
A Raytracing Model for Wireless Propagation in Tunnels

with Varying Cross Section

Camillo Gentile, Fabien Valoit, and Nader Moayeri

Advanced Network Technologies Division

National Institute of Standards and Technology

Gaithersburg, MD, USA

{camillo.gentile,fabien.valoit,nader.moayeri}@nist.gov

Abstract—Mandated by the 2006 United States Miner Act,
reliable two-way communications in mines has drawn the
interest of network engineers in recent years. Critical to the
design of these systems is an accurate channel propagation
model. Given the elementary geometry seen in most tunnels,
models that approximate them as a rectangular waveguide
have been developed. These models are extremely accurate in
vehicular tunnels because – since the tunnel is typically cast
from concrete – the cross section is uniform throughout and the
surface roughness is negligible. Mines, however, do not conform
to these two conditions. In this paper, we extend the waveguide
model to tunnels with varying cross section and measurable
surface roughness. The effectiveness of the proposed model is
validated through in-house field measurements collected in a
vehicular tunnel and in a coal mine. We show that while the
original model performs well in the former, it falters in the
latter. The extended model, however, predicts reliably in the
mine as well.

Index Terms—Mine; surface roughness; convex; concave

I. INTRODUCTION

Prompted by two mining accidents which caused the

deaths of 14 miners in West Virginia in January 2006, the

United States Congress passed the most sweeping legislation

in close to 30 years. Amongst other provisions, the 2006

Miner Act calls for two-way communications between un-

derground miners and rescuers, as well as location tracking.

Critical to the design of these systems is an accurate channel

propagation model. In this context, recent years have seen

the development of analytical models to predict the radio

propagation of electromagnetic waves in tunnels [1], [2],

[3]. The papers leverage the elementary geometry seen in

most tunnels so as to approximate them as a rectangular

waveguide, for which well-defined theory has been estab-

lished. The theory permits closed-form expressions for the

electromagnetic field by way of raytracing the reflected

paths.

Associated with these analytical models are two main

underlying assumptions. The first is that the radio waves

behave like light, hence that the effects of diffraction can

be ignored. This assumption is valid when the dimensions

of the tunnel are much larger than the wavelength of the

signal. This translates to a center frequency of a few hundred

Megahertz for tunnels with cross-sectional dimensions on the

order of several meters. The second assumption, of course,

is that the tunnel is well approximated by a rectangular

cuboid. For example, the results in [2], [3] are presented for a

vehicular tunnel in France at center frequencies of 450 MHz

and 915 MHz. Since the cross section of the tunnel is close

to rectangular – and moreover uniform throughout the shaft

– the predictions are extremely accurate. However, when the

cross section of the tunnel varies throughout the shaft – a

prime example is in mines – the predictions break down. The

breakdown does not arise simply from the variation in the

dimensions, but also because they are typically much smaller

than the dimensions of vehicular tunnels. As the dimensions

decrease, the model is more sensitive to such variations

as they represent a larger percentage of the nominal cross

section.

To our knowledge, [3] is the most recently published

work in this specific research area. Their model, intended

for uniform cross sections, is described in Section II. In this

paper, we propose two major improvements to it. The first

is a raytracing model for tunnels with varying cross sections

throughout the shaft. It is presented in Section III. The sec-

ond improvement, in Section IV, is an extension of the model

to include surface roughness. Again, as opposed to vehicular

tunnels, this factor is much more significant in coal (iron,

precious metals, etc.) mines due to the natural roughness of

the rock. In order to substantiate the proposed model, we

compare predicted results to in-house field measurements in

two tunnels: a train tunnel and a coal mine. In Section V

we show that in the mine – with varying cross section and

surface roughness – our proposed model predicts reliably

while the uniform model falters. The results are summarized

in the Conclusions section.

II. THE UNIFORM CROSS SECTION MODEL

In this section, we present the raytracing model described

in [3]. Figure 1(a) illustrates the model parameters. The

cross-sectional profiles of the tunnel are given as (a, b) in

reference to the coordinate system with origin at the center

of the tunnel, (x = 0, y = 0, z = 0), The cross section is said
to be uniform because the profiles do not vary with z. The
vertical (v) and horizontal (h) walls have electromagnetic

properties (ǫv, σv) and (ǫh, σh) respectively, where ǫ denotes
the permittivity and σ the conductivity. The air in the tunnel

has the permittivity of free space, ǫ0, and zero conductivity.

The permeability of the air and the walls are all assumed to

be equal to that of free space. The transmitter is positioned at

(x0, y0, 0) and the receiver at (x, y, z), where z is the range

between the two.
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(a) The tunnel parameters (b) The image reflection model

Fig. 1. The uniform cross section model. The vertical and horizontal walls have different electromagnetic properties and their profiles are symmetric about
the respective axes. The cross section is uniform throughout the shaft of the tunnel.

The model traces all the rays (or paths) emitted from the

TX which are received by the RX. Each path is indexed

as (p, q) according to the total number of |p| reflections off
the vertical walls and |q| reflections off the horizontal walls.

The reflections alternate between the positive and negative

walls along the shaft. A positive value of p indicates that the

first reflection hits the positive vertical wall while a negative

value indicates that the negative wall is hit first. The sign

convention is the same for the horizontal walls.

The field attenuation associated with the collection of all

propagation paths can be written as

α(x, y, z) =

p=∞
∑

p=−∞

q=∞
∑

q=−∞

[

exp(−jkrp,q)

rp,q

]

·R|p|
v ·R

|q|
h , (1)

where rp,q denotes the propagation distance of the indexed

path. The bracketed term represents the complex attenuation

due purely to distance traveled. As shown, it is inversely

proportional to rp,q . The numerator accounts for the phase

shift, where k = 2πf0

c
is the wavenumber, f0 is the center

frequency of the signal, and c is the speed of light. The model

assumes that reflection is the sole specular effect present in

the tunnel. As expressed in (1), with each reflection off the

walls the signal is attenuated by the corresponding reflection

coefficient. The vertical and horizontal walls have reflection

coefficients [4]:

Rv =
cos φh −

√

k̄h − sin2 φh

cos φh +
√

k̄h − sin2 φh

(2)

and

Rh =
k̄v cos φv −

√

k̄v − sin2 φv

k̄v cos φv +
√

k̄v − sin2 φv

, (3)

where k̄v =
(

ǫv + σv

j2πf0

)

/ǫ0 and k̄h =
(

ǫh + σh

j2πf0

)

/ǫ0.

The incident angles off the vertical and horizontal walls, φv

and φh respectively, are calculated in the next subsection.

Implicit to the coefficients above is that the dipole antennas

are vertically polarized. Analogous equations for horizontally

polarized antennas are provided in [3]. In both cases, only

the electromagnetic field in the main polarization direction

is considered, assuming that the effects of cross polarization

are minimal.

A. The uniform image reflection model

The propagation distance, rp,q , is calculated through the

image reflection model [5]. Fig. 1(b) shows the images for

path (p = 2, q = −1) in the (x, y)-plane. For every vertical

reflection, the image is displaced by a value 2a in the x-
direction; likewise, for every horizontal reflection, the image

is displaced by a value 2b in the y-direction. Then the total

x-displacement for p reflections is

xp = (-1)px − x0 + p · 2a (4)

and the total y-displacement for q reflections is

yq = (-1)qy − y0 + q · 2b. (5)

Knowing z as well, the three can be combined as:

rp,q =
√

x2
p + y2

q + z2. (6)

Also, from the (x, y)-displacements, the incident angles are

calculated as

φv = arcsin
|xp|

rp,q

(7)

and

φh = arcsin
|yp|

rp,q

. (8)

Given the rectangular shape of the tunnel, the tunnel

behaves as a rectangular waveguide. In fact it is shown in

[3] how the raytracing model can be decomposed into a

waveguide model expressed in terms of all the propagation

modes.
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(a) The tunnel parameters (b) The image reflection model

Fig. 2. The varying cross section model. The positive / negative walls may have different electromagnetic properties and their profiles may be asymmetric
about the respective axes. The cross section varies throughout the shaft of the tunnel.

III. THE VARYING CROSS SECTION MODEL

In this section, we extend the uniform cross section model

to account for large-scale variation in the tunnel profiles

along the shaft. As a means to describe this variation, the

vertical and horizontal profiles,
(

a±(z), b±(z)
)

, are written

explicitly in terms of z. Figure 2(a) illustrates the model

parameters. Notice that the positive / negative profiles are

labeled separately, meaning that they may now be asymmet-

ric, as shown. The attenuation is computed as in (1):

α̃(x, y, z) =

p=∞
∑

p=−∞

q=∞
∑

q=−∞

[

exp(−jkrp,q)

rp,q

]

· (9)

(R+
v )|⌊

p+1

2 ⌋|(R−
v )|⌊

p

2⌋|(R+
h )|⌊

q+1

2 ⌋|(R−
h )|⌊

q

2⌋|,

however the expressions for the displacements xp and yp

in (4) and (5) must be modified as explained in the sequel.

Also notice that positive / negative profiles may have dif-

ferent electromagnetic properties with designated reflection

coefficients (R±
v , R±

h ) given respectively from (2) and (3).

Based on the values of (p, q), (9) accounts for the number

of times the signal is incident with each of the four walls.

A. The varying image reflection model

To see the effect of varying cross section on the displace-

ments, we reconsider the image reflection model. Recall

that for a uniform cross section, the x-displacement is

augmented by 2a with each reflection off the vertical wall.

This translates to the total displacement in (4) for p total

reflections. Since the profile is uniform, where the reflections

occur has no bearing on xp. This is not the case when the

profiles are varying. As such, we denote the vertical profile

at the p̃th out of p total reflections as a±(zp̃|p), where zp̃|p is

the z-coordinate at which the reflection occurs and the sign

is given from the values of p̃ and p as sgn(p)(-1)p̃+1. Now

the x-displacement is augmented instead by 2a±(zp̃|p) with

reflection p̃. Of course, the same relationship applies for the

y-displacement with a total of q reflections off the horizontal

wall. Then the (x, y)-displacements follow as

x̃p = (-1)px − x0 + sgn(p) · 2

p
∑

p̃=sgn(p)

a±(zp̃|p) (10)

and

ỹq = (-1)qy − y0 + sgn(q) · 2

q
∑

q̃=sgn(q)

b±(zq̃|q). (11)

An example for (p = 2, q = −1) is illustrated in Fig. 2(b).

As opposed to the uniform cross section in Fig. 1(b), shown

here are the three cross sections corresponding to the three

reflection points. Notice that the positive / negative profiles

are asymmetric.

Compared to the uniform raytracing model, the varying

model allows for wide-ranging tunnel profiles. However, in

it, the cross section is modeled as rectangular – a stipulation

upon which the image reflection model is based – such that

the reflected angle is the same as the incident angle in the

(x, y)-plane. In practice, most tunnels have either a circular,

oval, or arched cross section; nevertheless the uniform model

has been shown to give accurate results in those cases. The

image reflection model also stipulates that the reflected angle

be the same as in the incident angle in the (x, z)- and (y, z)-
planes, i.e. that the profiles are uniform – a condition which

is obviously violated in the varying model. To minimize any

violation, the orientation of the coordinate system should

be chosen such that its axes lie as parallel as possible to the

walls. So long as the local variation in the profiles is gradual

– which is typical in most tunnels – the varying model can be

applied. Results to substantiate this are presented in Section

V.

B. Computing the reflection points

We now turn our attention to a method for finding the

reflection points. This method is illustrated by considering

the simple example for (p = 1, q = 0) shown in Figure 3.
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Fig. 3. The reflection point z1|q=1 for (p = 0, q = 1). The marginal
distance ∆ ·r1,0 traveled from the transmitter to the reflection point can be
expressed as a fraction ∆ of the total distance r1,0 traveled to the receiver.

The objective is to compute the value of z1|p=1 at which the

single reflection occurs. This value then maps to a+(z1|p=1).
The marginal distance traveled from the transmitter to the

reflection point can be expressed as a fraction ∆ of the total

distance r1,0, or

∆ · r1,0 = ∆ ·
√

x̃2
1 + ỹ2

0 + z2

=
√

(∆ · x̃1)2 + (∆ · ỹ0)2 + (∆ · z)2. (12)

Of course the marginal distance traveled is along the same

direction as the total distance traveled, i.e. along the direction

of image (p = 1, q = 0). Moving an amount ∆ along this

direction implies scaling each of the three vector components

proportionally as in (12). In addition, it can be seen from the

figure that the x-displacement of the image to the reflection

point is ∆ · x̃1 = −x0 + a+(z1|p=1). From it, the value of

∆ can be recovered as

∆ =
−x0 + a+(z1|p=1)

x̃1
. (13)

By definition the z-coordinate of the image to the reflection

point is given as ∆ ·z = z1|p=1. Finally, by substituting (13)

into the latter, we arrive at

z1|p=1 =

[

−x0 + a+(z1|p=1)

x̃1

]

· z. (14)

Through the same analysis, the z-coordinate can be indexed

to any vertical or horizontal reflection point as

zp̃|p =













−x0 + sgn(p) ·

(

a±(zp̃|p) + 2
p̃−sgn(p̃)
∑

̺=sgn(p̃)

a±(z̺|p)

)

x̃p













·z ,

p̃ = sgn(p) . . .p. (15)

and

zq̃|q =













−y0 + sgn(q) ·

(

b±(zq̃|q) + 2
q̃−sgn(q̃)
∑

̺=sgn(q̃)

b±(z̺|q)

)

ỹq













· z,

q̃ = sgn(q) . . . q. (16)

Since the numerator in (15) involves all the vertical reflection

points, the |p| equations must be solved simultaneously;

likewise, the |q| equations for the horizontal reflection points

in (16) must also be solved simultaneously.

C. Convex versus concave profiles

Because the set of equations in (15) is non-linear, it

must be solved through numerical methods. The numerical

methods for finding the p reflection points involves searching

along the vertical profiles. We first consider the case for

which the profiles are convex. Figure 4(a) illustrates an

example of convex positive / negative vertical profiles in

the (x, z)-plane. The equations can be solved efficiently in

the |p|-dimensional convex space through a gradient descent

algorithm such as the Bisection method [6]. For uniform

vertical profiles, the reflection points will occur at equal

intervals along the z-axis; conversely, for varying vertical

profiles, adjacent points occurring at consecutive positive and

negative profile values below the respective profile averages

will appear closer together – since the ray travels a shorter

distance between them – while those occuring at values

above the average will appear farther apart. At initialization,

the points are ordered with equal spacing between each other;

the gradient descent algorithm effectively scales the spacing

according to the profile values at which they occur. While

the range of any point is limited to 0 < zp̃|p < z, additional
constraints limit the search space. Specifically, e.g. for p
positive, knowing that the p̃th reflection will occur before

the (p̃+1)th reflection along the shaft implies zp̃|p < zp̃+1|p,

p̃ = 1 . . . p − 1.
Fig. 4(b) illustrates an example of concave positive /

negative vertical profiles in the (x, z)-plane. In tunnels with

concave profiles, solving for the set of equations in turn

entails a search in a concave space, which in general is

much less efficient than in its counterpart. However, since

the search is just between adjacent points – so long as the

associated profiles are convex in between – finding the global

optimum requires no additional complexity. This is often the

case because, as mentioned earlier, in most tunnels the vari-

ation in the the wall profiles is gradual. Notwithstanding, for

|p| = 1 the point could fall at any point in the range, indeed

requiring a concave search. While in a single dimension a

concave search is still quite efficient, it becomes more and

more complex as the number of reflection points increases;

however, the increased point density tightens the spacing

between adjacent points, limiting the search space further

and compensating to some degree for the greater complexity.

There is actually a more important issue in concave tunnels

than the efficiency of the numerical method. In convex
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(a) Convex (b) Concave

Fig. 4. Positive / negative vertical profiles in the (x, z)-plane. When the profiles are convex, the direct path and all the reflected paths are detected by the
receiver, however, when the profiles are concave, they may interfere with some walls.

tunnels the transmitter and receiver are always in line-of-

sight of each other. It follows that the direct path and all the

reflected paths will pass unobstructed by the tunnel walls,

as shown in Fig. 4(a). In concave tunnels, however, this is

not always the case. When the direct path is obstructed –

because the typical materials and the thickness of the tunnel

walls (e.g. concrete, coal) permit virtually no penetration –

it will not be detected by the receiver. It is easy to determine

through simple geometry whether this is the case; if so, the

associated term (p = 0, q = 0) should be eliminated from the

sum in (9). In general, once path (p, q) is computed, it should

be checked through the same geometry and eliminated if

obstructed. Note that as the reflection order increases, so does

the incident angle, allowing the signal to more readily reflect

around concave segments, as shown in Fig. 4(b). The paths

for q = 0 (blue) and q = -1 (red) are obstructed, however not

for q = -3 (green). For gradual profiles, unobstructed paths

with lower reflections imply that the higher-order paths are

also unobstructed and hence need not be checked.

IV. SURFACE ROUGHNESS

Surface roughness, which may be viewed as small-scale

or local variation in the dimensions of the cross section,

can account for significant attenuation of the signal upon

incidence with a wall, especially at higher frequencies. At

higher frequencies, it can be seen from (9) that the phase of

an individual path varies more as a function of path length.

As the paths scattered from different parts of the rough

surface combine with correspondingly different lengths, the

phases add destructively to create interference, attenuating

the signal [7].

The conventional metric for surface roughness is the

quantity H , which is the root mean square of the deviation

in height of the profile from its large-scale value. Dependent

upon the incident angle, the effective height is reduced to

H sinφ. The surface roughness coefficients of the signal

upon incidence can be expressed as [7]

S±
v = exp

(

−2
(

kH±
v sin φv

)2
)

(17)

TABLE I

TUNNEL PARAMETERS

Train Coal
tunnel mine

a (m) 2.44 1.22 - 1.52

b (m) 3.12 0.84 - 1.14

ǫ
(

F
m

)

7 · ǫ0 4 · ǫ0

σ
(

S
m

)

0.0150 0.0007

H (cm) 0 20

and

S±
h = exp

(

−2
(

kH±
h sin φh

)2
)

, (18)

where (H±
v , H±

h ) are the respective roughness metrics for

the positive / negative vertical and horizontal walls. These

metrics are depicted in Figure 2(a). Notice, as explained

earlier, that the attenuation coefficients increase with center

frequency. However, in the seminal paper [8] on wireless

propagation in tunnels, Emslie et al. indicate exactly the

opposite. This is because in their development they consider

only the fundamental propagation modes in the waveguide

model while here they are all considered.

By modeling the effect of surface roughness, we arrive at

a new expression for the attenuation at the receiver:

α̂( x, y, z) =

p=∞
∑

p=−∞

q=∞
∑

q=−∞

[

exp(−jkrp,q)

rp,q

]

· (19)

(R+
v S+

v )|⌊
p+1

2 ⌋|(R−
v S−

v )|⌊
p

2⌋|(R+
h S+

h )|⌊
q+1

2 ⌋|(R−
h S−

h )|⌊
q

2⌋|.

V. EXPERIMENTAL RESULTS

In this section, we compare the uniform and varying

models against field measurements collected in two different

types of tunnel. In our experiments, the transmitter and re-

ceiver antennas were mounted on tripods and both positioned

at the midpoint of the tunnel cross section. The receiver was

initially placed at z = 1 m. Then the range from the transmit-

ter was increased progressively while maintaining the same
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(a) Train tunnel (b) Coal mine

Fig. 5. Experimental results at center frequency f0 = 915 MHz. In the train tunnel with uniform cross section, the uniform model reliably tracks the measured
received power; however, in the coal mine with varying cross section, it falters while the varying model performs well.

position in the (x, y)-plane, hence for x = x0 and y = y0.

At each point, the received power was measured across the

frequency band of interest using a spectrum analyzer. Both

the transmitter and the receiver were equipped with vertically

polarized omni-directional antennas and the transmit power

was set to PTX = 1.5 dBm. Knowing the transmit power,

the received power predicted from the attenuation model is

given through Friis formula [4] as

P (x, y, z) = PTX ·

(

c

4πf0

)2

|α(x, y, z)|2. (20)

The measured received power and predicted received power,

P (x0, y0, z), were then compared.

The first tunnel was the Sorrento Tunnel in Plummer,

Idaho. The train tunnel is constructed from concrete, thus

cast with negligible surface roughness; most importantly,

the structure has a uniform profile throughout. Since the

ceiling is arched, the vertical profile parameter, b, was

computed such that its value corresponds to the rectangular

cross section which best approximates the actual one in

the least-squares sense. Also, the material properties were

the same for all four walls. Table I shows the parameters

for both tunnels. The second tunnel was an experimental

coal mine in Pittsburgh, Pennsylvania. There is a number of

significant differences between the two tunnels. First of all

the dimensions of the mine range from a fourth to half the

size of the train tunnel. Secondly, the profile parameters vary

up to 35% through the mine shaft while in the train tunnel

they are constant. Finally, the surface roughness of the coal

is 20 cm.

Fig. 5(a) displays the measured versus the predicted re-

ceived power as a function of z in the train tunnel. Observe

that, despite the rectangular approximation, the uniform

model predicts very reliably – both in the near field of the

transmitter as well as in the far field – tracking the peaks and

valleys where the paths respectively combine constructively

and destructively throughout the shaft. In view of the varying

profiles coupled with the surface roughness of the coal mine,

Fig. 5(b) shows that the uniform model falters. However, the

varying model still predicts reliably.

VI. CONCLUSIONS

In this paper, we have proposed a novel analytical model

for the propagation of electromagnetic waves in tunnels with

varying cross section. Tunnels with both convex and concave

profiles have been considered. The model has application,

in particular, to the design of wireless communications in

mines. The major underlying assumption is that the variance

in the cross section rolls out gradually along the shaft.

The proposed model has been validated with in-house field

measurements and has been shown to predict reliably in a

coal mine. Further work includes refining the model for more

complex tunnel structures, including cross cuts.
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