)

In this case, where the second wedge is configured
to run antiparallel to the first one, there is an off-
diagonal term in the inverse curvature matrix
B! (defined in Appendix A) containing the term
(sin ¢ sin 40). (The same term appears if the wedges
run parallel, but with a phase offset.) The inverse of
the curvature matrix is the crucial mathematical en-
tity in both solving for the Stokes parameters and
estimating their variances. If the off-diagonal terms
are zero, then the trigonometric functions are ortho-
gonal, and there are no formal dependencies of one
Stokes parameter on the others or covariances be-
tween them. If there are off-diagonal terms, then
there may be such dependencies and covariances.

The off-diagonal term can be set to zero if the
analyzer is placed at an angle 0 such that sin 46 is
zero. Since the U coefficient also includes terms
involving sin 26, which we do not want to be zero,
the desired analyzer angle to eliminate cross-
dependencies is § = 45°. There may be a trade choice
based on the optimization required, between making
the off-diagonal terms of the inverse curvature ma-
trix zero and minimizing the variance of a particular
Stokes parameter, which can occur at a different
analyzer angle.

3. Two Compound Wedge Pairs: ww' WW'

By analogy with the compound double wedge
in the linear polarimetry example, described in
Subsection 2.B, it is possible to use two compound
double wedges to provide zero retardance in the cen-
ter of the optic. The first wedge pair has one gradient,
as for the optic used in Subsection 2.B above (ww’ in
the notation of Table 1). Each element of the second
wedge pair has double the thickness gradient. The
first has its fast axis along the slit, while the second
has its fast axis orthogonal to it, so that the retar-
dances are &-2¢(x) and &+ 2¢(x), respectively.
Again, the compound device with four wedges is

rectangular in shape. It can be shown that the ampli-
tude modulated profiles for this configuration are, for
the single beam,
I = 0.5(I + Q(cos 2¢ cos 26 + sin 2¢ sin 4¢ sin 20)
+ U cos 4¢ sin 260
+ V(cos 2¢ sin 2¢ sin 26 — sin 2¢ cos 20)), (15)

I, =0.5( - Q(cos 2¢ cos 26 + sin 2¢ sin 4¢ sin 26)
— U cos 4¢ sin 260
— V(cos 2¢ sin 2¢ sin 20 — sin 2¢ cos 26)), (16)

and for the dual beam

I' = q(cos 2¢) cos 26 + sin 2¢ sin 4¢ sin 20)
—u cos 4¢ sin 20
—v(cos 2¢ sin 4¢ sin 20 — sin 2¢ cos 260). (17)

These functions are orthogonal to one another.
Figure 6 shows the derived variance as a function of
the analyzer angle, with analytic formulae presented
in Table 2. The minimum variance for Stokes V,
which typically has the smallest value of the Stokes
parameters, is given at analyzer angle with tan 460 =
-2, which implies 6 = 74.1°. The minimum variance
for Stokes @ is at tan 40 = +2, i.e., 8 = 15.9°, and
that for U is at 0 = 45°. The value of the minimum
variance is, for ¢ and v, o(q,v) = 1.24//N,, which

0.0004[ 7 T T T T T T T T T T T T T T

0.0003}

0.0002f

Uncertainty on Stokes parameter

0.0001 -_ ................................................................................. _.-
ocooool . 1. ., . | o 1., . 1l 4 v 4 1
0 50 100 150
Analyzer angle 8
Fig. 6. (Color online) The uncertainties on normalized Stokes

parameters for double wedge pair configuration, Subsection 4.B.3.
Blue is Stokes g, green is u, and red is v. The vertical lines indicate
the positions of the minima for ¢ and v, the horizontal lines indi-
cates 1//Ny (dotted), and the analytically determined minimum
1.24x higher (dashed).
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represents the photon counting limit for such a
device and which is quite close to the canonical
]-/\/Ntot value.

If the centers of the two compound wedges are
misaligned by a spatial distance s, then there is an
additional term in the above equations, which we
characterize by a phase offset in the second wedge
pair. Thatis, their retardances are given by £ — 2¢(x) —
a and & + 2¢(x) + a, respectively, where a = 4rs/X.
In this case, the amplitude modulation expressions
are

I = 0.5(I + Q(cos 2¢ cos 20
+ sin 2¢ sin(2a + 4¢) sin 20)
+ U cos(2a + 4¢) sin 260
+ V(cos 2¢ sin(2a + 4¢) sin 260
— sin 2¢ cos 20)), (18)

I, =0.5( — Q(cos 2¢ cos 20
+ sin 2¢ sin(2a + 4¢) sin 20)
— U cos(2a + 4¢) sin 20
—V(cos 2¢ sin(2a + 4¢) sin 20
—sin 2¢ cos 26)), 19)

and for the dual beam

I' = q(cos 2¢ cos 26 + sin 2¢ sin(2a + 4¢) sin 26)
—u cos(2a + 4¢) sin 26
—v(cos 2¢ sin(2a + 4¢) sin 26 — sin 2¢ cos 26). (20)

Following through the least-squares analysis, it
can be seen that the miscentering introduces an
off-diagonal term in the inverse of the curvature
matrix, correlating the errors in @ and V, and again
involving sin 46. Hence, this off-diagonal term can be
set to zero by setting 8 = 45°. If this is not done, or
the tolerances do not allow it, then the presence of a
covariance term in and of itself does not bias the
result. The random errors on @ correlate with the
errors on V. The actual values of @ and V do not cor-
relate, though, provided that the covariance term is
known. In principle the covariance term does contri-
bute to the overall error budget, although assuming
independence yields a good description of the actual
observed variance in Monte Carlo simulations,
shown in Fig. 7. In the case where the term is pre-
sent, but known, we still correctly derive the Stokes
parameters without cross-talk.

Cross-talk occurs if the covariance is not charac-
terized correctly. For the example here of two
miscentered wedge pairs, if we characterize the mis-
centering by a/X, the ratio of the off-center distance
to the spatial distance corresponding to one wave-
length in the first wedge pair, then the true value
of Stokes v, say, iS Ugue = $Y1[B gy + syalB ous
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Fig. 7. (Color online) The uncertainties on normalized Stokes
parameters for double wedge pair configuration, Subsection 4.B.3,
with miscentering of order 1/32x the spatial distance of one
wavelength of retardance. Blue is Stokes g, green is u, and red
is v. The vertical lines indicate the positions of the analyzer angles
that have no formal covariance, which is independent of the mis-
centering. Smooth lines through the simulated data are the ana-
lytic solutions ignoring covariance terms, while the plus signs are
the results of Monte Carlo simulations. The horizontal lines are as
in the previous figure.

following the notation of Appendix A. If we incor-
rectly derive v.y = sy4[B~],,, ignoring the cross-
term, then Uyye = Uest = Syl[B_l]qv = Q[B_l U/[B_l]qq'
A formal tolerance analysis can be carried out, and
to completely ignore this term, while restricting
the cross-talk <1073, requires 6 to be within <0.1°
of 45° if the miscentering is such as to maximize
the cross-talk. If needed, there are two options to re-
lax this constraint within the context of an analytical
approach: (i) do not ignore the term and (ii) increase
the spatial scale X to ease the requirement on s/X.
Empirical calibration approaches are also possible,
as discussed below.

5. Practical Implementation, Requirements,
Sensitivities, and Calibration

Wedge retarders, such as those discussed here, may
be custom manufactured. However, testable quality
versions are available off the shelf under the guise
of depolarizers or scramblers. Quartz or calcite
provide plausible birefringent materials. The ordin-
ary and extraordinary refractive indices and birefrin-
gences are, for quartz, n, = 1.5384, n, = 1.5473,
n, —n, = 0.0089, respectively, and for calcite n, =
1.647, n, = 1.480, n, — n, = —-0.167. For example, if
the retarders have a wedge gradient of 3°, then at
500 nm, the retardance increases by one wavelength
over a distance X of =1.1 mm for quartz and 0.06 mm
for calcite. If these scales are projected 1:1 onto
a detector with 5 um pixels, then these values



correspond to X =~ 214 and 11 pixels for quartz and
calcite, respectively.

A. An Empirical Calibration Approach

In a similar fashion to the analysis described in
Subsection 4.B.3, the least-square methods lend
themselves to formal tolerance analyses, as well as
parameter estimation. However, a comprehensive
analysis of all plausibly relevant parameters is im-
practical and premature. Instead, we consider an al-
ternative approach, which is purely empirical. For a
very general set of optical component characteristics,
the generic versions of the amplitude modulated in-
tensity profile, Egs. (7) and (8), are valid, even if the
exact forms of the functions i, q,, u., and v, are not
known. If we present the system in turn with unpo-
larized light, and then 100% polarized light oriented
in the @ direction and the U direction, and, finally,
with 100% circularly polarized light, then the empiri-
cal response gives the functions i., ¢., u., and v,.
These empirically derived functions can then be used
to numerically derive the curvature matrix and its
inverse. As in Subsection 4.B.3, the presence of cov-
ariance terms in the matrices by itself does not inva-
lidate the approach, because, in principle, with a
high quality set of calibration observations (which
would appear much like the examples shown in
Fig. 4), they are implicitly known. It is only when
the terms are not correctly accounted for that pro-
blems may arise, that is, if the calibration sources
are not of high enough quality. It is also likely that
the variance will be a function of analyzer angle, as
above. Hence empirical versions of Fig. 7 may be use-
ful to explore trade space.

We expect, in general, the empirical calibration
method to be a very important approach, potentially
offering the best strategy for deriving the Stokes pa-
rameters accurately. However, it remains to be seen to
what degree the required tolerances, or calibration
stability, limit the performance of these devices in
practice. Our intent is to develop additional labora-
tory experience to understand these issues.

B. Sensitivities

Component birefringence will depend on tempera-
ture. This can be mitigated by (i) stabilizing the
temperature, (ii) continuous calibration, and (iii) com-
pounding carefully chosen materials. To obtain an
idea of the order of magnitude of the temperature
sensitivity, we use the temperature dependent for-
mula for the birefringence B = n, — n, of quartz, given
by [21], which yields (dB/dT)/B ~ 1.2 x 107 for the
range T' = 0°C to 25 °C. Since the wedge should keep
its shape under expansion or contraction, only the
birefringence term matters and imprints itself as
an identical fractional change ¢ = 1.2 x 10~4dT on
the spatial wavelength X. It can be shown that the re-
sulting fractional change in g for the dual beam single
wedge example is one-half the fractional change in B,
for an input beam consisting of purely g, and the spur-
ious cross-talk u’ into the other Stokes parameter u is

u' = neq. Hence a 1 °C temperature change would
result in a spurious polarization (cross-talk) ofu’ = 3 x
1075 for a 10% linearly polarized source.

The presence of two refractive indices in a wedge-
shaped optic will cause a prismatic separation of the
orthogonally polarized beams. The magnitude of this
effect will depend on the details of the optical system
designed. In our laboratory testing, this issue was
not significant.

If the beam incident on a single wedge has signifi-
cant convergence, then the retardance seen by light
at different angles differs by approximately 1/ cos ¢,
where ¢ is the angle to the normal. For this re-
tardance difference to be less than 1/10, say, the
f-number of the beam needs to be slower than /9
for a 1 mm thickness quartz and f/40 for 1 mm thick-
ness calcite. The convergence requirement scales as
the inverse square root of the thickness.

We carried out a number of Monte Carlo simula-
tions and found that the retrieved solutions are close
to the theoretical expressions given in the tables pro-
vided that (i) at least one full period is sampled and
(i1) there are sufficient sampling points within the
full cycle to properly sample the highest frequency
component.

In cases where the fringes have significant slope,
as described above, it will be necessary for the spec-
tral resolution to be sufficient to separate the fringes.
If we require the retardance change A¢/(27) < 0.1,
this is (d¢/01)AA < 0.1, where ¢ = 2zL(n, —n,)/A,
and L is the thickness. Hence the required spectral
resolution is R = £; = 10L(n, — n,)/A. For 2 mm thick
quartz, this is R > 360 and for 1 mm -calcite,
R > 3330. For the compounded wedge optics that
straighten the fringes, this constraint is relaxed to
the point of being essentially irrelevant.

6. Laboratory Validation

We established an optical test bench to allow us to
provide an empirical proof of concept for the ap-
proach presented in this paper, and to demonstrate
that the device functions as a polarimeter. The opti-
cal test bench is shown and illustrated in Fig. 8.

Light sources, either halogen continuum white
light, or a variety of line lamps for wavelength cali-
bration, illuminated an integrating sphere’s en-
trance port. The light emerging from a separate
port at right angles to the first is expected to be un-
polarized. However, to ensure an unpolarized source
and to provide a uniform location for our measure-
ments, the emergent light was directed to fall onto
an opal diffusing screen. Following the opal screen,
and located close to the screen, the light optionally
encountered polarizing elements (@, U, or V) for
calibration, samples to measure the polarized trans-
mission spectrum, or nothing, to provide an intensity
reference spectrum.

The spectrograph consisted of a slit, a collimator, a
transmission grating, and a camera. The slit was
125 ym by 1 cm and was located at one focus of
an /1.4 50 mm Nikon collimating lens. (Certain
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(Color online) Laboratory optical bench layout as implemented. Light enters an integrating sphere, and illuminates a diffusing

screen on exit. It then passes through calibration or sample components, before entering the long-slit spectrograph with its associated
polarization components, as described in the text. The upper panel shows the actual optical bench with baffles and boxes removed for
visibility. The integrating sphere is to the left, and the camera to the right.

commercial equipment, instruments, or materials
are identified in this paper in order to specify the
experimental procedure adequately. Such identifica-
tion is not intended to imply recommendation or en-
dorsement by the Space Telescope Science Institute,
the National Institute of Standards and Technology,
or the Universiteit Leiden, nor is it intended to imply
that the materials or equipment identified are neces-
sarily the best available for the purpose.) The trans-
mission diffraction grating was ThorLabs Part #
GT50-06V with 600 grooves/mm. A second f/1.4
50 mm Nikon lens imaged the spectrum onto a
Quantum Scientific Imaging 683 8 Mpix cooled
CCD camera with 3326 x 2504 pixels of size 5.4 ym.

For the polarization analyzer, we placed a Mea-
dowlark precision linear polarizer, DPM100VIS, be-
tween the spectrograph slit and the collimating lens,
using a rotary mount to allow adjustment of the
analyzer angle. The extinction ratio across the visible
spectrum for this polarizer is ~10% and exceeds
100:1 from approximately 375 to 725 nm. The bire-
fringent wedges were placed on a platform next to
the spectrograph slit between the slit and the source
(i.e., before the light enters the spectrograph). The
optional quarter-wave retarder was mounted, when
used, between these wedges and the source, and was
an achromatic Meadowlark quarter-wave retarder
AQM-100-545, which is effective between 450 and
630 nm. The birefringent wedges themselves were
a mix of customized and off-the-shelf quartz scram-
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blers from the Karl-Lambrecht Corporation. Off-
the-shelf wedges had a pitch angle of =3°, and the
customized pieces used a pitch angle of ~6°.

The distance between the source and the spectro-
graph slit was approximately 0.6 m, and the entire
system was contained within a series of light-tight
baffles and boxes to eliminate stray light. Locating
the birefringent wedges externally to the spectro-
graph not only allows us to ignore possible polariza-
tion due to the slit, but also allowed easy access for
switching configurations, and permitted us to focus
the spectrograph onto a single slit position.

The first exercise was to attempt to reproduce the
appearance of the theoretical data frames for the var-
ious configurations presented in Fig. 4. Figure 9
shows the results. To do this, we used the white halo-
gen continuum source in combination with linearly
and circularly polarizing filters. For the first four
configurations (first four columns in Fig. 9), we used
a set of 60 mm astronomical polarizing filters that
utilize HN38 Polaroid mounted in a magnesium
fluoride substrate to approximate 100% linearly po-
larized light (first two rows of the first four columns
in Fig. 9). We used a cholesteric liquid crystal tech-
nology (CLC) filter to approximate 100% circularly
polarized light (third row of the first four columns
in Fig. 9). For the final configuration (fifth column
of Fig. 9), we used a polarization state generator that
utilized a precision linear polarizer in combin-
ation with a Fresnel rhomb [22] that is capable of



producing close to 100% polarized light anywhere on
the Poincaré sphere. We also obtained data frames
without any polarizing optics to provide a “flat-field”
reference. The spectral scale was wavelength cali-
brated using argon and mercury line lamps. We
defined the slit direction to correspond to @ and
45° to the slit to correspond to U.

By comparing Figs. 4 and 9, it is apparent that the
empirical data reproduce the qualitative expecta-
tions extremely well. Differences in detail can be
attributed to different absolute thicknesses of the
wedges (in practice the 3° and 6° wedges had very
different thicknesses) relative to one another and
to the theoretical model, and to essentially random
centering of the crossover points for wedge pairs re-
lative to the slit and to one another. Care was taken
with the sign convention and parity of the wedges to
reproduce the directions for fast axes and wedge gra-
dients used in the models. The empirical wavelength
range shown corresponds to 550 to 700 nm, and the
slit height to 2 mm in Fig. 9. We consider the data
obtained in this exercise to be fully consistent
with the theoretical expectations, given the practical
uncertainties described.

The second exercise was to test the linear polariza-
tion mode described in Subsection 2.B. We placed a
compound 3° wedge pair with the fast axes crossed,
running corner to corner at +45° to the spectrograph
slit, in front of the spectrograph slit. An achromatic

qw qww’

ww’ ww'WwW’

-

& :
-

: At N
\ Zui ||
: Sl |

o

>
-
»
~

W \\ \\' %

Q/l = 100% g

U/l =100%

WN

'R ]
- -

V/I =100%

|
b
)
»
1}
»
5
»
|

%
>
4

o 45 By ba By by D9 Bg By
RN is i re B

5 Sy 49 by by by ‘E oy "
Netstebsbgdg g o

TEN A

Fig. 9. Example data frames for each of the configurations
discussed in the text when viewed with ~100% polarized light, ob-
tained in the laboratory. The rows and columns correspond to those
shown in Fig. 4.

quarter-wave retarder was placed upstream of the
wedge pair, with its fast axis oriented 0° to the slit.
Calibration measurements were taken using the
standard suite of polarizing filters, and the resulting
data frames were used to derive empirical “coeffi-
cient” frames for use in the least-squares retrieval
procedure of Section 3 and Subsection 5.A, with
additional theoretical analysis in Appendix A. We
placed an Schott BG18 colored glass filter (broad
bandpass with peak transmission near ~510 nm)
close to the source and orthogonal to the beam and
took a single data frame. We then rotated the filter
about the vertical axis by approximately 30° and took
a second data frame. Using these single data frames
in conjunction with the procedures described in
Section 3 and Subsection 5.A, we derived polariza-
tion and intensity spectra, shown in Fig. 10. The
average linear polarization for the region 500 to
550 nm was 0.39% and 6.2% with standard devia-
tions 0.02% and 0.35%, respectively. For a uniform
glass sheet of refractive index n = 1.5 in air, we ex-
pect transmitted light to be polarized 6.3% for an in-
cident angle of 30°. We emphasize that these results
were obtained using a single data frame with no
moving parts once the calibration data had been
acquired.

The third exercise was to demonstrate our ability
to obtain full Stokes polarimetry from a single
data frame. For this, we used the compound 3° wedge
pair used in the previous exercise, followed by a
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Fig. 10. (Color online) Retrieved polarization curves for a BG18

colored glass filter presented orthogonal to the beam, blue, and
at an angle tilted by =30° to orthogonal, green, observed using
the quww’ configuration. At right angles, we expect no polarization,
and inclined at 30°, approximately 6.3%, consistent with the least-
squares retrieval. The black curves show arbitrarily normalized
throughputs for the two configurations (solid, orthogonal and
dotted, inclined) derived from the data, serving to illustrate that
we also obtain full Stokes I spectroscopy using these methods.
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Fig.11. (Color online) Retrieved circular polarization for a pair of

polarizing cinema 3D glasses, expected to exhibit 100% Stokes V'
left and right circularly polarized light for the left and right eyes,
measured using the ww'WW’ configuration. The retrieval is con-
sistent with expectations. For completeness, and to illustrate that
we obtain full Stokes polarimetry from a single data frame, the
dashed lines show the retrieved degree of linear polarization.

compound 6° wedge pair with fast axes at 0° and 90°.
We removed the quarter-wave retarder. As an inter-
esting source of circularly polarized light, we used a
pair of plastic 3D cinema glasses. These glasses com-
prise a quarter-wave sheet and polarizing sheet in
combination. Used as viewers, they either transmit
or extinguish circularly polarized light, depending
on its sign. But, in reverse, they produce circularly
polarized light of opposite signs for each “eye.” We
took single data frames through each eye in turn
and processed the data frames according to the
methodology of Section 3 and Subsection 5.A, using
the empirical suite of calibration data frames The
results are shown in Fig. 11. The method produced
excellent results on these sources, yielding the ex-
pected extremely high level of polarization, with
opposite sign for the two eyes. We also show the de-
rived linear polarization, to show that we are also
measuring full the Stokes vector in these single data
frames.

We defer attempts to carry out precision polarime-
try given the rudimentary nature of our optical bench
coupled to imperfect calibration source availability.
However, we believe that these preliminary results
are extremely encouraging and satisfy our desire
to provide a proof of concept in the laboratory and
to demonstrate that the desired polarimetric infor-
mation can be retrieved from single data frames.

7. Conclusions

We have described an approach to polarization mea-
surement that uses no moving parts and that relies
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on simple, robust optical components. Either linear
polarimetry or full Stokes polarimetry can be carried
out. The method depends on the use of an area detec-
tor, such as a CCD, with the light spread across a
region of the detector. If the system can be made
photon-limited in sensitivity, this spreading of the
light improves the polarimetry, since typical CCD
well-depths are only of order 10°. With modest
spreading of the light, a single photon-limited frame
should be able to reach precision of order 10~ in po-
larization. The influence of departures from ideal
circumstances still remains largely to be explored.
Hence, we do not know at this stage whether this
approach will be able to achieve extremely high
accuracy. However the robustness and simplicity of
the components involved offers cause for optimism.
Other approaches, such as the spectral modulation
method for linear polarimetry [5], offer alternative
methods for static polarimetry in hostile environ-
ments. Compared to that approach, the methods
presented here yield a cleaner separation of the
spectroscopy and polarimetry, at the expense of addi-
tional detector surface area requirements. The meth-
ods may be applied in the UV or IR, as well as in the
visible wavelength range.

Since the entire polarization information is con-
tained within a single data frame, the method is
well-suited to measuring the polarization of transi-
ent sources and scenes where the polarimeter and
target are in rapid relative motion. Since the optics
are robust and simple and require no moving parts,
we anticipate that these methods will prove useful
for application in space.

Appendix A: General Linear Least-Squares Methods

We follow Bevington [23,24] and let the general pro-
blem to be solved be

y(xl) = aic(xi) + ch(xi) + cuc(xi) + dvc(xi)»

where measurements y;, either the intensity I in the
single beam case or (I —-1,)/(I;}+1;) in the dual
beam case, are made at points x; and y; = y(x;)+
€;, with y the true underlying value and ¢; its error
(assumed random, independent) at location x;. The
terms i., q., u., and v, are trigonometric functions
that encode the Stokes parameters I, @, U, and V
or g, u, and v, and their coefficients a, b, ¢, and d
are the Stokes parameters to be derived. The map-
ping and specific functions depend on the chosen con-
figuration, but all configurations discussed here can
be expressed in this way. Sometimes the functions
are identically zero, implying no sensitivity to that
parameter.
The y? function is then

N N 1
=) e/ot =) Sbi-y@)F
i=1 i=1"1
N
1
=3 b

i=1 9

alc (xz) bQC (xl) CU. (xl) - dvc (xi)]zv



and to solve, we set the partial derivatives of y2 with
respect to each of a, b, ¢, and d equal to zero:

- 22 s bq. - cu, —dv,),
da - Vv = lc i alc qc —CU. — AU,
dy? .

% =0= _2Z?qc(yi —ai. — bQC —ClU, —dl}c),

-ai, - bq, - cu,-dv,),

a)( —0= 22
812 .
2= 0= —226—?%0@- —ai, - bq, - cu, —dv,).

We require the curvature matrix B and summation
vector s,,

$i2 Thig, Thiw T
| Zhiae Xpad Thawe Xhaco.
b= Z”—lizicuC Za—l?qcuC Z%u? Z%ucvc '

Zg_]?icvc Zg_ll?qcvc Za_lfucvc ]-ZUC

SyE(Z cywz Qqcyl»z 2 Cyl!Z cyz)»

respectively. With this terminology, the least-squares
equations become

QLo QR

We solve for the vector (a,b,c,d),

where a; represents a, b, c, or d, and [B7!]; is the
corresponding diagonal term of B~1.

Our application is precision polarimetry, for which
it is presumed (i) the degree of polarization is small,
and (ii) light levels are relatively high. Hence, the in-
tensity across the spatial segment is approximately
constant and obeys Poisson counting statistics. That
is, we assume the uncertainty is the same for each
bin, o; = ¢ = (N,/nx)’?, where N, is the total num-
ber of detected photons, and nx is the number of bins
across which the photons are distributed, i.e., the
number of x sampling points. For cases where the tri-
gonometric functions that are embodied by i, q., u.,
v, are orthogonal (we approximate the summations
by integrals over integer numbers of periods), B is
diagonal. Hence its inverse is also diagonal, and
the Stokes parameter solutions are independent of
one another.

We choose as a simple example the single wedge
with its fast axis at 45° to the slit direction, which,
in turn, defines the direction for Stokes @. In general,
we use Mueller matrix algebra to solve for the sys-
tem. As in Subsection 2.A above, Eq. (1) gives the ex-
pression for the 1ntens1ty at points x;:y; =1(x;) =
0.5( - @ cos ¢p; — U sin sin ¢;), where ¢; = 2n(x;/
X). In the formalism above, y; =ai.(x;)+
bq.(x;) + cuc(x;) + dve(x;), so i.(x;) =0.5, g.(x;)=
0.5 cos(2zx;/X), u.(x;) = 0.5 sin(2nx;/X), and v, (x;) =
0. In the absence of V, the matrix B is reduced to the
3 x 3 matrix

Z l? Z icqc Z icuc
B= ? ZiCQC qu ZQCU’C
Z icuc Z qclc Z u?

The summations run across nx pixels. Applying the
expressions for the q,, u., and v,, we have

1 nx > cos(27x;/X) > sin(27zx,/X)
B = oo > cos(2mx;/X) 3" cos?(27x;/X) > cos(2nx;/X) sin(2zx;/X)
O
> sin(2zx,/X) D cos(2ax;,/X) sin(2xx,/X) 3 sin?(27x;/X)

a=(a,b.c.d) =B1-s,

Following standard procedures, e.g., [23,24], ignor-
ing covariances, the uncertainties on these param-
eters are

2 _ p-1
Oq, _Bu ’

We assume the summations cover an integer number
of periods and approximate the sums using integrals,
using (X f(x)dx ~ Ax Y ¥ f(x;), where Ax = X/nx (the
width of a bin in x). Hence, ) f(x;) = % [ f(x)dx. Thus,

it can be shown for this example that

(200
B="2(0 1 0,
8°\o 0 1
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and

5 (1 0 0
=20 2 o
"\ \o o0 2

Now, we can go back to the expression for s, and solve
for the Stokes parameters, noting that > y; = Ny,
the total number of photons collected, and s, =

L [Z v, Y cos(2rx/X)yi, Y sin(2ﬂxl~/X)yi], omit-

ting the zero V term. Hence the solutions from
(a.b,c.d) =B71-s, are

_ NtOt 462 2Nt0t
I=a-= 20 =t g
“ (202)(nx nx o).
4
=b=(—)> y cos@mx/X
Q=D (nx) y; cos(21x;/X),
4
=c=(—) >y sin@mx/X).
U=c (nx) y; sin(2zx;/X)

Similarly, we can derive the uncertainties of the
Stokes parameters. The uncertainty o is given by
62 = Ni,/nx and is assumed to be constant. Hence,
reading directly from the expression for B!, we have

G(I) Ega — 27V]Vt°t’
nx

(@ =0, = 2V B

nx

c(U)=o, = 2—’§th°t

The uncertainties in the normalized Stokes param-
eters g and u are

o(q) =ou) = .
N tot

Ignoring bias terms, it follows that the uncertainty
on the degree of polarization is

2

The expressions for the trigonometric functions i,
q., U., v, depend on the configuration and whether a
dual beam formalism is adopted or not. We derived
the expressions for these functions using Mueller
matrix algebra for a selection of configurations, as
presented in Table 1. In a similar fashion to this ex-
ample, though with more complex manipulations, we
can analytically invert the corresponding curvature
matrix to derive both the solution and the uncer-
tainty estimates, taking only the diagonal terms
as the uncertainty. There are cases where the off-
diagonal terms of B are nonzero, as discussed in
the text.
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