
1 
 

Feature Information Model for Disassembly 
 

Shaw C. Feng1, Thomas Kramer1, Che B. Joung1, Parisa Ghodous2, and Milton Borsato1,3 
 

1National Institute of Standards and Technology (NIST) 
2University of Claude Bernard Lyon I 

3Federal University of Technology – Parana 
 
Abstract 
 
As sustainability becomes an important issue nowadays, disassembly becomes one of the key 
processes to turn out-of-service products into new or rebuilt products to save energy and 
materials. A disassembly process includes many subprocesses, such as separation, cleaning, and 
inspection. Features play a key role in design for disassembly and disassembly process planning. 
This paper describes a NIST-developed feature information model that defines generic form 
features, pattern features, and disassembly-specific features. The information model provides a 
foundation for computer-aided design for disassembly software systems development and data 
exchange among heterogeneous systems to integrate product design and disassembly process 
planning. 
 
Key words:  
Disassembly Feature, Feature Model, and Information Modeling. 
 
1. Introduction 
 
Disassembly is a process to separate functional parts from an out-of-service product. The 
National Institute of Standards and Technology (NIST) has developed an information model of 
features to support product disassembly. An open disassembly feature model will enable 
designers to specify disassembly features in the design stage. The model can also help process 
planners use features in determining disassembly methods and sequences. This information 
model supports both the structure of a disassembled product and its disassembly process. A 
disassembly process includes separating parts from a product, inspecting the quality of the 
separated parts for reuse or remanufacturing, and cleaning reusable parts. Disassembly planning 
requires information from design, such as disassembly features and their relationships, 
subassemblies, and disassembly sequence. Disassembly process planning systems need also to 
exchange disassembly process plans with other design and process planning systems. Designers 
require the cost of disassembly and available equipment to determine the disassemblability of a 
design. An information model is, hence, developed to meet the needs of exchanging disassembly 
data between design and disassembly process planning. 
 
This paper describes a disassembly feature information model, developed using the Unified 
Modeling Language (UML) [1].  Section 2 reviews disassembly feature-related literature. 
Section 3 describes the classes and their relationships that are comprised of the information 
model. Section 4 concludes the paper and provides possible future direction. 
 
 



2 
 

2. Review of Disassembly Feature-related Literature 
 
This section provides a literature review of disassembly representation in design and feature 
modeling. Gaps in an integrated disassembly information model are identified at the end of the 
section. 
 
2.1 Design for disassembly  
 
Many research results have been published in the areas of design for disassembly, disassembly 
process planning, and cost estimation. Vinodh, Praveen Kumar, and Nachiappan [2] present 
methods for modeling planning and leveling the disassembly process of a cam-operated rotary 
switch assembly. The methodology involves disassembly modeling using a graphical approach, 
based on the work done by Tang, Zhou and Caudill [3].  
 
Mascle and Zhao [4] describe a general methodology in Design for Environment (DFE) using 
entropy minimization. The entropy evaluation brings about the generation of a disassembly 
sequence in which the disassembly efficiency, the material value and the specific value are big 
and the liability is small, as a gold ship’s chronometer. Fuzzy logic and feature modeling are 
used during the DFE evaluation for parts, assembly and operations analysis. 
 
Behdad and Thurston [5] address the problem of disassembly sequence planning for the purposes 
of maintenance or component upgrading. Optimization of the disassembly sequence is carried 
out while simultaneously considering tradeoffs among attributes: disassembly time (and resulting 
cost), the probability of no part damage and the reversibility of disassembly sequence (both time 
and the probability of not incurring damage during reassembly).  
 
Fan, et al. [6] evaluate the recycling rates, costs as well as the disassembly time of a notebook at 
its end-of-life stage using data collected during disassembly processes.  
 
Liu, et al. [7] apply an improved max–min ant system-based algorithm to the problem of product 
disassembly sequence planning.  
 
Smith, Smith and Chen [8] present a new ‘disassembly sequence structure graph’ (DSSG) model 
for multiple-target selective disassembly sequence planning. The DSSG model contains a 
minimum set of parts, with an order and direction for removing each part. The approach uses 
expert rules to choose parts, part order, and part disassembly directions, based upon physical 
constraints.  
 
Tseng, Chang and Cheng [9] propose a disassembly-oriented assessment method for product 
modular design in stages, focusing upon the green design issue in terms of the disassembly and 
recycle of product modules.  
 
Li, Wang and Huang [10] suggest an integrated approach of disassembly constraint generation, 
based on which an object-oriented prototype is designed and developed. It makes uses of CAD 
standard component library and geometric constraint information for precedence and non-
precedence (geometric) constraint generation. 



3 
 

 
2.2 Disassembly-related information models  
 
This section presents a review of available assembly information models for the purpose of 
creating a disassembly information model. Some standard-based approaches and frameworks are 
also reviewed. 
 
ISO 10303-44 [11] provides some limited assembly design representations that capture assembly 
structure and kinematic joint information during the design process. The assembly model 
establishes a neutral representation of product assembly. In this model, a product is called an 
“assembly,” and the components of the lowest level in an assembly are called “parts.” The model 
focuses on the hierarchy of a product and on the position and orientation between the parts. 
 
The Open Assembly Model (OAM) [12] has the aim to provide a standard representation and 
exchange protocol for assembly and system-level assembly information. OAM is extensible.  It 
currently provides feature representation and propagation, representation of kinematics, and 
engineering analysis at the system level. The assembly information model emphasizes the 
information requirements for part features and assembly relationships. The model includes both 
assembly as a concept and assembly as a data structure. For the latter, it uses model data 
structures of STEP. 
 
Vinodh, Nachiappan and Praveen Kumar [13] apply four different modeling strategies for 
efficiently representing all feasible and complete disassembly sequences with correct precedence 
relations: connection graph, directed graph, AND/OR graph and disassembly Petri net (DPN). A 
case example of a rotary switch is used and the advantages and drawbacks of each approach are 
discussed. The connection graph portrays the local and the global constraints among the 
components, but is incapable of modeling disassembly tasks. The directed graph represents sets 
of all disassembly sequences, but as the number of components increases the size of this also 
increases significantly. The AND/OR graph is also a directed graph which includes reduced 
number of nodes and edges. It also shows the simultaneous execution of disassembly tasks. 
However, it is difficult to integrate with resource modeling. The DPN represents each node and 
the task involved between them individually. This graph requires the component-fastener, which 
makes it accurate, but complex. 
 
Lambert and Gupta [14] present the state diagram, which is structured with nodes and arcs, 
where the nodes are the different states in the disassembly sequence, and the arcs are the 
operations to separate the components. Each state has free components and components that will 
still be connected. The first state brings the whole equipment or product with all components 
connected and the last state presents all free components, ready to use or for final disposal. 
 
2.3 Feature information for disassembly  
 
Most feature representations are related to assembly and machining. An assembly feature can be 
defined as a shape feature of a part in an association with a shape feature of another part in an 
assembly. Many research results on assembly feature modeling are applicable to disassembly. 
 



4 
 

Shah et al. [15, 16] describe the association between faying features of parts.  Their work deals 
with the determination of geometric constraints: degrees of freedom, compatibility between 
faying features, orientation, and insertion limits. Chan et al. [17] define an assembly feature as 
the elementary connection feature containing faying relations between the components.  
Hamidullah et al. [18] define assembly features and their representation using the concept of 
assembly intents.  They specify the information of assembly, i.e., faying relations with the 
connecting form features, and associate the connecting form features with other assembly-
specific information, such as assembly operations and assembly degrees of freedom. 
 
ISO 10303-224 [19] defines product data necessary for manufacturing a single piece or assembly 
of mechanical parts. It has machining features such as hole and pocket, and transition features 
such as round, fillet, and chamfer. ISO 10303-111 [20] otherwise specifies resource constructs 
for representing the complex shape elements, also known as form features, that are supported by 
the solid modeling capabilities of modern CAD systems. ISO 10303-111 defines depression 
features such as hole and pocket, and edge blended features, such as edge blend and chamfered 
edge. 
 
Dipper, Xu and Klemm [21] take a feature data model, i.e., ISO 10303-238 [22], as input and 
determine interactions among the features in the model. The feature interaction data are then 
appended to the original data model for subsequent uses such as process planning. 
 
Hu, et al. [23] propose an approach for manufacturability evaluation based on feature modeling 
using an object-oriented methodology. A gear box is used as a case to illustrate the approach 
towards virtual manufacturing and concurrent engineering. 
 
Anjum, et al. [24] present a shape feature-based ontological model of the geometry of 
engineering components for analyzing their manufacturability in early design stages. A case 
study demonstrates how such a technique can be used to overcome the issue of semantic 
inconsistency. 
 
2.4 Summary of high-level requirements for an information model for disassembly 
 
Based on the above literature review, the following gaps are identified for modeling the 
information of integrated design for disassembly and disassembly process planning: 

• Comprehensive modeling on simple, compound, and pattern disassembly features and 
separation between features from two component parts. 

• Modeling complex relationships among various features in disassembly. 
 
3. Disassembly Feature Information Model  
 
This section describes the classes and their relationships in the disassembly feature information 
model in UML class diagrams. The model has two major packages (i.e., modules). The Support 
Data Package will be described in Section 3.1, and the Feature Package will be described in 
Section 3.2. 
 



5 
 

Throughout this model, the object being disassembled is called a workpiece, and it is assumed 
that the workpiece has a coordinate system. 
 
3.1 Support Data 
 
The Support Data Package consists of a set of data classes and one subpackage PlacementPack. 
The purpose of the Support Data Package is to support classes in other packages in the 
disassembly information model. Default data types, such as character (char), boolean, integer, 
double, and float, in the UML are used throughout the model. Figure 1 shows the diagram of all 
the classes and the PlacementPack sub-package of the Support Data Package. 
 
(Figure 1 goes here.) 
 
3.1.1 Support types 
 
Class String is used to represent a list of one or more characters. It has one attribute. Attribute 
chars is a list of char1 of the type of Character, which is defined in the UML. 
 
Class Identification is used to represent the identification of an object. It has one attribute. 
Attribute theID2 is of type String. 
 
Class ExplicitItem3 is used to represent the identification of a piece of geometry on a solid 
model, such as a cylindrical surface representing a hole that is identified as a feature. The class 
has one attribute. Attribute itemID represents the identification of a piece of geometry. The 
attribute’s data type is String. 
 
Class Measure is an abstract data type. It has subclasses of LengthMeasure, MeasureWithUnit, 
and AngularMeasure. 
 
Enumeration type LengthUnitType includes five commonly used length units, km, m, cm, mm, 
and micron. 
 
Class GlobalLengthUnit is used to represent the global length unit. It has one attribute. Attribute 
unit represents the global unit of length measure. Its data type is LengthUnitType. 
 
Class LengthMeasure is used to represent the measurement of a length. It has one attribute. 
Attribute value represents the value of the length measure, and its data type is double, which is a 
UML data type. The length unit is specified in an instance of GlobalLengthUnit. 
 
Enumeration type AngularUnitType includes two commonly used angular units, radian and 
degree. 
 

                                                           
1 A type in bold italic font denotes a UML defined type. 
2 An attribute of a class in the disassembly information model is in italic font. 
3 The first letter of each word in a class name is capitalized. 



6 
 

Class GlobalAngularUnit is used to represent the global angular unit in the disassembly model. It 
has one attribute. Attribute unit represents the global unit of angular measure. 
 
Class AngularMeasure is used to represent the measurement of an angle. It has one attribute. 
Attribute value represents the value of angular measure, and its data type is double, which is a 
UML data type. The angular unit is specified in an instance of GlobalAngularUnit. 
 
Class MeasureWithUnit is used to represent the measurement of a general measurand. It has two 
attributes. Attribute unit represents the unit of measure, and its data type is String. Attribute 
value represents the value of the measure, and its data type is double, which is a UML data type. 
 
Class PositiveInteger is used to represent an integer that is greater than zero. It has one attribute. 
Attribute x represents the positive integer, and its data type is int, which is a UML data type. 
There is a constraint that x should be greater than zero. 
 
Class Coordinates3D is used to represent coordinates of a point in the 3D space. It has three 
attributes. Attributes x, y, and z represent the 3 coordinates in the space, and their data types are 
double.  
 
Class UnitVector3D is used to represent a unit vector in the 3D space. It has three attributes. 
Attributes x, y, and z represent the 3 components of the unit vector, and their data types are 
double. There is a constraint that the magnitude of the vector should be one. 
 
Class Vector3D is used to represent a vector in the 3D space. It has two attributes. Attribute 
origin represents the starting point of the vector, and its data type is Coordinates3D. Attribute 
end represents the end point of the vector, and its data type is also Coordinates3D. The origin 
and end are not coincident. 
 
Class PointAndDirection is used to represent a point with a direction that is used in an inspection 
process. It has two attributes. Attribute point represents the point, and its data type is 
Coordinates3D. Attribute direction represents the direction, and its data type is UnitVector3D. 
 
Class Plane is used to represent a plane in the 3D space. It has two attributes. Attribute location 
represents the location point of the plane, and its data type is Coordinates3D. Attribute 
normalVector represents the orientation of the plane, and its data type is UnitVector3D. 
 
3.1.2 Placements 
 
In this model, stereotypical geometric entities (points, curves, and surfaces) representing the 
shape of a workpiece in 3D space are built by defining each type of entity in a native 3D 
Cartesian coordinate system and then placing that coordinate system in the coordinate system of 
a workpiece using a 3DPlacementZX, a 3DPlacementZ, or a 3DPlacement. The planar 
construction geometry is placed on the XY plane of a 3D coordinate system, and the method of 
using the construction geometry is described. For each geometric entity, a mathematical 
description of the set of points on the entity in its native coordinate system is given. Figure 2 
shows a diagram of all the classes of placement. 



7 
 

 
(Figure 2 goes here.) 
 
Class 3DPlacement is used to represent the placement of a 3D coordinate system in a 3D space. 
It has one attribute. Attribute location represents the location of the origin of the coordinate 
system in the space, and its data type is Coordinates3D. The directions of the axes of the placed 
coordinate system are not specified in this class but are in its subclasses. 
 
Class 3DPlacementZ is a subclass of 3DPlacement. It is used to represent the location and partial 
orientation of a 3D coordinate system in a 3D space. In addition to the location inherited from 
3DPlacement, it has the attribute zDirection, which represents the direction of the Z axis of the 
coordinate system. Its data type is Vector3D. The direction of the X axis is not specified in this 
class but is in its subclass. 
 
Class 3DPlacementZX is a subclass of 3DPlacementZ. It is used to represent the location and 
complete orientation of a 3D coordinate system in a 3D space. In addition to the location and 
zDirection inherited from 3DPlacementZ, it has the attribute xDirection, which represents the 
direction of the X axis of the coordinate system. Its data type is Vector3D. The xDirection vector 
must be perpendicular to the zDirection vector. The Y axis direction of the coordinate system is 
determined by the right-hand rule as the cross product of the zDirection vector and the 
xDirection vector. 
 
3.2 Feature  
 
A disassembly feature represents a specified portion of the surface of a workpiece that is of 
interest in disassembly, including separation, cleaning, and inspection. A feature can be a point, a 
planar feature, or a fully three-dimensional feature. Figure 3 shows a diagram of all the high-
level classes and subpackages in the disassembly feature model. 
 
(Figure 3 goes here.) 
 
Class DisassemblyFeature is a subclass of the OAM:Feature class since it contains basic 
attributes that are applicable to the disassembly feature. Class OAM:Feature is used to represent 
a feature defined in the Open Assembly Model [12]. DisassemblyFeature has two attributes. 
Attribute ID represents the feature identification, and its data type is Identification. Attribute 
explicitRepresentation represents the geometric and topological items in a boundary 
representation of the workpiece that coincide with the DisassemblyFeature, and its data type is 
ExplicitItem. ExplicitItem is defined in ISO 10303-203 [25].The explicitRepresentation of a 
DisassemblyFeature includes exactly those edges and surfaces of the workpiece that might be 
seen or felt. The feature descriptions given in this class are more idealized than the 
explicitRepresentation since they ignore any intersecting features that might remove portions of a 
curve or surface. In general, to determine if any given point is actually present on a feature, it is 
necessary to use the explicitRepresention. 
 
Many features may be either inside or outside of material. These features have an insideXxx 
attribute of optional boolean type. A value of true means the feature is inside of material (the 



8 
 

surface of a hole, for example). A value of false means the feature is outside of material (the 
surface of peg, for example). 
 
3.2.1 Feature Classes 
 
This section introduces four abstract subclasses of DisassemblyFeature: DirectPlacementFeature, 
PatternElementFeature, IndirectPlacementFeature, and ImplicitPlacementFeature. They are 
defined according to the method used to locate a feature on a workpiece. The 
PatternElementFeature class exists to allow efficient representations of PatternFeatures while 
making it straightforward to treat any feature in a pattern as an independent feature. 
 
Class DirectPlacementFeature is an abstract subclass of DisassemblyFeature. It has one 
additional attribute. Attribute placement , which is of type 3DPlacement (or one of its subtypes), 
locates the DirectPlacementFeature on the workpiece. 
 
Class PatternElementFeature is an abstract subclass of DisassemblyFeature. It has three 
additional attributes. Attribute patternFeatureID, which is of type Identification, gives the 
identifier of the PatternFeature of which the PatternElementFeature is a member. Attribute 
firstIndex, which is of type integer, gives the first index of an element of the 
PatternFeatureShape in the PatternFeature. Attribute secondIndex gives the second index of the 
same element of the PatternFeatureShape in the PatternFeature. Each subclass of 
PatternFeatureShape includes a description of how elements of the pattern are indexed. For 
MatrixPatternFeatureShape and its subclasses firstIndex is a row index and secondIndex is a 
column index. For CircularPatternFeatureShape and its subclasses, firstIndex is the index around 
the circular arc and the value of secondIndex (which is still required) is not used. For 
ConcentricCircularPatternFeatureShape and its subclasses, firstIndex is the index around an arc 
and secondIndex is the index of the arc. 
 
Class IndirectPlacementFeature is an abstract subclass of DisassemblyFeature. The placement of 
an IndirectPlacementFeature is determined by the placement(s) of one or more 
DirectPlacementFeature(s) associated with the IndirectPlacementFeature. Many form features 
(e.g., HoleFeature) are IndirectPlacementFeatures. 
 
Class ImplicitPlacementFeature is an abstract subclass of DisassemblyFeature. An 
ImplicitPlacementFeature modifies one or more other features. The placement of an 
ImplicitPlacementFeature is determined by the placement(s) of the modified feature(s) and the 
nature of the modification. Chamfer, Fillet, RoundEdge, and Thread features are subclasses of 
ImplicitPlacementFeature. 
 
3.2.2 FeatureShapes and DirectPlacementFeatures 
 
As shown in Figure 4, Class FeatureShape describes the shape of a feature. It is abstract. The 
subclasses of FeatureShape cover common geometric shapes. Each FeatureShape has a native 
Cartesian coordinate system. That system requires no explicit representation. The descriptions of 
subclasses of FeatureShape in this paper describe where the FeatureShape is in its native 
coordinate system and how the parameters of the FeatureShape are used to determine its shape. 



9 
 

Some FeatureShapes, such as PointFeatureShape and SphereFeatureShape (Figure 9), do not 
require being oriented, but may be oriented. Instances of FeatureShapes are placed using a 
3DPlacement, 3DPlacementZ, or 3DPlacementZX. Other FeatureShapes, such as 
LineFeatureShape, CircleFeatureShape (Figure 6), and PlaneFeatureShape (Figure 7), must be 
partially oriented but are not required to be completely oriented. These instances of 
FeatureShapes are placed using a 3DPlacementZ or 3DPlacementZX. Most features are required 
to be completely oriented. They are placed using a 3DPlacementZX. 
 
(Figure 4 goes here.) 
 
The following section consists of pairs of paragraphs. The first paragraph of the pair describes a 
FeatureShape, and the second paragraph of the pair describes a DirectPlacementFeature that uses 
the FeatureShape. The section is divided further by the dimensionality of the lowest dimensional 
subspace into which a feature may be placed: Point Shape and Feature (0D), Linear Shapes and 
Features (1D), Planar Shapes and Features (2D), and 3D Shapes and Features. 
 
3.2.2.1 Point Shape and Feature 
 
Class PointFeatureShape is a subclass of FeatureShape used to represent a point that is used in a 
disassembly process, such as inspection of a feature on a workpiece. In its native coordinate 
system, a PointFeatureShape is the single point at the origin, (0, 0, 0). 
 
Class PointFeature is a subclass of DirectPlacementFeature used to represent a point positioned 
in a 3D space. PointFeature has one additional attribute. Attribute pointShape represents the 
point and its type is PointFeatureShape. The placement must be a 3DPlacement, a 
3DPlacementZ, or a 3DPlacementZX. 
 
3.2.2.2 Linear Shapes and Features 
 
Class LineFeatureShape is a subclass of FeatureShape used to represent a line bounded at one 
end. It has no attributes. The line lies on the Z axis of its native coordinate system starting at the 
origin and extends indefinitely along the positive Z axis. The points of a LineFeatureShape are 
all points represented by (0, 0, z) for 0 <= z. 
 
Class LineFeature is a subclass of DirectPlacementFeature used to represent a line positioned in 
a 3D space. LineFeature has one additional attribute. Attribute LineShape represents the line 
shape, and its type is LineFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 
 
Class BoundedLineFeatureShape is a subclass of FeatureShape used to represent a line segment 
bounded at both ends. It has one attribute. Attribute length represents the length of the line 
segment, and its type is LengthMeasure. The line lies on the Z axis of its native coordinate 
system starting at the origin and extends to (0, 0, length). The points of a LineFeatureShape are 
all points represented by (0, 0, z) for 0 <= z <= length. 
 



10 
 

Class BoundedLineFeature is a subclass of DirectPlacementFeature used to represent a line 
segment positioned in a 3D space. BoundedLineFeature has one additional attribute. Attribute 
boundedLineShape represents the bounded line shape, and its type is BoundedLineFeatureShape. 
The placement must be a 3DPlacementZ or a 3DPlacementZX. 
 
3.2.2.3 Planar Shapes and Features  
 
Figure 5 shows the diagram of all the classes of planar linear features. As mentioned earlier, 
planar features lie on the XY plane of a 3D coordinate system. 

 
(Figure 5 goes here.) 
 
Class PlanarCurveFeatureShape is an abstract subclass of FeatureShape that is a parent class for 
several subclasses of planar shapes that are curves. 
 
Class PlanarCurveDirectPlacementFeature is an abstract subclass of DirectPlacementFeature that 
is a parent class for several subclasses of planar features whose shape is a 
PlanarCurveFeatureShape. 
 
Class ParallelLinesFeatureShape is a subclass of PlanarCurveFeatureShape used to represent a 
pair of parallel line segments on the XY plane. It has three attributes. Attribute length represents 
the length of the line segments, and its data type is LengthMeasure. Attribute distance represents 
the distance between the two parallel lines, and its data type is LengthMeasure. Attribute 
insideParallelLines represents whether the parallel line segments are inside of material or outside 
of material. Its data type is optional boolean. A value of true indicates that the lines are inside of 
material, e.g., lines on the sides of a slot. A value of false indicates that the lines are outside of 
material, e.g., lines on the sides of a rib. In the native coordinate system of a 
ParallelLinesFeatureShape, one line segment lies on the X axis starting at the origin (0, 0, 0) and 
ending at (length, 0, 0), and the other line segment lies on the XY plane starting at (0, distance, 
0) and ending at (0, distance, length). The points of a Parallel3DLinesFeatureShape are all points 
represented by (x, 0, 0) or (x, distance, 0) for 0 <= x <= length. 
 
Class ParallelLinesFeature is a subclass of PlanarCurveDirectPlacementFeature used to represent 
a pair of parallel line segments positioned in a 3D space. ParallelLinesFeature has one additional 
attribute. Attribute parallelLinesShape represents the shape of the parallel line segments, and its 
type is ParallelLinesFeatureShape. The placement must be a 3DPlacementZX. 
 
Class ParallelLinesFlatEndFeatureShape is a subclass of PlanarCurveFeatureShape used to 
represent the shape that results when the ends of the parallel lines in a ParallelLinesFeatureShape 
with the same X coordinates are connected to each other by two parallel line segments. The 
shape is the outline of a rectangle. ParallelLinesFlatEndFeatureShape has all the attributes of a 
ParallelLinesFeatureShape, and there are no additional attributes. The points of a 
ParallelLinesFlatEndFeatureShape are all the points of a ParallelLinesFeatureShape plus all 
points represented by (0, y , 0) or (length, y, 0) for 0 <= y <= distance. 
 



11 
 

Class ParallelLinesFlatEndFeature is a subclass of PlanarCurveDirectPlacementFeature used to 
represent the outline of a rectangle positioned in a 3D space. ParallelLinesFlatEndFeature has 
one additional attribute. Attribute parallelLinesFlatEndShape represents the shape of the 
rectangle, and its type is ParallelLinesFlatEndFeatureShape. The placement must be a 
3DPlacementZX. 
 
Class ParallelLinesRoundEndFeatureShape is a subclass of PlanarCurveFeatureShape used to 
represent the shape that results when the ends of the parallel lines in a ParallelLinesFeatureShape 
with the same X coordinates are connected to each other by semicircles. Each round end is a 
semicircle whose diameter equals the distance between the two parallel lines. The semicircles 
make the feature convex, not concave. ParallelLinesRoundEndFeatureShape has all the attributes 
of a ParallelLinesFeatureShape, and there are no additional attributes. The points of a 
ParallelLinesRoundEndFeatureShape are all the points of a ParallelLinesFeatureShape plus: 

1. all points represented by (length + R*cos(a), R+ R*sin(a), 0) for –π/2 < a < π/2 and 
2. all points represented by (R*cos(a), R+ R*sin(a), 0) for π/2 < a < 3π/2 

where R = distance/2. 
 
Class ParallelLinesRoundEndFeature is a subclass of PlanarCurveDirectPlacementFeature used 
to represent a pair of parallel lines joined by semicircles at the ends positioned in a 3D space. 
ParallelLinesRoundEndFeature has one additional attribute. Attribute 
parallelLinesRoundEndShape represents the shape of the feature, and its type is 
ParallelLinesRoundEndFeatureShape. The placement must be a 3DPlacementZX. 
 
Figure 6 shows the diagram of all the classes of circular features. 
 
(Figure 6 goes here.) 
 
Class CircleFeatureShape is a subclass of PlanarCurveFeatureShape used to represent a curve 
that is a circle in the XY plane. It has two attributes. Attribute radius represents the radius of the 
circle, and its data type is LengthMeasure. Attribute insideCircle represents whether the circle is 
inside of material or outside of material. Its data type is optional boolean. True represents that 
the circle is inside of material, e.g., a circle on the inside of a hole. In the native coordinate 
system of the circle, the center of the circle is at the origin (0, 0, 0). The points of a 
CircleFeatureShape are all points represented by (radius*cos(a), radius*sin(a), 0) for 
0 <= a < 2π. 
 
Class CircleFeature is a subclass of PlanarCurveDirectPlacementFeature used to represent a 
circle positioned in a 3D space. CircleFeature has one additional attribute. Attribute circleShape 
represents the circle shape, and its type is CircleFeatureShape. The placement must be a 
3DPlacementZ or a 3DPlacementZX. 
 
Class ArcFeatureShape is a subclass of PlanarCurveFeatureShape used to represent a circular arc 
on the XY plane. It has three attributes. Attribute angle represents the angle of the arc, and its 
data type is AngularMeasure. The angle must be positive and less than 2π. Attribute radius 
represents the radius of the circle, and its data type is LengthMeasure. Attribute insideArc 
represents whether the arc is inside of material or outside of material. Its data type is optional 



12 
 

boolean. True represents that the arc is inside of material, e.g., an arc on the inside of a hole. In 
the native coordinate system of the arc, the center of the arc is at the origin (0, 0, 0). Viewed 
from the positive Z axis, the arc starts at (radius, 0, 0) and proceeds counterclockwise through 
the given angle. The points of an ArcFeatureShape are all points represented by 
(radius*cos(a), radius*sin(a), 0) for 0 <= a <= angle. 
 
Class ArcFeature is a subclass of PlanarCurveDirectPlacementFeature used to represent an arc 
positioned in a 3D space. ArcFeature has one additional attribute. Attribute arcShape represents 
the arc shape, and its type is ArcFeatureShape. The placement must be a 3DPlacementZX. 
 
Class EllipseFeatureShape is a subclass of PlanarCurveFeatureShape used to represent a curve 
that is an ellipse on the XY plane. It has three attributes. Attribute majorDiameter represents the 
major diameter of the ellipse, and its data type is LengthMeasure. Attribute minorDiameter 
represents the minor diameter of the ellipse, and its data type is LengthMeasure. Attribute 
insideEllipse represents whether the ellipse is inside of material or outside of material. Its data 
type is optional boolean. True represents that the ellipse is inside of material, e.g., an ellipse on 
the inside of a hole. In the native coordinate system of the ellipse, the center of the ellipse is at 
the origin (0, 0, 0) , the majorDiameter lies on the X axis, and the minorDiameter lies of the Y 
axis. The points of an EllipseFeatureShape are all points represented by 
(R*cos(a),  r*sin(a), 0) for 0 <= a < 2π, where R = majorDiameter/2, and r = minorDiameter/2. 
 
Class EllipseFeature is a subclass of PlanarCurveDirectPlacementFeature used to represent an 
ellipse positioned in a 3D space. EllipseFeature has one additional attribute. Attribute 
ellipseShape represents the ellipse shape, and its type is EllipseFeatureShape. The placement 
must be a 3DPlacementZX. 
 
Figure 7 shows the diagram of all the classes of general curve features and a plane feature. 
 
(Figure 7 goes here.) 
 
Class PlanarGCurveFeatureShape is a subclass of PlanarCurveFeatureShape used to represent a 
general curve feature in the XY plane. It has one attribute. Attribute pointsOnPlane represents 
the control points that are used to generate the curve, and its data type is a list of Coordinates3D 
with minimum of four points in the list. The Z coordinate of all control points must be 0. A 
uniform cubic B-spline curve is assumed. 
 
Class PlanarGCurveFeature is a subclass of PlanarCurveDirectPlacementFeature used to 
represent a general planar curve positioned in a 3D space. PlanarGCurveFeature has one 
additional attribute. Attribute planarGCurveShape represents the shape of the general curve, and 
its type is PlanarGCurveFeatureShape. The placement must be a 3DPlacementZX. 
 
Class ClosedPlanarGCurveFeatureShape is a subclass of PlanarGCurveFeatureShape used to 
represent a closed-end general curve feature on the XY plane. No particular order of continuity is 
required at the point of closure. 
 



13 
 

Class ClosedPlanarGCurveFeature is a subclass of PlanarCurveDirectPlacementFeature used to 
represent a closed general planar curve positioned in a 3D space. ClosedPlanarGCurveFeature 
has one additional attribute. Attribute closedPlanarGCurveShape represents the shape of the 
closed general curve, and its type is ClosedPlanarGCurveFeatureShape. The placement must be a 
3DPlacementZX. 
 
Class PolyPlanarCurveFeatureShape is a subclass of PlanarCurveFeatureShape used to represent 
an open or closed continuous curve in the XY plane composed of segments each of which is a 
planar curve. There must be at least one segment. A PolyPlanarCurveFeatureShape has two 
attributes. Attribute segments represents the segments of the curve, and its data type is list of 
PlaneCurveFeatureShape. Each segment must be a BoundedLineFeatureShape or a 
PlanarCurveFeatureShape, excluding ParallelLinesFeatureShape  and 
PolyPlanarCurveFeatureShape itself. Attribute placements represents the placements of the 
individual segments in the native coordinate system of the PolyPlanarCurveFeatureShape, and its 
data type is list of 3DPlacementZX. The two lists must have the same length. The nth placement 
gives the placement of the nth segment. The placements must be such that the end point of each 
segment (except the last) is the start point of the next segment. The placements must also be such 
that all segments lie in the XY plane. To ensure that, it is necessary and sufficient that (1) the Z 
value of the location of each placement must be 0, (2) the Z value of the zDirection of the 
placement for a BoundedLineFeatureShape must be 0, and (3) the zDirection of the placement 
for a PlanarCurveFeatureShape must be (0, 0, 1). If any segment is a closed feature (a circle or 
an ellipse, for example), there must be only one segment. The PolyPlanarCurveFeatureShape 
must not intersect itself. 
 
Class PolyPlanarCurveFeature is a subclass of PlanarCurveDirectPlacementFeature used to 
represent an open or closed continuous planar curve composed of segments positioned in a 3D 
space. PolyPlanarCurveFeature has one additional attribute. Attribute polyPlanarCurveShape 
represents the shape of the curve, and its type is PolyPlanarCurveFeatureShape. The placement 
must be a 3DPlacementZX. 
 
Class PlaneFeatureShape is a subclass of FeatureShape used to represent the surface of a 
rectangle shape. It has two attributes. Attribute length represents the length of the plane, and its 
data type is LengthMeasure. Attribute width represents the width of the plane, and its data type is 
also LengthMeasure. In its native coordinate system, the rectangle lies on the XY plane. The 
center of the rectangle is at the origin, length is parallel to the X axis, and width is parallel to the 
Y axis. The points of the plane are all points represented by (x, y, 0) for 
 -length/2 <= x <= length/2 and -width/2 <= y <= width/2. 
 
Class PlaneFeature is a subclass of DirectPlacementFeature used to represent a feature that is a 
plane positioned in a 3D space. PlaneFeature has one additional attribute. Attribute planeShape 
represents the shape of the plane, and its type is PlaneFeatureShape. The placement must be a 
3DPlacementZ or a 3DPlacementZX. 
 
3.2.2.4 3D Shapes and Features  
 
Figure 8 shows the diagram of 3D general curve features. 



14 
 

 
(Figure 8 goes here.) 
 
Class GCurve3DFeatureShape is a subclass of FeatureShape used to represent the shape of a 
feature that is a general 3D curve. It has one attribute. Attribute pointsOfTheCurve represents the 
control points that are used to generate the curve, and its data type is a list of Coordinates3D with 
minimum of four elements in the list. A uniform cubic B-spline curve is assumed. 
 
Class GCurve3DFeature is a subclass of DirectPlacementFeature used to represent a feature that 
is a general 3D curve positioned in a 3D space. GCurve3DFeature has one additional attribute. 
Attribute gCurve3DShape represents the shape of the curve, and its type is 
GCurve3DFeatureShape. The placement must be a 3DPlacementZX. 
 
Class ClosedGCurve3DFeatureShape is a subclass of GCurveFeature3DShape used to represent 
the shape of a closed-end general 3D curve. No particular order of continuity at the closing end is 
assumed. 
 
Class ClosedGCurve3DFeature is a subclass of DirectPlacementFeature used to represent a 
feature that is a closed general 3D curve positioned in a 3D space. ClosedGCurve3DFeature has 
one additional attribute. Attribute closedGCurve3DShape represents the shape of the curve, and 
its type is ClosedGCurve3DFeatureShape. The placement must be a 3DPlacementZX. 
 
Class 3DSurfaceFeatureShape is an abstract subclass of FeatureShape used to represent the shape 
(but not the placement) of a simple 3D feature that is a surface. 
Figure 9 shows the diagram of point symmetric features. 
 
(Figure 9 goes here.) 
 
Class PointSymmetricFeatureShape is an abstract subclass of 3DSurfaceFeatureShape used to 
represent a feature shape that is a surface symmetric about a point placed in a 3D space. The 
point is the center of the feature and is located at the origin of the native coordinate system of the 
PointSymmetricFeatureShape. A PointSymmetricFeatureShape has the property that whenever a 
point (x, y, z) is a point of the feature shape, so is (-x, -y, -z). 
 
Class SphereFeatureShape is a subclass of PointSymmetricFeatureShape used to represent a 
feature that is a sphere. SphereFeatureShape has two attributes. Attribute diameter represents the 
diameter of the sphere, and its data type is LengthMeasure. Attribute insideSphere represents 
whether the sphere is inside of material or outside of material, and its data type is optional 
boolean. True represents that the sphere is inside of material, i.e., the surface of a spherical void. 
In its native coordinate system, the center of the sphere is at the origin. The points of a 
SphereFeatureShape are all points represented by (x, y, z) with x2 + y2 + z2 = R2, where 
R = diameter/2. The representation given for  SphereSegmentFeatureShape will also work for the 
points of a SphereFeatureShape. 
 
Class SphereFeature is a subclass of DirectPlacementFeature used to represent a sphere 
positioned in a 3D space. SphereFeature has one additional attribute. Attribute sphereShape 



15 
 

represents the shape of the sphere, and its type is SphereFeatureShape. The placement must be a 
3DPlacement, a 3DPlacementZ, or a 3DPlacementZX. 
 
Class SphereSegmentFeatureShape is a subclass of SphereFeatureShape used to represent a 
feature shape that is a spherical segment bounded by lines of longitude and lines (or points) of 
latitude, where lines of latitude and longitude are arranged as on the earth. The longitude 
direction is 0 on the positive X axis and increases rotating towards the positive Y axis. The 
latitude direction is 0 on the XY plane and is positive rotating towards the positive Z axis. The 
class has all the attributes of a SphereFeatureShape plus three additional attributes. Attribute 
startInLatitude represents the angle of the start of the spherical segment in the latitude direction, 
and its data type is AngularMeasure. Attribute endInLatitude represents the angle of the end of 
the spherical segment in the latitude direction, and its data type is AngularMeasure. The angles 
must satisfy 
 -π/2 <= startInLatitude < endInLatitude <= π/2. If the startInLatitude is -π/2, the segment is 
bounded by the south pole (0, 0, -R), where R is the radius; otherwise, it is bounded by a line of 
latitude. If the endInLatitude is π/2, the segment is bounded by the north pole (0, 0, R); 
otherwise, it is bounded by a line of latitude. The spherical segment starts in longitude at 0. 
Attribute endInLongitude represents the angle of the end of the spherical segment in the 
longitude direction, and its data type is AngularMeasure. The endInLongitude must satisfy 
0 < endInLongitude < 2π. The points on the spherical segment are all points represented by 
(R*cos(a)*cos(b), R*cos(a)*sin(b), R*sin(a)), where a and b are angles, for startInLatitude <= a 
<= endInLatitude and 0 <= b <= endInLongitude. 
 
Class SphereSegmentFeature is a subclass of DirectPlacementFeature used to represent a sphere 
segment positioned in a 3D space. SphereSegmentFeature has one additional attribute. Attribute 
sphereSegmentShape represents the shape of the sphere segment, and its type is 
SphereSegmentFeatureShape. The placement must be a 3DPlacementZX. 
 
Class EllipsoidFeatureShape is a subclass of PointSymmetricFeatureShape used to represent a 
feature shape that is an ellipsoid. EllipsoidFeature has four attributes. Attribute diameterInX 
represents the diameter of the ellipsoid in the X direction, and its data type is LengthMeasure. 
Attribute diameterInY represents the diameter of the ellipsoid in the Y direction, and its data type 
is LengthMeasure. Attribute diameterInZ represents the diameter of the ellipsoid in the Z 
direction, and its data type is LengthMeasure. Attribute insideEllipsoid represents whether the 
ellipsoid is inside of material or outside of material, and its data type is optional boolean. True 
represents that the ellipsoid is inside of material, i.e., an ellipsoidal void. The points of an 
EllipsoidFeatureShape are all points represented by (x, y, z) such that 
(x2/a2 + y2/b2 + z2/c2) = 1, where a = diameterInX/2, b = diameterInY/2, and c = diameterInZ/2. 
 
Class EllipsoidFeature is a subclass of DirectPlacementFeature used to represent an ellipsoid 
positioned in a 3D space. EllipsoidFeature has one additional attribute. Attribute ellipsoidShape 
represents the shape of the ellipsoid, and its type is EllipsoidFeatureShape. The placement must 
be a 3DPlacementZX. 
 
Figure 10 shows the diagram of axial-symmetric features. 
 



16 
 

(Figure 10 goes here.) 
 
Class AxisSymmetricFeatureShape is an abstract subclass of 3DSurfaceFeatureShape used to 
represent a feature shape symmetric about the Z axis. It has no attributes. An 
AxisSymmetricFeatureShape has the property that the shape looks the same when the feature is 
rotated around the Z axis by any amount. In mathematical terms whenever a point (x, y, z) is a 
point of the feature shape, so is (R*cos(a), R*sin(a), z), where R = sqrt(x2 + y2) and a may have 
any value. 
 
Class AxialFeature is an abstract subclass of DirectPlacementFeature used to represent a feature 
that references an AxisSymmetricFeatureShape. 
 
Class ConeFeatureShape is a subclass of AxisSymmetricFeatureShape used to represent a feature 
that is a cone. It has three attributes. Attribute base represents the diameter of the cone base, and 
its data type is LengthMeasure. Attribute coneAngle represents the full angle of the cone (not the 
half angle), and its data type is AngularMeasure. The coneAngle must be positive and less than π 
radians. Attribute insideCone represents whether the cone is inside of material or outside of 
material, and its data type is boolean. If the value is false, the cone is the surface of a protrusion, 
otherwise, the cone is the surface of a depression. In its native coordinate system, the axis of the 
cone is the Z axis, the cone has its base on the XY plane, and the tip of the cone is on the positive 
Z axis. The points of a ConeFeatureShape are all points represented by 
((R – z*tan(A))*cos(b), ((R – z*tan(A))*sin(b), z) where R = base/2, A = coneAngle/2, 
0 <= z <= R/tan(A), and 0 <= b < 2π . 
 
Class ConeFeature is a subclass of AxialFeature used to represent a cone positioned in a 3D 
space. ConeFeature has one additional attribute. Attribute coneShape represents the shape of the 
cone, and its type is ConeFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 
 
Class ConeSegmentFeatureShape is a subclass of ConeFeatureShape used to represent a feature 
shape that is a cone segment. The cone segment is bounded on the sides by lines from the tip of 
the cone to the base.  The beginning line of the cone segment is the line from the tip of the cone 
to the point where the circle bounding the base crosses the positive X axis of the native 
coordinate system of the cone segment. ConeSegmentFeatureShape has all the attributes of a 
ConeFeatureShape plus one additional attribute. Attribute endAngleOfSegment represents the 
angle of the cone segment, and its data type is AngularMeasure. The endAngleOfSegment is the 
angle on the XY plane between the X axis and the line from the origin to the point where the 
second bounding line intersects the base. The angle is positive in the counterclockwise direction 
as viewed from the positive Z axis. The points of a ConeSegmentFeatureShape are all points 
represented by 
((R – z*tan(A))*cos(b), ((R – z*tan(A))*sin(b), z) where R = base/2, A = coneAngle/2, 
0 <= z <= R/tan(A), and 0 <= b <= endAngleOfSegment < 2π. 
 
Class ConeSegmentFeature is a subclass of DirectPlacementFeature used to represent a cone 
segment positioned in a 3D space. It has one additional attribute. Attribute coneSegmentShape 



17 
 

represents the shape of the cone segment, and its type is ConeSegmentFeatureShape. The 
placement must be a 3DPlacementZX. 
 
Class FrustumFeatureShape is a subclass of ConeFeatureShape used to represent a feature that is 
the side of a frustum. FrustumFeatureShape has one additional attribute. Attribute top represents 
the diameter of the top of the frustum, and its data type is LengthMeasure. Its value must be less 
than base. The points of a FrustumFeatureShape are all points represented by 
((R – z*tan(A))*cos(b), ((R – z*tan(A))*sin(b), z) where R = base/2, A = coneAngle/2, 
0 <= b < 2π, and 0 <= z <= (base – top)/(2*tan(A)). 
 
Class FrustumFeature is a subclass of AxialFeature used to represent a frustum positioned in a 
3D space. FrustumFeature has one additional attribute. Attribute frustumShape represents the 
shape of the frustum, and its type is FrustumFeatureShape. The placement must be a 
3DPlacementZ or a 3DPlacementZX. 
 
Class FrustumSegmentFeatureShape is a subclass of FrustumFeatureShape used to represent a 
feature shape that is a frustum segment. The frustum segment is bounded on the sides by line 
segments from the upper circle of the frustum to the base ciricle.  The frustum segment is 
bounded above by an arc of the circle that bounds the top of the frustum. The frustum segment is 
bounded below by an arc of the circle that bounds the base of  the frustum. The beginning line 
segment bounding the frustum segment is the line to the point where the circle bounding the base 
crosses the positive X axis of the native coordinate system of the frustum segment. 
FrustumSegmentFeatureShape has all the attributes of a FrustumFeatureShape plus one 
additional attribute. Attribute endAngleOfSegment represents the angle of the frustum segment, 
and its data type is AngularMeasure. The endAngleOfSegment is the angle on the XY plane 
between the X axis and the line from the origin to the point where the second bounding line 
intersects the base. The angle is positive in the counterclockwise direction as viewed from the 
positive Z axis. The points of a FrustumSegmentFeatureShape are all points represented by 
((R – z*tan(A))*cos(b), ((R – z*tan(A))*sin(b), z) where R = base/2, A = coneAngle/2, 
0 <= z <= (base – top)/(2*tan(A)), and 0 <= b <= endAngleOfSegment <= 2π. 
 
Class FrustumSegmentFeature is a subclass of DirectPlacementFeature used to represent a 
frustum segment positioned in a 3D space. FrustumSegmentFeature has one additional attribute. 
Attribute frustumSegmentShape represents the shape of the frustum segment, and its type is 
FrustumSegmentFeatureShape. The placement must be a 3DPlacementZX. 
 
Figure 11 shows the diagram of the other axial-symmetric features. 
 
(Figure 11 goes here.) 
 
Class CylinderFeatureShape is a subclass of AxisSymmetricFeatureShape used to represent a 
feature shape that is a cylinder. It has three attributes. Attribute diameter represents the diameter 
of the cylinder, and its data type is LengthMeasure. Attribute insideCylinder represents whether 
the cylinder is inside of material or outside of material, and its data type is optional boolean. 
True represents that the cylinder is inside of material, e.g., the surface of a cylindrical hole. 
Attribute length represents the length of the cylinder, and its data type is LengthMeasure. In its 



18 
 

native coordinate system, the cylinder is bounded below by the XY plane and above by the plane 
z = length. The points of a CylinderFeatureShape are all points represented by 
(R*cos(a), R*sin(a), z), where R = diameter/2, 0 <= a < 2π, and 0 <= z <= length. 
 
Class CylinderFeature is a subclass of AxialFeature used to represent a cylinder positioned in a 
3D space. CylinderFeature has one additional attribute. Attribute cylinderShape represents the 
shape of the cylinder, and its type is CylinderFeatureShape. The placement must be a 
3DPlacementZ or a 3DPlacementZX. 
 
Class CylinderSegmentFeatureShape is a subclass of CylinderFeatureShape used to represent a 
feature shape that is a cylindrical segment. The segment extends the full height of the cylinder, 
but it is bounded by two line segments on the side of the cylinder. The first line segment is the 
line parallel to the Z axis passing through the point where the positive X axis passes through the 
cylinder. The second line segment is also parallel to the Z axis; it hits the XY plane on the circle 
that bounds the bottom of the cylinder. The CylinderSegmentFeatureShape class has all the 
attributes of a CylinderFeatureShape plus one additional attribute. Attribute angleOfSegment 
represents the angular size of the cylinder segment, and its data type is AngularMeasure. The 
angleOfSegment is the angle on the XY plane between the X axis and the line from the origin to 
the point where the second bounding line intersects the XY plane. The angle is positive in the 
counterclockwise direction as viewed from the positive Z axis. The points of a 
CylinderSegmentFeatureShape are all points represented by 
(R*cos(a), R*sin(a), z) where R = diameter/2, 0 <= a <= angleOfSegment < 2π, 
and 0 <= z <= length. 
 
Class CylinderSegmentFeature is a subclass of DirectPlacementFeature used to represent a 
cylinder segment positioned in a 3D space. CylinderSegmentFeature has one additional attribute. 
Attribute cylinderSegmentShape represents the shape of the cylinder segment, and its type is 
CylinderSegmentFeatureShape. The placement must be a 3DPlacementZX. 
 
Class TorusFeatureShape is a subclass of AxisSymmetricFeatureShape used to represent a 
feature shape that is a torus. In its native coordinate system, a torus is generated by rotating a 
circle in the ZX plane with its center on the X axis (call it the small circle) around the Z axis. The 
center of the small circle sweeps through a circle on the XY plane (call it the large circle). The 
TorusFeatureShape class has three attributes. Attribute majorRadius represents the radius of the 
large circle, and its data type is LengthMeasure. Attribute minorRadius represents the radius of 
the small circle, and its data type is LengthMeasure. Attribute insideTorus represents whether the 
torus is inside of material or outside of material, and its data type is optional boolean. True 
represents that the torus is inside of material, i.e., a toroidal void. The majorRadius must be 
larger than the minorRadius. The points of the torus are all points represented by 
((R + r*cos(a))*cos(b), (R + r*cos(a))*sin(b), r*sin(a)) for 
0 <= a <= 2π and 0 <= b <= 2π, where R = majorRadius and r = minorRadius. 
 
Class TorusFeature is a subclass of AxialFeature used to represent a torus positioned in a 3D 
space. TorusFeature has one additional attribute. Attribute torusShape represents the shape of the 
torus, and its type is TorusFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 



19 
 

 
Class TorusSegmentFeatureShape is a subclass of TorusFeatureShape used to represent a feature 
shape that is a torus segment. TorusSegmentFeatureShape has all the attributes of a 
TorusFeatureShape plus three additional attributes, all of which are of type AngularMeasure, 
namely endInMajorDirection, startInMinorDirection, and endInMinorDirection. The segment is 
bounded on four sides by arcs of circles. One pair of opposite sides is arcs of circles, one of 
which is the original small circle, and the other of which is a rotated copy of the small circle. In 
the native coordinate system of the torus, the first small circle is on the ZX plane with its center 
at (R, 0, 0). The second small circle is rotated about the Z axis through an angle 
endInMajorDirection from the first circle. That angle is the angle between the line from the 
origin of the native coordinate system to the center of the first small circle and the line from the 
origin to the center of the second small circle. The angle is positive counterclockwise as viewed 
from the positive Z axis. The direction of that angle may be called the longitude direction. The 
other pair of opposite sides of the segment is arcs of circles in planes that are parallel to the XY 
plane. The positions of each of those sides may be described by the angle around the first small 
circle of the point at which the small circle and the bounding circle intersect. The direction of 
that angle may be called the latitude direction. Latitudes on a torus differ from latitudes on a 
sphere in that on a torus they go through a full circle (2π radians), not half a circle (π radians). 
The 0 latitude is set at the point farthest from the Z axis where the first small circle intersects the 
XY plane. The positive latitude direction is towards the positive Z axis from the 0 latitude. The 
startInMinorDirection is the latitude at which the segment starts; it must be positive and less 
than 2π. The endInMinorDirection is the latitude at which the segment ends; it must be greater 
than the startInMinorDirection by some positive amount d. The amount d must be less than 2π. 
Note that the value of  endInMinorDirection may be almost 4π. The points of the 
TorusSegmentFeatureShape are all points represented by 
((R + r*cos(a))*cos(b), (R + r*cos(a))*sin(b), r*sin(a)) for 
0 <= startInMinorDirection <= a <=  endInMinorDirection and 
0 <= b <= endInMajorDirection < 2π, subject to (startInMinorDirection < 2π) and 
((endInMinorDirection – startInMinorDirection) < 2π). 
 
Class TorusSegmentFeature is a subclass of DirectPlacementFeature used to represent a torus 
segment positioned in a 3D space. TorusSegmentFeature has one additional attribute. Attribute 
torusSegmentShape represents the shape of the torus segment, and its type is 
TorusSegmentFeatureShape. The placement must be a 3DPlacementZX. 
 
Class SurfaceOfRevolutionFeatureShape is a subclass of AxisSymmetricFeatureShape used to 
represent a surface that is created by revolving a planar curve about an axis through a full circle. 
It has two attributes. Attribute profile represents the planar curve, and its data type is 
PolyPlanarCurveFeatureShape. Attribute insideRevolutionShape represents whether the surface 
of revolution is inside of material or outside of material, and its data type is optional boolean. 
True represents that the surface of revolution is inside of material, e.g., the surface of an irregular 
hole. In its native coordinate system, no point of the profile may have a negative X value, and 
only the first and last points may have x = 0. To form the surface of revolution, the X axis of the 
native coordinate system of the profile is placed coincident with the X axis of the native 
coordinate system of the SurfaceOfRevolutionFeatureShape, and the Y axis of the native 
coordinate system of the profile is placed coincident with the Z axis of the native coordinate 



20 
 

system of the SurfaceOfRevolutionFeatureShape. Then the profile (which is now in the ZX plane 
of the native coordinate system of the SurfaceOfRevolutionFeatureShape) is rotated in a full 
circle about the Z axis of the native coordinate system of the SurfaceOfRevolutionFeatureShape. 
The surface consists of all points through which the profile sweeps. Letting the profile be 
represented parametrically by z = 0, x = f(a), and y = g(a) for 0 <= a <=1, those are all points 
represented by 
(f(a)*cos(b), f(a)*sin(b), g(a)) for 0 <= b < 2π. 
 
Class SurfaceOfRevolutionFeature is a subclass of AxialFeature used to represent a surface of 
revolution positioned in a 3D space. SurfaceOfRevolutionFeature has one additional attribute. 
Attribute surfaceOfRevolutionShape represents the shape of the surface of revolution, and its 
type is SurfaceOfRevolutionFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 
 
Figure 12 shows the diagram of cuboid and an elliptical cylinder features. 
 
(Figure 12 goes here.) 
 
Class CuboidFeatureShape is a subclass of 3DSurfaceFeatureShape used to represent a box 
shape missing the top and bottom. CuboidFeatureShape has four attributes. The first three are 
length, width, and height, and the data type of those three is LengthMeasure. Attribute 
insideCuboid represents whether the box is inside of material or outside of material, and its data 
type is optional boolean. True represents that the box is inside of material, i.e., a hole with a 
rectangular cross section. In its native coordinate system, the box has its edges parallel to the 
coordinate axes, sits on the XY plane extending toward the positive Z axis, and has the middle of 
the bottom on the origin. Attribute length represents the size of the edges of the box parallel to 
the X axis. Attribute width represents the size of the edges of the box parallel to the Y axis. 
Attribute height represents the size of the edges of the box parallel to the Z axis. The points of 
the CuboidFeatureShape are all points on the faces of the box. The box has four faces (the faces 
with z=0 and z=length are missing), so the points are all points represented by the following. 
 (-length/2, y, z) for –width/2 <= y <= width/2 and 0 <= z <= height 
(length/2, y, z) for –width/2 <= y <= width/2 and 0 <= z <= height 
(x, -width/2, z) for –length/2 <= x <= length/2 and 0 <= z <= height 
(x, width/2, z) for –length/2 <= x <= length/2 and 0 <= z <= height 
 
Class CuboidFeature is a subclass of DirectPlacementFeature used to represent a box shape 
positioned in a 3D space. CuboidFeature has one additional attribute. Attribute cuboidShape 
represents the shape of the box, and its type is CuboidFeatureShape. The placement must be a 
3DPlacementZX. 
 
Class RoundCuboidFeatureShape is a subclass of CuboidFeatureShape used to represent a box 
shape with rounded ends. Specifically, the faces parallel to the YZ plane are replaced by half 
cylinders that extend outward from the box. The diameters of the half cylinders are equal to the 
width of the box. The class has all the attributes of CuboidFeatureShape and has no additional 
attributes. The points of the RoundCuboidFeatureShape are all points represented by the 
following. 



21 
 

(x, -width/2, z) for -length/2 <= x <= length/2 and 0 <= z <= height 
(x, width/2, z) for -length/2 <= x <= length/2 and 0 <= z <= height 
((length/2 + R*cos(a)), R*sin(a), z) for –π/2 < a < π/2 and 0 <= z <= height 
((-length/2 + R*cos(a)), R*sin(a), z) for π/2 < a < 3π/2 and 0 <= z <= height 
where R = width/2. 
 
Class RoundCuboidFeature is a subclass of DirectPlacementFeature used to represent a box with 
rounded ends shape positioned in a 3D space. RoundCuboidFeature has one additional attribute. 
Attribute roundCuboidShape represents the shape of the round box, and its type is 
RoundCuboidFeatureShape. The placement must be a 3DPlacementZX. 
 
Class EllipticalCylinderFeatureShape is a subclass of 3DSurfaceFeatureShape used to represent a 
surface that is an elliptical cylinder. EllipticalCylinderFeatureShape has four attributes. Attribute 
majorDiameter represents the major diameter of the ellipse that is the cross section of the 
feature, and its data type is LengthMeasure. Attribute minorDiameter represents the minor 
diameter of the ellipse that is the cross section of the feature, and its data type is also 
LengthMeasure. Attribute insideEllipticalCylinder represents whether the elliptical cylinder is 
inside of material or outside of material, and its data type is optional boolean. True represents 
that the elliptical cylinder is inside of material, e.g., the surface of an elliptical cylindrical hole. 
Attribute length represents the length of the elliptical cylinder, and its data type is 
LengthMeasure. In its native coordinate system, the axis of the elliptical cylinder is the Z axis, 
the majorDiameter is parallel to the X axis, the elliptical cylinder is bounded below by the XY 
plane, and the elliptical cylinder is bounded above by the plane z = length. The points of the 
elliptical cylinder are all points represented by 
 (R*cos(a), r*sin(a), z) for 0 <= a < 2π and 
0 <= z <= length, where R = majorDiameter/2, and r = minorDiameter/2. 
 
Class EllipticalCylinderFeature is a subclass of DirectPlacementFeature used to represent an 
elliptical cylinder positioned in a 3D space. EllipticalCylinderFeature has one additional 
attribute. Attribute ellipticalCylinderShape represents the shape of the elliptical cylinder, and its 
type is EllipticalCylinderFeatureShape. The placement must be a 3DPlacementZX. 
 
Figure 13 shows the diagram of composite features. 
 
(Figure 13 goes here.) 
 
Class CounteredFeatureShape is an abstract subclass of AxisSymmetricFeature used to represent 
the surface of a cylindrical hole that is counterbored, countersunk, or counter drilled. 
CounteredFeatureShape is always inside of material and has two attributes. Attribute diameter 
represents the diameter of the cylinder, and its data type is LengthMeasure. Attribute length 
represents the length of the cylinder, and its data type is LengthMeasure. In its native coordinate 
system, the cylinder is bounded below by the XY plane and above by the plane z = length. The 
hole may be a blind hole or a through hole. If the hole is a blind hole, it may be extended below 
the XY plane by a conical surface as would be made by a drill. Any such extension is not 
represented. 
 



22 
 

Class CounterboredFeatureShape is a subclass of CounteredFeatureShape used to represent the 
surface of a cylindrical hole that has been counterbored. The counterbored portion of the hole is 
a shorter cylindrical surface coaxial with the original hole starting at the top of the original hole 
and having a larger diameter. The remainder of the original hole is joined to the new cylinder by 
a planar annulus. CounterboredFeatureShape has two additional attributes. Attribute 
counterboreLength represents the length of the new cylinder, and its data type is LengthMeasure. 
Attribute counterboreDiameter represents the diameter of the new cylinder, and its data type is 
LengthMeasure. The points of a CounterboredFeatureShape are all points represented by three 
surfaces. 

1. the remaining surface of the original cylinder, 
(r*cos(a), r*sin(a), z), where r = diameter/2, 0 <= a < 2π, and 
0 <= z <= (length – counterboreLength) 

2. the surface of the new cylinder, 
(R*cos(a), R*sin(a), z), where R = counterboreDiameter/2, 0 <= a < 2π, and 
(length – counterboreLength) <= z <= length 

3. the surface of the annulus between the two cylinders. 
 
Class CounterboredFeature is a subclass of AxialFeature used to represent a 
CounterboredFeatureShape positioned in a 3D space. CounterboredFeature has one additional 
attribute. Attribute counterboredShape represents the shape of the CounterboredFeature, and its 
type is CounterboredFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 
 
Class CounterDrilledFeatureShape is a subclass of CounteredFeatureShape used to represent the 
surface of a cylindrical hole that has been counter drilled. The counter drilled portion of the hole 
is a shorter cylindrical surface coaxial with the original hole starting at the top of the original 
hole and having a larger diameter. The remainder of the original hole is joined to the new 
cylinder by a frustum formed by the conical tip of the drill used for counter drilling. The exact 
shape of the frustum is not represented. CounterDrilledFeatureShape has two additional 
attributes. Attribute counterDrillLength represents the length of the new cylinder, and its data 
type is LengthMeasure. Attribute counterDrillDiameter represents the diameter of the new 
cylinder, and its data type is LengthMeasure. The points of a CounterDrilledFeatureShape are all 
points represented by three surfaces. 

1. the remaining surface of the original cylinder, 
(r*cos(a), r*sin(a), z), where r = diameter/2, 0 <= a < 2π, and 
0 <= z <= (length – (counterDrillLength + frustumLength)) 

2. the surface of the new cylinder, 
(R*cos(a), R*sin(a), z), where R = counterDrillDiameter/2, 0 <= a < 2π, and 
(length – counterDrillLength) <= z <= length 

3. the surface of the frustum between the two cylinders. 
 
Class CounterDrilledFeature is a subclass of AxialFeature used to represent a 
CounterDrilledFeatureShape positioned in a 3D space. CounterDrilledFeature has one additional 
attribute. Attribute counterDrilledShape represents the shape of the CounterDrilledFeature, and 
its type is CounterDrilledFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 



23 
 

 
Class CountersunkFeatureShape is a subclass of CounteredFeatureShape used to represent the 
surface of a cylindrical hole that has been countersunk. The countersunk portion of the hole is a 
frustum coaxial with the original hole, having one end joined to the remainder of the original 
hole by a common circle (whose diameter is that of the original hole), and having a larger 
diameter at the top of the hole. CountersunkFeatureShape has two additional attributes. Attribute 
countersinkAngle represents the angle of the frustum, and its data type is AngularMeasure. 
Attribute countersinkDiameter represents the larger diameter of the frustum, and its data type is 
LengthMeasure. The points of a CountersunkFeatureShape are all points represented by two 
surfaces. 

1. the remaining surface of the original cylinder, 
(r*cos(a), r*sin(a), z), where r = diameter/2, 0 <= a < 2π, and 
0 <= z <= (length – frustumLength) 

2. the surface of the frustum, 
(R*cos(a), R*sin(a), z), where R = ((countersinkDiameter/2) – ((length – z) * tan(b))), 
 0 <= a < 2π, and (length – frustumLength) <= z <= length 

where b = countersinkAngle/2, frustumLength = (countersinkDiameter – diameter)/(2*tan(b)) 
 
Class CountersunkFeature is a subclass of AxialFeature used to represent a 
CountersunkFeatureShape positioned in a 3D space. CountersunkFeature has one additional 
attribute. Attribute countersunkShape represents the shape of the CountersunkFeature, and its 
type is CountersunkFeatureShape. The placement must be a 3DPlacementZ or a 
3DPlacementZX. 
 
Figure 14 shows the diagram of planar features. 
 
(Figure 14 goes here.) 
 
Class PlanarSymmetricFeatureShape is an abstract subclass of 3DSurfaceFeatureShape used to 
represent a feature that is symmetric about a plane. In the native coordinate system of a 
PlanarSymmetricFeatureShape, the plane of symmetry is the ZX plane. In mathematical terms, 
whenever a point (x, y, z) is a point of a PlanarSymmetricFeatureShape, so is (x, -y, z). 
 
Class TwoParallelPlaneFeatureShape is a subclass of PlanarSymmetricFeatureShape used to 
represent a pair of parallel rectangles. It has four attributes. Attribute length represents the size of 
the rectangles in the X direction, and its data type is LengthMeasure. Attribute width represents 
the size of the rectangles in the Z direction, and its data type is also LengthMeasure. Attribute 
gap represents the distance between the two parallel planes, and its data type is LengthMeasure. 
Attribute inside represents whether the rectangles are inside of material or outside of material, 
and its data type is optional boolean. True represents that the rectangles are inside of material, 
e.g., the sides of a slot. In the native coordinate system of the TwoParallelPlaneFeatureShape, the 
two parallel planes are symmetric about the ZX plane, one pair of edges is parallel to the X axis, 
the other pair of edges is parallel to the Z axis, and the centers of the rectangles are on the Y axis. 
The points of the TwoParallelPlaneFeatureShape are all points represented by (x, -gap/2, z) or 
(x, gap/2, z) for -length/2 <= x <= length/2 and -width/2 <= z <= width/2. 
 



24 
 

Class TwoParallelPlaneFeature is a subclass of DirectPlacementFeature used to represent a 
feature that is a pair of parallel rectangles positioned in a 3D space. TwoParallelPlaneFeature has 
one additional attribute. Attribute twoParallelPlaneShape represents the shape of the rectangles, 
and its type is TwoParallelPlaneFeatureShape. The placement must be a 3DPlacementZX. 
 
Class TwoParallelPlaneFlatEndFeatureShape is a subclass of TwoParallelPlaneFeatureShape 
used to represent a pair of parallel rectangles with a closed flat end at one side of the two parallel 
rectangles. The closed end is a rectangle whose size in the Z direction is width and whose size in 
the Y direction is gap. TwoParallelPlaneFlatEndFeatureShape has all of the attributes of a 
TwoParallelPlaneFeatureShape plus one additional attribute. Attribute xPlusEndClosed 
represents the closed end of the feature shape, and its data type is boolean. True represents that 
the end where X is positive is closed. False represents that the end where X is negative is closed. 
A pair of rectangles closed at both ends may be represented using a CuboidFeatureShape. The 
points of a TwoParallelPlaneFlatEndFeatureShape are all points of a 
TwoParallelPlaneFeatureShape plus (if xPlusEndClosed is true) all points represented by 
(length/2, y, z) for -gap/2 <= y <= gap/2 and -width/2 <= z <= width/2. If xPlusEndClosed is 
false, just put a minus sign in front of length/2 in that description. 
 
Class TwoParallelPlaneFlatEndFeature is a subclass of DirectPlacementFeature used to represent 
a TwoParallelPlaneFlatEndFeatureShape positioned in a 3D space. 
TwoParallelPlaneFlatEndFeature has one additional attribute. Attribute 
twoParallelPlaneFlatEndShape represents the TwoParallelPlaneFlatEndFeatureShape, and its 
type is TwoParallelPlaneFlatEndFeatureShape. The placement must be a 3DPlacementZX. 
 
Class TwoParallelPlaneRoundEndFeatureShape is a subclass of 
TwoParallelPlaneFlatEndFeatureShape used to represent a pair of parallel rectangles with a 
closed end at one side of the two parallel rectangles that is a half cylinder extending away from 
the rectangles. The length of the half cylinder in the Z direction is width and its diameter is gap. 
TwoParallelPlaneRoundEndFeatureShape has all of the attributes of a 
TwoParallelPlaneFeatureShape plus one additional attribute. Attribute xPlusEndClosed 
represents the closed end of the feature shape, and its data type is boolean. True represents that 
the end where X is positive is closed. False represents that the end where X is negative is closed. 
A pair of rectangles closed at both ends by half cylinders may be represented using a 
RoundCuboidFeatureShape. The points of a TwoParallelPlaneRoundEndFeatureShape are all 
points of a TwoParallelPlaneFeatureShape plus (if xPlusEndClosed is true) all points represented 
by (length/2 + R*cos(a), R*sin(a), z) for -π/2 < a < π/2 and -width/2 <= z <= width/2, where 
R = gap/2. If xPlusEndClosed is false, the additional points are represented by 
(-length/2 + R*cos(a), R*sin(a), z) for π/2 < a < 3π/2 and -width/2 <= z <= width/2. 
 
Class TwoParallelPlaneRoundEndFeature is a subclass of DirectPlacementFeature used to 
represent a TwoParallelPlaneRoundEndFeatureShape positioned in a 3D space. 
TwoParallelPlaneRoundEndFeature has one additional attribute. Attribute 
twoParallelPlaneRoundEndShape represents the TwoParallelPlaneRoundEndFeatureShape, and 
its type is TwoParallelPlaneRoundEndFeatureShape. The placement must be a 3DPlacementZX. 
 
Figure 15 shows the diagram of 3D-General-Surface features. 



25 
 

 
(Figure 15 goes here.) 
 
Class GSurfaceFeatureShape is a subclass of 3DSurfaceFeatureShape used to represent a feature 
that is a general surface. It has one attribute. Attribute pointsOnSurface represents the points that 
are used to define the surface with a specified mathematical algorithm, and its data type is a set 
of Coordinates3D, with a minimum of 4 elements in the set. 
 
Class GSurfaceFeature is a subclass of DirectPlacementFeature used to represent a feature that is 
a general 3D surface positioned in a 3D space. GSurfaceFeature has one additional attribute. 
Attribute gSurfaceShape represents the shape of the surface, and its type is 
GSurfaceFeatureShape. The placement must be a 3DPlacementZX. 
 
3.2.3 Indirect Placement Features 
 
Based on simple 3D features, specific form features are defined for applications in design for 
disassembly and disassembly process planning at the end of a product’s useful life. Figure 16 
shows the diagram of indirect placement features. 
 
(Figure 16 goes here.) 
 
Class RoundHole is a subclass of IndirectPlacementFeature used to represent a hole in a 
workpiece. It has one attribute. Attribute theHole represents the hole, and its data type is 
CylinderFeature. The value of the insideCylinder attribute of the cylinderShape attribute of the 
CylinderFeature must be true. 
 
Class TaperedHole is a subclass of IndirectPlacementFeature used to represent a tapered hole in 
a workpiece. It has one attribute. Attribute theHole represents the tapered hole, and its data type 
is FrustumFeature. The value of the insideFrustum attribute of the frustumShape attribute of the 
FrustumFeature must be true. 
 
Class Pin is a subclass of IndirectPlacementFeature used to represent a pin (a protrusion) in a 
workpiece. It has one attribute. Attribute thePin represents the pin, and its data type is 
CylinderFeature. The value of the insideCylinder attribute of the cylinderShape attribute of the 
CylinderFeature must be false. 
 
Class TaperedPin is a subclass of IndirectPlacementFeature used to represent a tapered pin in a 
workpiece. It has one attribute. Attribute thePin represents the tapered pin, and its data type is 
FrustumFeature. The value of the insideFrustum attribute of the frustumShape attribute of the 
FrustumFeature must be false. 
  
Class Slot is a subclass of IndirectPlacementFeature used to represent the parent type for slots, 
which are depressions with parallel sides and a flat bottom. It has two attributes. Attribute 
basePlane represents the base plane from which the slot is depressed, and its data type is 
DatumPlane. (DatumPlane is defined in Section 3.3.1.) Attribute filletRadius is optional and 
represents the radius of fillets applied to the concave edges between the bottom of the slot and 



26 
 

the sides of the slot. Its data type is LengthMeasure. The filletRadius must not exceed either the 
depth of the slot or half of the width of the slot. The two parallel planes that form the sides of the 
slot are represented in the subclasses of Slot. 
 
Class FlatEndsClosedSlot is a subclass of Slot used to represent a slot closed at both ends by 
planes. It has one additional attribute. Attribute sidesAndEnds represents the sides and ends of 
the closed end slot, and its data type is CuboidFeature. The CuboidFeature must be placed so that 
its top edges are on the basePlane. The length, width, and depth of the slot are determined by the 
length, width, and height of the cuboidShape of the CuboidFeature. The insideCuboid attribute of 
the cuboidShape of the CuboidFeature must be true. 
 
Class RoundEndsClosedSlot is a subclass of Slot used to represent a slot closed at both ends by 
half cylinders. It has one additional attribute. Attribute sidesAndEnds represents the sides and 
ends of the closed end slot, and its data type is RoundCuboidFeature. The RoundCuboidFeature 
must be placed so that its top edges are on the basePlane. The length, width, and depth of the slot 
are determined by the length, width, and height of the roundCuboidShape of the 
RoundCuboidFeature. The insideCuboid attribute of the roundCuboidShape of the 
RoundCuboidFeature must be true. 
 
Class OneRoundEndSlot is a subclass of Slot used to represent a slot closed at one end by a half 
cylinder. It has one additional attribute. Attribute sidesAndEnd represents the sides and end of 
the slot, and its data type is TwoParallelPlaneRoundEndFeature. The 
TwoParallelPlaneRoundEndFeature must be placed so that its top edges are on the basePlane. 
The length, width, and depth of the slot are determined by the length, gap, and width of the 
twoParallelPlaneRoundEndShape of the TwoParallelPlaneRoundEndFeature. The inside 
attribute of the twoParallelPlaneRoundEndShape of the TwoParallelPlaneRoundEndFeature 
must be true. 
 
Class OneFlatEndSlot is a subclass of Slot used to represent a slot closed at one end by a plane. 
It has one additional attribute. Attribute sidesAndEnd represents the sides and end of the slot, and 
its data type is TwoParallelPlaneFlatEndFeature. The TwoParallelPlaneFlatEndFeature must be 
placed so that its top edges are on the basePlane. The length, width, and depth of the slot are 
determined by the length, gap, and width of the twoParallelPlaneFlatEndShape of the 
TwoParallelPlaneFlatEndFeature. The inside attribute of the twoParallelPlaneFlatEndShape of 
the TwoParallelPlaneFlatEndFeature must be true. 
 
Class OpenEndsSlot is a subclass of Slot used to represent a slot open at both ends. It has one 
additional attribute. Attribute sides represents the sides of the slot, and its data type is 
TwoParallelPlaneFeature. The TwoParallelPlaneFeature must be placed so that its top edges are 
on the basePlane. The length, width, and depth of the slot are determined by the length, gap, and 
width of the twoParallelPlaneShape of the TwoParallelPlaneFeature. The inside attribute of the 
twoParallelPlaneShape of the TwoParallelPlaneFeature must be true. 
 
Class Rib is a subclass of IndirectPlacementFeature used to represent a rib, a protrusion. It has 
two attributes. Attribute basePlane represents the base plane from which the rib protrudes, and 
its data type is DatumPlane. Attribute filletRadius is optional and represents the radius of fillets 



27 
 

applied to the concave edges between the basePlane and the sides of the rib. Its data type is 
LengthMeasure. The filletRadius must not exceed the height of the rib. The ends of the rib and 
the two parallel planes that form the sides of the rib are represented in the subclasses of Rib. 
 
Class RoundEndsRib is a subclass of Rib used to represent a rib with rounded ends. It has one 
additional attribute. Attribute sidesAndEnds represents the sides and ends of the rib, and its data 
type is RoundCuboidFeature. The RoundCuboidFeature must be placed so that its bottom edges 
are on the basePlane. The length, width, and height of the rib are determined by the length, 
width, and height of the roundCuboidShape of the RoundCuboidFeature. The insideCuboid 
attribute of the roundCuboidShape of the RoundCuboidFeature must be false. 
 
Class FlatEndsRib is a subclass of Rib used to represent a rib with flat ends. It has one additional 
attribute. Attribute sidesAndEnds represents the sides and ends of the rib, and its data type is 
CuboidFeature. The CuboidFeature must be placed so that its bottom edges are on the basePlane. 
The length, width, and height of the rib are determined by the length, width, and height of the 
cuboidShape of the CuboidFeature. The insideCuboid attribute of the cuboidShape of the 
CuboidFeature must be false. 
 
Class RectangularBoss is a subclass of IndirectPlacementFeature used to represent a boss (a 
protrusion) on a workpiece. A RectangularBoss has two sets of parallel sides and a flat top. 
Adjacent sides are orthogonal to each other. It has four attributes. Attribute basePlane represents 
the base plane from which the boss protrudes, and its data type is Plane. Attribute filletRadius is 
optional and represents the radius of fillets applied to the concave edges between the bottom 
edges of the boss and the basePlane. Its data type is LengthMeasure. The filletRadius must not 
exceed the height of the boss. Attribute sidesAndEnds represents the sides and ends of the 
pocket, and its data type is CuboidFeature. The CuboidFeature must be placed so that its bottom 
edges are on the basePlane. The length, width, and height of the boss are determined by the 
length, width, and height of the cuboidShape of the CuboidFeature. The insideCuboid attribute of 
the cuboidShape of the CuboidFeature must be false. Attribute cornerRadius represents rounding 
the four edges of the boss that do not lie on the top by removing material. Its data type is 
LengthMeasure. The cornerRadius must not exceed half of the width of the boss. 
 
Class RectangularPocket is a subclass of RectangularBossFeature used to represent a pocket (a 
depression) in a workpiece. A RectangularPocket has two sets of parallel sides and a flat bottom. 
Adjacent sides are orthogonal to each other. It has four attributes. Attribute basePlane represents 
the base plane from which the pocket is depressed, and its data type is Plane. Attribute 
filletRadius is optional and represents the radius of fillets applied to the concave edges between 
the bottom of the pocket and the sides of the pocket. Its data type is LengthMeasure. The 
filletRadius must not exceed either the depth of the pocket or half of the width of the pocket. 
Attribute sidesAndEnds represents the sides and ends of the pocket, and its data type is 
CuboidFeature. The CuboidFeature must be placed so that its top edges are on the basePlane. 
The length, width, and depth of the pocket are determined by the length, width, and height of the 
cuboidShape of the CuboidFeature. The insideCuboid attribute of the cuboidShape of the 
CuboidFeature must be true. Attribute cornerRadius represents rounding the corners of the 
pocket (by adding material). Its data type is LengthMeasure. The cornerRadius must not exceed 
half of the width of the pocket. 



28 
 

 
3.2.4 Implicit Placement Features 
 
Implicit placement features are defined for generating inspection features. Figure 17 shows the 
diagram of all the implicit placement features classes. As mentioned earlier, an 
ImplicitPlacementFeature modifies one or more other features. The placement of an 
ImplicitPlacementFeature is determined by the placement(s) of the modified feature(s) and the 
nature of the modification. 
 
(Figure 17 goes here.) 
 
Class Chamfer is a subclass of ImplicitPlacementFeature used to represent the removal of 
material from a convex edge on a workpiece in such a way that a new surface and two new edges 
are created. The new surface created is flat in at least one direction in the sense that is possible to 
draw line segments on it that meet the new edges (or the tangents to the new edges) in a right 
angle. For example, if the original edge is formed by two planes, the new surface is a plane. As 
another example, if the original edge is formed by a plane and a cylinder, and the plane is 
orthogonal to the axis of the cylinder, the new surface is a frustum of a cone. In general, imagine 
that the material is cheese and the chamfer is cut by a wire cheese cutter moving along the 
original edge so that a narrow long slice is removed that includes the original edge. Chamfer has 
four attributes. Attribute firstReferenceSurface represents the first reference surface in creating a 
chamfer, and its data type is DirectPlacementFeature, with the restriction that the FeatureShape 
of the DirectPlacementFeature must be a surface. Attribute firstOffset represents the distance 
from the original edge to the new edge on the first reference surface, and its data type is 
LengthMeasure. Attribute secondReferenceSurface represents the second reference surface in 
creating a chamfer, and its data type is DirectPlacementFeature, with the restriction that the 
FeatureShape of the DirectPlacementFeature must be a surface. Attribute secondOffset represents 
the distance from the original edge to the new edge on the second reference surface, and its data 
type is LengthMeasure. 
 
Class Fillet is a subclass of ImplicitPlacementFeature used to represent a fillet of a concave edge 
between two surfaces of a workpiece. A fillet adds material at the edge to which it is applied. 
The shape of the fillet is what would be created by filling the edge with putty and then smoothing 
it with a rolling ball that stays in contact with the surfaces that form the edge. Fillet has three 
attributes. Attribute firstReferenceSurface represents the first reference surface in creating a 
fillet, and its data type is DirectPlacementFeature, with the restriction that the FeatureShape of 
the DirectPlacementFeature must be a surface. Attribute secondReferenceSurface represents the 
second reference surface in creating a fillet, and its data type is DirectPlacementFeature, with the 
restriction that the FeatureShape of the DirectPlacementFeature must be a surface. Attribute 
radius represents the radius of the fillet (i.e., the radius of the imaginary rolling ball), and its data 
type is LengthMeasure.  
 
Class RoundEdge is a subclass of Fillet used to represent the removal of material from a convex 
edge of a workpiece by rounding the edge. Specifically, at each point on the edge, the lines of 
intersection of the two surfaces that form the edge with a plane perpendicular to the edge (or 
perpendicular to the tangent to the edge) are joined by a circular arc that is tangent to the lines. 



29 
 

RoundEdge has three attributes. Attribute firstReferenceSurface represents the first reference 
surface in creating a round edge, and its data type is DirectPlacementFeature, with the restriction 
that the FeatureShape of the DirectPlacementFeature must be a surface. Attribute 
secondReferenceSurface represents the second reference surface in creating a round edge, and its 
data type is DirectPlacementFeature, with the restriction that the FeatureShape of the 
DirectPlacementFeature must be a surface. Attribute radius represents the radius of the round 
edge, and its data type is LengthMeasure. 
 
Class RoundedCorner is a subclass of ImplicitPlacementFeature used to represent the removal of 
material from a convex corner of a workpiece by rounding the corner. The surface of the rounded 
corner is part of the surface of a sphere. RoundedCorner has two attributes. Attribute corner 
represents the corner that is rounded, and its data type is PointFeature. Attribute radius 
represents the radius of the round corner, and its data type is LengthMeasure. 
 
Special features are defined for generating features with special purposes, such as thread and 
screw. More special features, such as gear tooth and helical spring, can be added when they are 
needed.  
 
Class GeneralThread is used to represent a general thread. It has eight attributes. Attribute 
fitClass represents how tight the assembled threads are, and its data type is String. Fit class is 
defined in ISO 10303-Part 224. Attribute form represents the geometric shape of the thread, and 
its data type is String. Attribute innerThread represents whether the thread is an inner thread. If it 
is not, it is an outer thread. The data type is boolean. A value of true means the thread is an inner 
thread. Attribute majorDiameter represents the major diameter of the thread, and its data type is 
LengthMeasure. Attribute minorDiameter represents the minor diameter of the thread, and its 
data type is LengthMeasure. Attribute pitchDiameter represents the pitch diameter of the thread, 
and its data type is LengthMeasure. Attribute numberOfThread represents the number of threads 
in a unit of length, and its data type is int. Attribute rightHanded represents whether the thread is 
right handed in orientation. If it is not, it is left handed. The data type is boolean. A value of true 
means the thread is right handed. 
 
Class ThreadedHole is a subclass of ImplicitPlacementFeature used to represent a threaded hole 
in a workpiece. ThreadedHole has two attributes. Attribute theThread represents the thread of a 
hole, and its data type is GeneralThread. Attribute theHole represents the hole, and its data type 
is RoundHole. The innerThread of theThread must be true. 
 
Class Screw is a subclass of ImplicitPlacementFeature used to represent a threaded pin on a 
workpiece. It has two attributes. Attribute theThread represents the thread of a pin, and its data 
type is GeneralThread. Attribute thePin represents the pin and its data type is Pin. The 
innerThread of theThread must be false. 
 
Class CrestedThread is a subclass of GeneralThread used to represent a thread with a crest. It has 
one attribute. Attribute crest represents the dimension of the crest, and its data type is 
LengthMeasure. 
 
3.2.5 Pattern Shapes and Features 



30 
 

 
Figure 18 shows the diagram of matrix pattern shapes and features. 
 
(Figure 18 goes here.) 
 
Class PatternFeatureShape is a subclass of FeatureShape used to represent a pattern of feature 
shapes. Figure 11 shows the diagram of all the pattern feature classes in the PatternFeaturePack 
package.  Pattern feature is defined in ANSI/ASME Y14.5 standard [26]. PatternFeatureShape 
has three attributes. Attribute baseFeatureShape represents a reference feature for all the features 
in the pattern, and its data type is FeatureShape (excluding PatternFeatureShape). Attribute 
zDirection represents the direction in the native coordinate system of the pattern of the Z axis of 
the native coordinate system of the baseFeatureShape, and is data type is is UnitVector3D. 
Attribute xDirection represents the direction in the native coordinate system of the pattern of the 
X axis of the native coordinate system of the baseFeatureShape, and is data type is 
UnitVector3D. 
 
Each subclass of PatternFeatureShape says how to locate copies of the baseFeatureShape in the 
native coordinate system of the PatternFeatureShape. Locating a FeatureShape is done using a 
point of the FeatureShape as a location point. The location point of a FeatureShape that is a 
depression (e.g., a hole) is the highest point of the FeatureShape on the Z axis of the native 
coordinate system of the FeatureShape. The location point of a FeatureShape that is a protrusion 
(e.g., a boss) is the origin of the native coordinate system of the FeatureShape (the origin is the 
lowest point of the FeatureShape). 
 
Class MatrixPatternFeatureShape is a subclass of PatternFeatureShape used to represent a planar 
array of feature shapes. The array has rows and columns in which feature shapes are evenly 
spaced. Elements of rows and columns are indexed. The first element of a row or column has 
index 1. The class has four additional attributes. Attribute numberOfFeaturesInRow represents 
the number of features in a row of the pattern, and its data type is PositiveInteger. Attribute 
numberOfFeaturesInColumn represents the number of features in a column of the pattern, and its 
data type is PositiveInteger. The first row of the pattern lies on positive X axis of the native 
coordinate system of the pattern. Other rows are parallel to the first row. Attribute 
columnDirection represents the column direction of the pattern, and its data type is 
AngleMeasure. The angle is 0 on the positive X axis and it increases counterclockwise as viewed 
from the positive Z axis. Attribute rowInterval represents the distance between any two features 
in the row direction, and its data type is LengthMeasure. Attribute columnInterval represents the 
distance between any two features in the column direction of the pattern, and its data type is 
LengthMeasure. The pattern element whose row and column indices are both 1 has its location 
point at the origin of the native coordinate system of the pattern. The location points of the rest 
of the pattern elements are at the points of the array. All pattern elements are oriented as 
specified by the zDirection and the xDirection. If numberOfFeaturesInColumn is 1, there is a 
single row of features, and the value of columnInterval is not used in determining the placement 
of the features. If numberOfFeaturesInRow is 1, there is a single column of features, and the 
value of rowInterval is not used in determining the placement of the features. 
 



31 
 

Class MatrixPatternFeature is a subclass of DirectPlacementFeature used to represent an array 
pattern positioned in a 3D space. MatrixPatternFeature has one additional attribute. Attribute 
matrixPatternShape represents the shape of the array pattern, and its type is 
MatrixPatternFeatureShape. The placement must be a 3DPlacementZX and must place the array 
pattern on a plane. 
 
Class MatrixOmittedPatternFeatureShape is a subclass of MatrixPatternFeatureShape used to 
represent an array of feature shapes with some feature shapes that are omitted. The class has two 
additional attributes. Attribute rowIndices represents indices of the omitted features in the row 
direction of the pattern, and its data type is a list of PositiveInteger. Attribute columnIndices 
represents indices of the omitted features in the column direction of the pattern, and its data type 
is a list of PositiveInteger. The two lists must be the same length. Corresponding indices in the 
two lists (i.e., the nth element of each list) are the row and column indices of an element to omit 
from the pattern. No two pairs of corresponding indices may be the same (i.e., the same pattern 
element cannot be omitted more than once). 
 
Class MatrixOmittedPatternFeature is a subclass of DirectPlacementFeature used to represent an 
array pattern with some elements omitted positioned in a 3D space. MatrixOmittedPatternFeature 
has one additional attribute. Attribute matrixOmittedPatternShape represents the shape of the 
array pattern, and its type is MatrixOmittedPatternFeatureShape. The placement must be a 
3DPlacementZX and must place the array pattern on a plane. 
 
Class MatrixModifiedPatternFeatureShape is a subclass of MatrixOmittedPatternFeatureShape 
used to represent a matrix pattern of features with zero to many features that are offset from their 
normal positions and zero to many features that are omitted. The class has two additional 
attributes. Attribute offsetDirections represents offset directions of the offset features, and its 
data type is a list of UnitVector3D. The Z coordinates of the offsetDirections must be 0. Attribute 
offsetDistances represents offset distances of the offset features, and its data type is a list of 
LengthMeasure. The lengths of the two lists must be the same as the lengths of the rowIndices 
and columnIndices lists. If an element of the offsetDistances list is 0, the indicated array element 
should be omitted (and the corresponding value of offsetDirections is not used). If an element of 
the offsetDistances list is positive, the indicated array element should be moved from its array 
location by that distance in the direction specified by the corresponding element of the 
offsetDirections. 
 
Class MatrixModifedPatternFeature is a subclass of DirectPlacementFeature used to represent an 
array pattern with some elements omitted or offset positioned in a 3D space. 
MatrixModifedPatternFeature has one additional attribute. Attribute 
matrixModifiedPatternShape represents the shape of the array pattern, and its type is 
MatrixModifiedPatternFeatureShape. The placement must be a 3DPlacementZX and must place 
the array pattern on a plane. 
 
Figure 19 shows the diagram of circular pattern shapes and features. 
 
(Figure 19 goes here.) 
 



32 
 

Class CircularPatternFeatureShape is a subclass of PatternFeatureShape used to represent a 
circular arc pattern of feature shapes. Elements of the pattern are indexed. The first element of 
the pattern has index 1. The class has four additional attributes. Attribute numberOfFeatures 
represents the number of feature shapes in the pattern, and its data type is PositiveInteger. 
Attribute patternRadius represents the radius of the pattern, and its data type is LengthMeasure. 
Attribute peripheralInterval represents the interval between any two features in the tangential 
direction of the pattern of features, and its data type is AngularMeasure. Angles are positive in 
the counterclockwise direction as viewed from the positive Z axis. Attribute rotateOrientation 
represents whether the orientation of pattern elements should be rotated, and its data type is 
boolean. If rotateOrientation is false, the native coordinate system of each pattern element 
should be oriented in the native coordinate system of the pattern as specified by zDirection and 
xDirection. If rotateOrientation is true, the first element of the pattern should be oriented as 
specified by zDirection and xDirection, but other elements should have their orientation rotated 
(about a vertical axis through the location point) through the angle [(n-1)*peripheralInterval], 
where n is the index of the element. This is the same as the angle through which the location 
point has been rotated. The center of the pattern is at the origin of the native coordinate system of 
the CircularPatternFeatureShape. The first element of the pattern is located on the X axis at 
(patternRadius, 0, 0) in the native coordinate system of the CircularPatternFeatureShape. 
 
Class CircularPatternFeature is a subclass of DirectPlacementFeature used to represent a circular 
arc pattern positioned in a 3D space. CircularPatternFeature has one additional attribute. 
Attribute circularPatternShape represents the shape of the circular arc pattern, and its type is 
CircularPatternFeatureShape. The placement must be a 3DPlacementZX and must place the 
circular arc pattern on a plane. 
 
Class CircularOmittedPatternFeatureShape is a subclass of CircularPatternFeatureShape used to 
represent a circular arc pattern of features with some features that are omitted. The class has one 
additional attribute. Attribute indices represents indices of the omitted features in the pattern, and 
its data type is a set of PositiveInteger. 
 
Class CircularOmittedPatternFeature is a subclass of DirectPlacementFeature used to represent a 
circular arc pattern with some elements omitted positioned in a 3D space. 
CircularOmittedPatternFeature has one additional attribute. Attribute 
circularOmittedPatternShape represents the shape of the circular arc pattern, and its type is 
CircularOmittedPatternFeatureShape. The placement must be a 3DPlacementZX and must place 
the circular arc pattern on a plane. 
 
Class CircularModifiedPatternFeatureShape is a subclass of Class 
CircularOmittedPatternFeatureShape used to represent a circular pattern of features with zero to 
many elements that are offset from their normal positions and zero to many elements that are 
omitted. The class has two attributes. Attribute offsetDirections represents offset directions of the 
offset features, and its data type is a list of UnitVector3D. The Z coordinates of the 
offsetDirections must be 0. Attribute offsetDistances represents offset distances of the offset 
features, and its data type is a list of LengthMeasure. The lengths of the two lists must be the 
same as the length of the indices list. If an element of the offsetDistances list is 0, the 
corresponding pattern element should be omitted (and the corresponding value of 



33 
 

offsetDirections is not used). If an element of the offsetDistances list is positive, the 
corresponding pattern element should be moved from its circular arc location by that distance in 
the direction specified by the corresponding element of the offsetDirections. If rotateOrientation 
is true and an element is offset, the element should be rotated from the orientation specified by 
zDirection and xDirection by an angle that is the same as the angle between the X axis of the 
native coordinate system of the pattern and the line from the origin to the location point of the 
element. 
 
Class CircularModifiedPatternFeature is a subclass of DirectPlacementFeature used to represent 
a circular arc pattern with some elements omitted or offset positioned in a 3D space. 
CircularModifiedPatternFeature has one additional attribute. Attribute 
circularModifiedPatternShape represents the shape of the circular arc pattern, and its type is 
CircularModifiedPatternFeatureShape. The placement must be a 3DPlacementZX and must place 
the circular arc pattern on a plane. 
 
Class ConcentricCircularPatternFeatureShape is a subclass of CircularPatternFeatureShape used 
to represent a pattern that is set of concentric circular arcs of feature shapes. The class has two 
additional attributes. Attribute numberOfFeaturesInRadialDirection represents the number of 
elements in the radial direction, and its data type is PositiveInteger. Attribute radialInterval 
represents the interval between adjacent arcs of elements in the radial direction, and its data type 
is LengthMeasure. The first element of each arc is located on the X axis of the native coordinate 
system of the pattern. In each arc, the number of elements and the angular separation of adjacent 
elements is given by the numberOfFeatures and peripheralInterval inherited from 
CircularPatternFeatureShape. Elements of the pattern are indexed by an angular index and a 
radial index. The radial index of each element of the smallest arc is 1. The radial index of each 
element of the next arc is 2, and so on. The angular index of the first element in each arc is 1 and 
increases around the arc. 
 
Class ConcentricCircularPatternFeature is a subclass of DirectPlacementFeature used to 
represent a concentric circular arc pattern positioned in a 3D space. 
ConcentricCircularPatternFeature has one additional attribute. Attribute 
concentricCircularPatternShape represents the shape of the concentric circular arc pattern, and 
its type is ConcentricCircularPatternFeatureShape. The placement must be a 3DPlacementZX 
and must place the concentric circular arc pattern on a plane. 
 
Class ConcentricCircularOmittedPatternFeatureShape is a subclass of 
ConcentricCircularPatternFeatureShape used to represent a concentric circular arc pattern of 
feature shapes with some feature shapes that are omitted. The class has two additional attributes. 
Attribute angularIndices represents indices of the omitted features in the angular direction, and 
its data type is a list of PositiveInteger. Attribute radialIndices represents indices of the omitted 
features in the radial direction, and its data type is a list of PositiveInteger. The two lists must be 
the same length. Corresponding indices in the two lists (i.e., the nth element of each list) are the 
angular and radial indices of an element to omit from the pattern. No two pairs of corresponding 
indices may be the same (i.e., the same pattern element cannot be omitted more than once). 
 



34 
 

Class ConcentricCircularOmittedPatternFeature is a subclass of DirectPlacementFeature used to 
represent a concentric circular arc pattern with some elements omitted positioned in a 3D space. 
ConcentricCircularOmittedPatternFeature has one additional attribute. Attribute 
concentricCircularOmittedPatternShape represents the shape of the concentric circular arc 
pattern, and its type is ConcentricCircularOmittedPatternFeatureShape. The placement must be a 
3DPlacementZX and must place the concentric circular arc pattern on a plane. 
 
Class ConcentricCircularModifiedPatternFeatureShape is a subclass of 
ConcentricCircularOmittedPatternFeatureShape used to represent a concentric circular arc 
pattern of features with zero to many features that are offset from their normal positions and zero 
to many features that are omitted. The class has two additional attributes. Attribute 
offsetDirections represents offset directions of the offset features, and its data type is a list of 
UnitVector3D. The Z coordinate of each of the offsetDirections must be 0. Attribute 
offsetDistances represents offset distances of the offset features, and its data type is a list of 
LengthMeasure. The lengths of the two lists must be the same as the lengths of the 
angularIndices and radialIndices lists. If an element of the offsetDistances list is 0, the element 
should be omitted (and the corresponding value of offsetDirections is not used). If an element of 
the offsetDistances list is positive, the indicated pattern element should be moved from its 
concentric circular arc location by that distance in the direction specified by the corresponding 
element of the offsetDirections. If rotateOrientation is true and an element is offset, the element 
should be rotated from the orientation specified by zDirection and xDirection by an angle that is 
the same as the angle between the X axis of the native coordinate system of the pattern and the 
line from the origin to the location point of the element. 
 
Class ConcentricCircularModifedPatternFeature is a subclass of DirectPlacementFeature used to 
represent a concentric circular arc pattern with some elements omitted or offset positioned in a 
3D space. ConcentricCircularModifiedPatternFeature has one additional attribute. Attribute 
concentricCircularModifiedPatternShape represents the shape of the concentric circular arc 
pattern, and its type is ConcentricCircularModifedPatternFeatureShape. The placement must be a 
3DPlacementZX and must place the concentric circular arc pattern on a plane. 
 
3.2.6 Separator 
 
Enumeration type SeparatorType is used to define the type of a separator so that proper 
disassembly tools can be selected. This enumeration type includes Bolt-Nut-Washer, Screw, 
TaperFit, PinFit, Rivet, SplineFit, RubberRing, SpringFit, Bearing, GearMesh, BeltMesh, Glue, 
and Welding [24]. 
 
Class Separator is a subclass of Class Connector, defined in the Open Assembly Model, and is 
used to represent a separator in an assembly that is to be separated at the end of its useful life. It 
has two attributes. Attribute feature represents the feature from which the assembly will be 
separated into subassemblies, and its data type is SimpleFeature. Attribute type represents the 
type of the separator, and its data type is SeparatorType. 
 
4. Conclusion and Future Work 
 



35 
 

Manufacturing industries are facing the challenge of reuse and recycle of products at the end of 
the products’ service lives. Our literature review shows that the number of environmental 
protection regulations is increasing rapidly. Reuse and recycle are critical activities to alleviate 
natural resource depletion and save energy to achieve the goal of sustainable development. 
Disassembly of out-of-service products is a key operation to separate the product into reusable 
and recyclable parts. Information on design for disassembly and disassembly process planning is 
critical for decision making in design and manufacturing. An information model for disassembly 
processes is, hence, developed using the Unified Modeling Language. The model includes shape, 
placement, feature composition classes and their relationships that define disassembly features. 
The developed information model provides a basis for software development of design for 
disassembly and disassembly process planning systems. 
 
Possible future work includes comprehensive tests of the information model with more 
complicated designs. These are needed to test the model. Prototype disassembly databases, cost 
of disassembly analysis software, and disassembly process planning systems can be developed 
using the information model. Finally, a standard data exchange format of the XML (eXtensible 
Markup Language) model for design for disassembly and disassembly process plans can also be 
developed. 
 
References 
 
1 Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference 

Manual, 2nd edition, Addison Wesley, 2004. 
2 Vinodh, S., Praveen Kumar, R., and Nachiappan, N., “Disassembly modeling, planning, and 

leveling for a cam-operated rotary switch assembly: A case study,” International Journal of 
Advanced Manufacturing Technology, Vol. 62, pp. 789-800, 2012. 

3 Tang, Y., Zhou, M., and Caudill, R., “An integrated approach to disassembly planning and 
demanufacturing operation,” IEEE Transactions on Robotics and Automation, 17, pp. 773-
784, 2001. 

4 Mascle, C. and Zhao, H., “Integrating environmental consciousness in product/process 
development based on life-cycle thinking,” International Journal of Production Economics, 
112, pp. 5-17, 2008. 

5 Behdad, S. and Thurston, D., “Disassembly and reassembly sequence planning tradeoffs 
under uncertainty for product maintenance,” Transactions of the ASME Journal of 
Mechanical Design, Vol. 134, pp. 041011-1 to 041011-9, 2012. 

6 Fan, S.-K.. Fan, C.. Yang, J.-H., and Liu, K., “Disassembly and recycling cost analysis of 
waste notebook and the efficiency improvement by re-design process,” Journal of Cleaner 
Production, Vol. 39, pp. 209-219, 2013. 

7 Liu, X., Peng, G., Liu, X., and Hou, Y., “Disassembly sequence planning approach for 
product virtual maintenance based on improved max-min ant system,” International Journal 
of Advanced Manufacturing Technology, Vol. 59, pp. 829-839, 2012. 

8 Smith, S., Smith, G., and Chen, W.-H., “Disassembly sequence structure graphs: An optimal 
approach for multiple-target selective disassembly sequence planning,” Journal of Advanced 
Engineering Informatics, Vol. 26, pp. 306-316, 2012. 



36 
 

9 Tseng, H.-E., Chang, C.-C., and Cheng, C.-J., “Disassembly-oriented assessment 
methodology for product modularity,” International Journal of Production Research, Vol. 48, 
pp. 4297-4320, 2010. 

10 Li, J., Wang, Q., and Huang, P., “An integrated disassembly constraint generation approach 
for product design evaluation,” International Journal of Computer Integrated Manufacturing, 
Vol. 25, pp. 565-577, 2012. 

11 ISO 10303-44:2000, Industrial Automation Systems and Integration - Product Data 
Representation and Exchange - Part 44: Integrated Generic Resources: Product Structure 
Configuration, 2nd edition. 

12 Sudarsan, R., Han, Y., Foufou, S., Feng, S., Roy, U., Wang, F., Sriram, R., and Lyons, K., 
“A Model for Capturing Product Assembly Information,” Transactions of ASME, Journal of 
Computing and Information Science in Engineering, Vol. 6, March 2006, pp. 11 – 21 

13 Vinodh, S., Nachiappan, N., and Praveen Kumar, R., “Sustainability through disassembly 
modeling, planning, and leveling: A case study,” Journal of Clean Technologies and 
Environmental Policy, Vol. 14, pp. 55-67, 2012. 

14 Lambert, A. and Gupta, S., “Demand-driven disassembly optimization for electronic 
products package reliability,” Journal of Electronics Manufacturing, Vol. 11, pp. 121-135, 
2002. 

15 Murshed, S., Dixon, A., and Shah, J., “Neutral Definition and Recognition of Assembly 
Features for Legacy Systems Reverse Engineering”, ASME 2009 International Design 
Engineering Technical Conferences and Computers and Information in Engineering 
Conference (IDETC/CIE2009)  August 30 – September 2, 2009 , San Diego, California, 
USA, Paper No DETC2009-86739. 

16 Murshed, M., Shah J., and Jagasivamani, V., “OAM+: An Assembly data model for Legacy 
Systems Engineering”, ASME 2007 International Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference (IDETC/CIE2007) September 4 
– 7, 2007 , Las Vegas, Nevada, USA, Paper No: DETC2007-35723. 

17 Chan, C. and Tan, S., “Generating assembly features onto split solid models,” Computer-
Aided Design, Vol.35, pp.1315 - 1336, 2003. 

18 Hamidullah, B. and Irfan, M., “Assembly features: definition, classification, and 
instantiation,” IEEE-ICET 2006 2nd International Conference on Emerging Technologies, 
Preshawar, Pakistan, pp.617-623, November 2006. 

19 ISO 10303-224:2006, Industrial automation systems and integration - Product data 
representation and exchange - Part 224: Application protocol: Mechanical product definition 
for process planning using machining features. 

20 ISO 10303-111:2007, Industrial automation systems and integration - Product data 
representation and exchange - Part 111: Integrated application resource: Elements for the 
procedural modelling of solid shapes. 

21 Dipper, T., Xu, X., and Klemm, P., “Defining, recognizing and representing feature 
interactions in a feature-based data model,” Journal of Robotics and Computer-Integrated 
Manufacturing, Vol. 27, pp. 101-114, 2011. 

22 ISO 10303-238:2007, Industrial automation systems and integration - Product data 
representation and exchange - Part 238: Application protocol: Application interpreted model 
for computerized numerical controllers. 



37 
 

23 Hu, Y., Wang, Y., Zhao, G., Wang, Y., and Yuan, X., “Feature-based modeling of 
automobile gears and manufacturing resources for virtual manufacturing,” International. 
Journal of Advanced Manufacturing Technology, Vol. 55, pp. 405-419, 2011. 

24 Anjum, N., Harding, J., and Young, R., and Case, K., “Manufacturability verification through 
feature-based ontological product models, Proceedings of the Institution of Mechanical 
Engineers, Part B: Journal of Engineering Manufacture, Vol. 226, pp. 1086-1098, 2012. 

25 ISO 10303-203:2011, Industrial automation systems and integration – Product data 
representation and exchange – Part 203: Application protocol: Configuration Controlled 3D 
Designs of Mechanical Parts and Assemblies. 

26 ANSI/ASME Y14.5, Dimensioning and Tolerancing, The American Society of Mechanical 
Engineers, New York City, New York, 2009. 

 
 
 
 
  



38 
 

 

 

 

Figure 1. Class diagram of Support Data 



39 
 

  

 

Figure 2. Class diagram of Placement 



40 
 

 

 

 

 

 

 

 

 

 

 

Figure 3. An Overview of Disassembly Feature Model 
NOTE: class name in italic font in a UML class diagram means the class is abstract. 

 



41 
 

 

  

 

Figure 4. Class Diagram of Point and Line Features 



42 
 

 

Figure 5. Class Diagram of Linear Features 

 

 

 

 

 

 

 

 

 



43 
 

 

Figure 6. Class Diagram of Circular Features 

 

 

 

 

 

 

 

 

 



44 
 

 

Figure 7. Class Diagram of 2D-Curve and Plane Features 

 

 

 

 

 



45 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Class Diagram of 3D-General Curve Features 



46 
 

 

 

 

 

 

 

 

Figure 9. Class Diagram of Point Symmetric Features 



47 
 

 

 

 

 

 

 

 

 

 

Figure 10. Class Diagram of Axial-Symmetric Features 



48 
 

 

 

 

 

 

 

 

 

 

 

Figure 11. Class Diagram of Axial-Symmetric Features (cont.) 



49 
 

  

 

Figure 12. Class Diagram of Cuboid Features 



50 
 

 

 

 

 

 

 

 

 

Figure 13. Class Diagram of Composite Features 



51 
 

 

 

 

 

 

 

 

 

Figure 14. Class Diagram of Planar Features 



52 
 

 

 

 

 

 

 

 

Figure 15. Class Diagram of 3D General Surface Features 



53 
 

 

 

 

 

 

 

 

Figure 16. Class Diagram of Indirect Placement Features 



54 
 

 

 

 

 

 

 

 

 

Figure 17. Class diagram of Implicit Placement Features 



55 
 

 

 

 

 

 

Figure 18. Class diagram of Matrix Pattern Features 



56 
 

 

 

Figure 19. Class diagram of Circular Pattern Features 


