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We develop a potential landscape approach to quantitatively
describe experimental data from a fibroblast cell line that exhibits a
wide range of GFP expression levels under the control of the
promoter for tenascin-C. Time-lapse live-cell microscopy provides
data about short-term fluctuations in promoter activity, and flow
cytometry measurements provide data about the long-term kinet-
ics, because isolated subpopulations of cells relax from a relatively
narrow distribution of GFP expression back to the original broad
distribution of responses. The landscape is obtained from the steady
state distribution of GFP expression and connected to a potential-
like function using a stochastic differential equation description
(Langevin/Fokker–Planck). The range of cell states is constrained by
a force that is proportional to the gradient of the potential, and
biochemical noise causes movement of cells within the landscape.
Analyzing the mean square displacement of GFP intensity changes
in live cells indicates that thesefluctuations are described by a single
diffusion constant in log GFP space. This finding allows application
of the Kramers’ model to calculate rates of switching between two
attractor states and enables an accurate simulation of the dynamics
of relaxation back to the steady state with no adjustable parame-
ters. With this approach, it is possible to use the steady state distri-
bution of phenotypes and a quantitative description of the short-
term fluctuations in individual cells to accurately predict the rates at
which different phenotypes will arise from an isolated subpopula-
tion of cells.

population distribution | dynamical systems | stochastic protein
expression | biological noise

Genetically identical cells do not respond identically when ex-
posed to nominally identical environmental conditions. Such

nongenetic phenotypic variability has been widely observed in
bacteria (1, 2), yeast (3), and mammalian cells (4–8). Population
heterogeneity is thought to result from the inherently stochastic
nature of intracellular events, which are subject to statistical
fluctuations caused by small copy numbers of the constituent
molecules, such as transcription factors (9). Many investigations
into the origins and effects of stochastic gene expression have
used engineered organisms and stochastic gene network models
to determine the sources and magnitude of variability (10–12).
These fluctuations, although causing continual change at the
single-cell level, can lead to stable distributions of phenotypes
within a population.
The idea of a stable distribution of states in the presence of

random fluctuations is reminiscent of statistical physics, where
randomness results from thermal fluctuations and the stable
distribution of states reflects a potential energy function. The
popular concept of the epigenetic landscape suggested in the work
by Waddington (13) (i.e., a surface of branching valleys and ridges
on which cells explore phenotypic states) can be thought of as a
series of potential energy functions. The epigenetic landscape, in
which different phenotypic states arise, despite the fact that cells
have identical gene sequences, has been discussed widely, mostly
in the context of developmental biology and stem cell fate deci-
sions (14–17); it has been a useful framework, even as a qualitative
description. Several studies have focused on developing the
landscape concept quantitatively, where the connection between the

landscape and an energy-like potential is made explicit and rigor-
ous, but so far, these efforts have been limited to either theoretical
treatments (18, 19) or completely specified systems of chemical
reactions (20, 21) and have not been tested with experimental data.
Here, we develop an approach that allows us to quantitatively

describe a landscape of cell phenotypes based on experimental
data, and it is applicable to cell systems where the relevant un-
derlying biochemistry is unknown or difficult to measure. The
approach is similar to the landscape models of protein folding (22,
23) in several ways: the complexity of the system precludes a
complete description, we focus on the dynamics of the system, and
we carefully consider the choice of reaction coordinate (24). Our
reaction coordinate is a 1D space (the x axis of the landscape), in
which entities move diffusively and are subject to nonrandom
forces determined by the gradient of the potential.
In this paper, we examine a fibroblast cell line that is stably

transfected to express GFP in response to activation of the pro-
moter for the ECM protein, tenascin-C (TN-C). TN-C, which is
controlled by a large promoter sequence with a number of tran-
scription factor binding sites (Fig. S1), is highly regulated both
temporally and spatially during development, and in the adult, it
is expressed predominantly under conditions of wound healing
and tumor growth (25–27) and in hypertensive arteries (28), where
it supports vascular smooth muscle cell proliferation, migration,
and survival (29, 30). In our experiments, a clonal population of
cells is grown under homogeneous conditions but exhibits a
wide range of GFP intensities, most likely because of noise in
promoter activity. To probe the dynamics underlying this variabil-
ity, we use two types of kinetic experiments. One type is time-
lapse microscopy to quantify fluctuations in GFP intensity in in-
dividual living cells. The second type isolates subpopulations of
cells by cell sorting according to their GFP intensity and follows
the kinetics of relaxation of these populations as they revert from
their sorted distribution back to the steady state distribution. We
find that the relaxation of a subpopulation back to the steady
state distribution can be partially described by a simple two-
state switching model, but an accurate analysis of the kinetics of
relaxation requires a continuum model. We use a Langevin-
type stochastic differential equation, which leads to a 1D quan-
titative potential landscape. The steady state population distri-
bution of GFP is used to derive the potential. The measured
fluctuations in cellular GFP, determined by time-lapse micros-
copy of individual living cells, are used to determine that the
appropriate reaction coordinate is log GFP concentration, in
which a single, constant diffusion coefficient characterizes fluc-
tuations in GFP. This finding allows application of the classic
Kramers’ theory of potential barrier crossing and prediction of
the rates of switching between the two states based solely on the
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shape of the landscape. This landscape approach is tested with
computer simulations that quantitatively predict the relaxation
dynamics of the sorted subpopulations. We show that, with
a steady state distribution and a quantitative description of
fluctuations, this approach allows accurate prediction of the rates
at which different phenotypes will arise from an isolated sub-
population of cells.

Results
Quantifying Cell-to-Cell Variability. Cell-to-cell variability in GFP
expression in these clonal fibroblasts can be measured reliably by
flow cytometric analysis or quantitative imaging. The levels of
TN-C promoter activity (as indicated by the range of GFP ex-
pression in individual cells within the population) is very broad
[SD/mean ≡ coefficient of variation (CV) = 2], spanning over
three orders of magnitude (Fig. S2). Because these cells are ge-
netically identical and residing in homogeneous conditions, the
observed variability results presumably from the inherent ran-
domness in cellular reactions. These random fluctuations, al-
though causing continual change at the single-cell level, leads to
a stable steady state distribution of GFP intensities across the
population. The steady state distribution can be described by
a sum of two log normals (Fig. S2A), suggesting that TN-C has
two major states of promoter activity: low and high. Random
fluctuations presumably are responsible for the switching of cells
between these states, and furthermore, fluctuations seem to be
important, even within a state: the log-normal distribution of
high-activity cells is itself broad, with a CV = 1.5.
Time-lapse fluorescence microscopy of live cells, in which in-

dividual cells were segmented and tracked over long times (31),
reveals that TN-C promoter activity exhibits random fluctuations
as well as cell cycle-dependent trends. On average, cells ap-
proximately double their total fluorescence before dividing. Even
over several cell cycles (∼50 h), the fractional change in intensity
is small compared with the orders of magnitude variation be-
tween individuals across the population (Fig. S2B). This finding
suggests that population heterogeneity is determined by kinetics
that are slow relative to the length of the cell cycle.
To probe the slow dynamics that give rise to the heterogeneity in

GFP expression levels, we used FACS to separate subpopulations
according to GFP intensity into four dishes that could be cultured
and passaged separately (Fig. 1). The number of dishes was chosen
arbitrarily, and the intensity boundaries were chosen so that the
dishes had approximately equal portions of the population.
Fluorescence distributions were then measured approximately
every 3 d using flow cytometry. As seen in Fig. 1, the distributions
approached the steady state distribution over the course of weeks.

State-Dependent Rates of Proliferation.Differences in proliferation
rates were obvious during passaging of the different sub-
populations of cells. Independent analysis of live-cell data in an
unsorted dish confirmed that the dimmest cells (corresponding
to the lower log normal in Fig. S2A) proliferated at a rate that
was 10% slower than the other cells (31). This observation is
consistent with previous observations that expression of TN-C is
associated with proliferating cells (28).

Two-State Switching with State-Dependent Rates of Proliferation.
The steady state distribution for TN-C promoter activity is com-
prised of two log-normal distributions (Fig. S2), which suggests
two major states of activity. We, thus, pursued a two-state de-
scription (SI Text, section 1), which has also been used by others
(8) for similar data involving relaxation of stem cell populations.
The two-state model fits reasonably well to the data for relaxation
of cells at the extremes of the distribution, but there are notable
discrepancies with the data from the other two subpopulations
(Fig. S3). We will show next that these deficiencies in the two-
state model are addressed by applying a continuum model.

Potential Landscape. Failure of a two-state model to describe all of
the details of the relaxing distributions (Fig. S3) suggests the need
for a continuum model. Furthermore, the gradual spreading of
the shape of the distributions that are observed during relaxation
(Fig. 1) suggests a process that is driven by small step fluctuations
(i.e., diffusion). To explicitly introduce stochastic fluctuations in a
description for TN-C promoter activity, we used a Langevin equa-
tion, because it provides a rigorous framework for a continuous,
data-driven potential landscape description and can be simulated.

Langevin Equation. A Langevin equation—a type of stochastic dif-
ferential equation—can be used to describe the GFP dynamics on
the single-cell level (Eq. 1):

dx
dt

= AðxÞ+
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
η
�
t
�
; [1]

where x is the GFP or other protein concentration (i.e., the re-
action coordinate), A(x) describes all of the deterministic (non-
random) dynamics, and the last term describes the random noise
caused by fluctuations. D(x) is the diffusion coefficient, which con-
trols the relative magnitude of the noise term, and it is a function
of the protein concentration in general and GFP in our system
(shown explicitly with the data in Fig. 2); ηðtÞ is a random variable
with zero mean, unity variance, and no correlation. Eq. 1 can be

Fig. 1. Sorted subpopulations and relaxation back to
the steady state distribution. Cells were sorted using
FACS based on their fluorescence intensity into four
dishes as shown, and then, they were cultured sepa-
rately and regularly monitored using flow cytometry
over many weeks. The cells in Dish I required more
than 36 d but did eventually relax (Fig. 4).
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thought of as describing a random walk in GFP concentration
space, which is subject to random fluctuations that arise from small
copy numbers of chemical components, like transcription factors,
and an average nonrandom force, AðxÞ, which describes the de-
terministic rules arising from the signaling pathways that control
GFP expression levels.
Eq. 1 is not well-defined when the diffusion coefficient, D(x),

depends on the protein concentration, x. More than a single
Fokker–Planck equation can be derived depending on the in-
terpretation of the stochastic process (SI Text, section 4). In cases
where D(x) depends on the reaction coordinate, a Langevin
equation with a constant diffusion coefficient can often be derived
by transforming the reaction coordinate of Eq. 1 to the following
(unique) reaction coordinate (32) (Eq. 2):

x =
Zx
0

dxffiffiffiffiffiffiffiffiffiffi
DðxÞp ; [2]

where x is a function of x, and as a result, the diffusion coefficient,
D, becomes a new variable that is independent of x. This operation
transforms Eq. 1 into the following Langevin equation (Eq. 3):

dx
dt

= A
�
x
�
+

ffiffiffiffiffiffi
2D

p
η
�
t
�
: [3]

With this transformation, the force, AðxÞ, now depends on the
functional forms of DðxÞ and AðxÞ—and on the choice of

interpretation. Therefore, the dilemma of needing to make an
interpretation has not been avoided but has shifted from the
noise term to AðxÞ.
We now show that the dilemma can be totally eliminated,

because we can determine AðxÞ empirically from the measured
steady state distribution of protein concentration as follows. With
a constant diffusion coefficient, the Langevin equation can be used
to construct the following Fokker–Planck equation for the proba-
bility distribution Pðx; tÞ (33) describing a population of cells (Eq. 4):

∂tPðx; tÞ= −∂x
�
A
�
x
�
P
�
x; t
��

+
D
2
∂x2P
�
x; t
�
: [4]

The steady state probability distribution, Pss, can be solved by setting
the left-hand side to zero and integrating, and it is given by (Eq. 5)

Pss
�
x
�
= Cexp

 
2
D

Zx
0

A
�
x′
�
dx′

!
; [5]

where C is a normalization constant. We now define the fol-
lowing function (Eq. 6),

U
�
x
�
= −
Zx
0

AðyÞdy; [6]

Fig. 2. Trajectories of cellular GFP intensities are diffusive, with a diffusion coefficient that is constant in log GFP space. (A) GFP intensity over time is shown
for 32 representative cells (of 344 total analyzed) from mitosis to mitosis obtained from automated quantitative live-cell segmentation and tracking (SI Text,
section 3). (B) The average trajectory (synchronized as in Fig. 1 and then normalized). The green curve is a sixth-order polynomial fit used as a smooth ap-
proximation to the data. (C) The detrended GFP intensity trajectories from A after dividing each cell’s trajectory by the fit in B. (D) The MSD is calculated for
each detrended trajectory Δt, and then, it is grouped into five bins (shown in C) according to GFP intensity and averaged. Only a few data points for groups IV
and V are shown in the graph. (E) The slope increases approximately as the square of GFP intensity. Inset shows the same plot on log–log axes superimposed
with a line of slope 2, the expected form for a square dependence on GFP. (F) The slopes of the MSD are approximately the same when calculated using the
log-transformed trajectories in C. The MSD for the lowest intensity bin (blue) has a higher offset from the rest because of a higher relative measurement
noise, which we can estimate to be <1% of the average GFP intensity for the population.
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which we call a potential, because it puts the steady state dis-
tribution PssðxÞ∼ expð−2UðxÞ=DÞ in a form that is analogous to
the Boltzmann distribution P∼ expð−U=kBTÞ. Furthermore, the
force AðxÞ= − ∂U

∂x is proportional to the gradient of the potential.
Importantly, the potential and the force can be obtained from
the experimentally accessible steady state probability distribu-
tion, PssðxÞ, and the diffusion coefficient, D (Eq. 7):

U
�
x
�
= −

 
D
2

!
ln
�
Pss
�
x
��

[7]

and (Eq. 8)

A
�
x
�
= −

∂U
∂x

=
D
2
∂ ln
�
Pss
�
x
��

∂x
: [8]

This allows construction of a self-consistent, unambiguous
Langevin description (and simulation) without direct knowledge
of A(x) and without choosing between an Ito or Stratonovich
interpretation (although which interpretation is appropriate
remains an open question). In approaches that start with A(x) in-
stead of empirical data (20), a choice between interpretations
must be made and justified, because each interpretation leads to
a different outcome.

Obtaining the Diffusion Coefficient and Potential Landscape from
Cellular Data. A complete mathematical description of the steady
state distribution is required for establishing the potential land-
scape, and this description requires determining the appropriate
reaction coordinate. An analysis of the noise in cellular GFP in-
tensity is used to obtain x, the appropriate reaction coordinate for
the landscape, and DðxÞ, the diffusion coefficient, with which cells
explore the landscape. This analysis is shown in Fig. 2. Repre-
sentative fluorescence trajectories of total intensity in individual
cells from time-lapse live -cell microscopy are shown in Fig. 2A.
To approximate the concentration and minimize the cell cycle-
dependent trends, each trajectory was detrended using the fit
to the average trend in Fig. 2B, which is shown in Fig. 2C. The
mean squared displacement (MSD) was calculated as MSDðΔtÞ=
h½xðt+ΔtÞ− xðtÞ�2〉t, where x is detrended GFP intensity, Δt is the
time lag, and the bracket denotes an average over Δt. An MSD is
determined at all Δt values for each cell, and then, MSD values
are binned according to average cell intensity as indicated in Fig.
2C. As seen in Fig. 2D, all curves were found to be linear at
short times, indicating that the dynamics of fluctuation in GFP
are diffusive and therefore, that the Langevin equation is an
appropriate description. The slope of the MSD, from which we
derive the diffusion coefficient D= slope=2, depends strongly on
the average GFP intensity of the cells (Fig. 2E), indicating GFP-
dependent variations in the diffusion coefficient. In particular, the
slope and thus, the diffusion coefficient increase as the square of
the mean GFP.

We can use this relationship to determine a reaction coordinate
in which the diffusion coefficient is constant. SubstitutingDðxÞ= x2

into Eq. 2, x=
R
0
x dx
x = log x, indicates that the log-transformed

GFP concentration should have fluctuations characterized by a
constant diffusion coefficient, which is verified in Fig. 2F. The
slopes of the MSD are approximately the same, indicating a con-
stant diffusion coefficient, D = 0.02 ± 0.002 log2(GFP)/d (a de-
scription of error calculations is given in SI Text, section 3). Thus,
we choose log GFP concentration as the reaction coordinate.
The steady state distribution, PssðxÞ, can be transformed by Eq. 6

to result in the potential landscape. The steady state distribution
shown in Fig. 3A is derived from the observed steady state distri-
bution (Fig. S2A) and has been modified using the switching rates
determined from the two-state model (Fig. S3) to deduce the
steady state distribution resulting solely from variability of
promoter activity decoupled from the effects of population
dynamics (SI Text, section 1). The landscape, UðxÞ, which is
derived from the steady state distribution, is shown in Fig. 3B.
The landscape consists of two minima, which correspond to the
two major states (attractors). The stability of the states is deter-
mined by the depth of each minimum and the height of the bar-
rier. The diffusion coefficient, D, characterizes how fast individual
cells in the population explore the range of phenotypes within
each state.

Langevin Simulation. Stochastic numerical simulations of an en-
semble of Langevin equations were performed (SI Text, section 2
and Fig. S4) to simulate the relaxation of the four sorted dishes
(Fig. 1 and Fig. S3), with the force given by A, the gradient of the
landscape (Eq. 7), and the diffusion coefficient determined from
the data in Fig. 2. In Fig. 4, the results of the simulations are
compared with the experimental data from Fig. 1 and found to
agree well without any tuned parameters. An analysis of the sen-
sitivity of the simulation to different values for D is shown in Fig.
S4 B–E, and it indicates that the simulation prediction is rather
insensitive to changes in D up to a factor of two. This result
suggests that the MSD analysis of the dynamic data, although
orthogonal to the distribution measurements by flow cytometry,
provides for a D that uniquely predicts the relaxation data. The
simulation captures two features that were missed by the two-state
description. First, for Dish II, in which the subpopulation of cells
had a phenotype that was near the barrier of the two major states,
the curve first increases and then decreases. Second, Dish IV takes
longer to relax than Dish III, despite both being initially composed
of all high-producing cells because of the time needed for cells to
diffuse close to the barrier.
The different rates of proliferation for low- and high-activity

cells must be included in the simulation to provide an accurate
description for the same reasons as for the two-state model
(Fig. S3A). Although consideration of state-dependent rates of
proliferation precludes a purely analytical time-dependent so-
lution for the probability distribution from the Fokker–Planck
equation (Eq. 3), we show that it is easily incorporated into a
simulation.

Fig. 3. The epigenetic landscape is derived from the
measured steady state distribution. (A) The estimated
unbiased steady state distribution was obtained by
modifying the fit of the distribution in Fig. S1 to
eliminate the effect of state-dependent proliferation
rates by applying the ratio of low- to high-activity
cells, kHLkLH

≈ 1
6, as determined from the two-state model

(SI Text, section 1). (B) The potential is defined by Eq. 7
[UðxÞ= −D=2

lnðPssðxÞÞ], where PssðxÞ is the probability
distribution shown in A, x = logð½GFP�Þ, and D= :02
log2 [GFP]/d.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1207544109 Sisan et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1207544109/-/DCSupplemental/pnas.201207544SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1207544109


Predicting Switching Rates Using the Potential Landscape: Kramers’
Theory. The shape of landscape shown in Fig. 3B, with its potential
minima and barrier between them, allows us to directly compute
the rate constants for switching between two stable states (attrac-
tors) using Kramers’ classic theory of energy barrier crossing (34).
Relying solely on the shape of the landscape, these rates are given
by (Eq. 9)

K =
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U′′ðxminÞjU′′ðxmaxÞj

p
expð−½UðxmaxÞ−UðxminÞ�=DÞ; [9]

where U is the potential function, primes denote derivatives
[therefore, U′′ðxminÞ is the landscape’s curvature at a local mini-
mum], xmax is the position of the barrier peak, and D is the dif-
fusion coefficient. For the Kramers’ model, D must be constant.
As we show above, the only transformation of the reaction co-
ordinate that produces a constant D, in our case, the log trans-
formation, will yield a landscape with the correct curvature for
Eq. 8. Furthermore, note that the curvature implicitly includes
D. Applying this formula to the potential in Fig. 3B and using D =
0.02 log2(GFP)/d, which was obtained from Fig. 2F, we obtain
KLH = 0.004/d as the rate constant for transition of low-activity
cells to high-activity cells and KHL = 0.025/d for the transition of
high-activity cells to low-activity cells. These values agree to within
50% of the values estimated from the fitting of the relaxation data
to the two-state model (Fig. S3), and establish the predictive use of
the landscape.

Discussion
We have shown how to rigorously derive the potential landscape
for the activity of a gene promoter. The landscape is derived
from the steady state distribution of the range of promoter ac-
tivities within the population as determined by flow cytometry or
static imaging measurements, and the kinetics of fluctuations in
promoter activity in individual cells are determined from time-
dependent fluorescence imaging data. Our approach is based on a
Langevin equation, which includes the force that defines the shape
of the landscape and a single kinetic constant that describes the
fluctuations in promoter activity. The model accurately predicts
the complex kinetics with which cells that are sorted according to
their promoter activity relax back to the steady state distribution of

activities. The time required for a selected subpopulation to
transition from its narrow distribution of states back to a broad
distribution of phenotypes can take weeks, but it can be predicted
using data that can be acquired in about 1 d. A similar slow re-
laxation was observed for subpopulations of stem cells sorted for
Sca-1 activity, and the work by Chang et al. (8) showed the sig-
nificance of population heterogeneity to differentiation poten-
tial. In that report, the data were modeled as a transition between
two states (8). In this report, we also explored a two-state model,
but in addition, we performed a kinetic analysis of fluctuations in
promoter activity using time-lapse microscopy on individual cells.
These data established that these fluctuations are diffusive in
nature. The transformation of the reaction coordinate to log GFP
provides a constant diffusion coefficient that allowed us to use a
continuum model in the form of a simple Langevin equation and
the Kramers’ theory to predict rates of transition between states.
The TN-C promoter seems to have two minima in its potential

landscape. In a microarray gene expression study using hundreds
of tissue samples in mice (35), TN-C was reported to be one of
the genes that is expressed with a bimodal distribution of levels.
It was reported to be off more often than on, consistent with our
deduced steady state distribution, suggesting that the activity of
the promoter measured in cell culture reflects, at least partially,
its physiological activity. The potential landscape that we de-
termine allows the switching rates between these two relatively
stable promoter activity states to be predicted by applying
Kramers’ theory (34), which takes into account the shape of the
landscape and the diffusion coefficient. The calculated Kramers’
switching rates, KLH = 0.004/d and KHL = 0.025/d, were found to
agree to within 50% of the switching rates obtained from the
sorting/relaxation experiment, kLH = 0.004/d and kHL = 0.017/d.
Based on these results, we can predict that, at the single-cell level
(ignoring progeny from division), one would wait, on average,
k�1
HL ≈ 50 d for a high-activity cell to switch and k�1

LH ≈ 300 d for
a low-activity cell to switch. Considering progeny and starting with
a single cell that doubles approximately every 1 d, one would wait,
on average, log2ð50Þ≈ 6 d (for a high cell) and log2ð300Þ≈ 8 d (for
a low cell) before observing a cell that had switched. The pre-
dictive value of this approach to modeling cellular dynamics may
have important practical implications for applications in stem cell
biology and biomanufacturing as well as tumor heterogeneity and
drug resistance.
Although the Kramers’ rate of transition of cells in the pop-

ulation from the low to high states agrees with the values found
from the two-state model, it should be noted that the two-state
model only provides a reasonable fit to the relaxation responses
from the populations of cells with the lowest and highest promoter
activities. The intermediate populations show more complex re-
laxation kinetics, which require the Langevin/Fokker–Planck
model to describe adequately. The biological significance of these
findings is that switching from a low- to high-activity state for
TN-C promoter activity is a diffusive process; therefore, cells with
concentrations near the state barrier are closer to switching than
cells away from the barrier. Cells that are near the barrier have a
finite probability of changing in activity in either direction, thus
displaying a more complex response in activity with time of re-
laxation. An alternate outcome could have been that switching
occurs spontaneously through some discrete process without cou-
pling to a slow variation because of noise in response within the
population. However, our results (e.g., the faster relaxation of
Dish III vs. Dish IV in Fig. 4) show that this result is not the case
for TN-C, and the simulation allows us to predict how cells explore
state space differently depending on where they reside in the
landscape. A practical implication of this finding is that, for cell-
sorting experiments, the details of the window size and location
used to select subpopulations can have a measurable influence on
the apparent stability of the selected subpopulations.
Fluctuations in promoter activity, caused by binding and un-

binding of effector molecules, can dominate protein number
fluctuations (36). For TN-C, the dependence of the noise in GFP
on the intensity of GFP expression suggests a multiplicative pro-
cess in the activation of the promoter. This finding is consistent
with the known characteristics of the TN-C promoter, which is

Fig. 4. Results of a Langevin simulation of the relaxation experiment. Data
points are the same as in Fig. S2. The simulation uses the experimentally
derived diffusion coefficient, D, the landscape, UðxÞ (Fig. 3B), and state-de-
pendent rates of proliferation. Each time point in the simulation produces
a population distribution of GFP concentrations, which is reduced to a scalar:
the fraction of cells below a GFP concentration threshold as in Fig. S2 and
described in SI Text, section 3.
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representative of a class of environmentally responsive proteins
(SI Text, section 6).
It is important to note that, in a population of cells that exhibits

a stationary distribution of phenotypic states, no state is a per-
manent condition for any cell. A force constrains the state space
that can be explored by cells; however, because the entire space
is never explored by any individual cell during its lifetime, the
Langevin dynamics of the population by necessity require mother/
daughter correlations (which we have independently determined).
Those multigenerational correlations are epigenetic in nature in
the broadest sense; they could be caused by epigenetic modifications
to the DNA or perhaps, passage of high concentrations of tran-
scription factors from mothers to daughters.
In this work, we have correctly predicted the time dependence

for relaxation of subpopulations of cells as they reestablish the
steady state distribution of promoter activities. This approach
will likely be applicable to other similar perturbation/relaxation
scenarios involving other cellular phenotypic features. For ex-
ample, the induction of differentiation of a pluripotent population
of cells may be thought of as imposing, through chemical treat-
ment, a new potential landscape of gene expression on that pop-
ulation. The rate at which the pluripotent population relaxes to
this new potential landscape should be predictable from the
landscape that is derived from the final steady state distribution
and the rate of fluctuation of the phenotypic feature.

Materials and Methods
Cells, Cell Culture, Quantitative Imaging, and Image Analysis. The preparation
of the cell line and all cell culture, imaging, and image analysis were per-
formed as previously published (31). NIH 3T3 mouse fibroblasts (ATCC) were
transfected with a construct of a 4.1-kbp fragment of the TN-C promoter
(provided by Peter L. Jones, University of Pennsylvania, State College, PA)
fused to a destabilized EGFP (Clontech Laboratories). Phase contrast and
fluorescence images were acquired every 15 min for >62 h in 36 different
fields. Additional details can be found in SI Text, section 5.

Flow Cytometry and FACS. Flow cytometry was performed with a Beckmann
Coulter Quanta SC Flow Cytometer. Volume and intensity measurements
were performed simultaneously for each cell to obtain the relative GFP
concentration (intensity/volume). FACS was performed using a FACSAria II
Sorter (BD Biosciences). Cells were first gated on 2D forward and side scatter
to exclude debris followed by four gates based on the FITC (GFP) channel
fluorescence to isolate four subpopulations. Additional details can be found
in SI Text, section 5.

Steady State Distribution Fitting. The steady state distribution of GFP concen-
tration for cells in the population (Fig. S2A) as measured by flow cytometry was
fit to a sum of two log normals by log-transforming the data, binning, and then

fitting the histogram to a sum of two Gaussians: fðxÞ= a1 1ffiffiffiffiffiffiffiffi
2πσ21

p exp½−ðx − μ1Þ2=
2σ21�+ a2 1ffiffiffiffiffiffiffiffi

2πσ22
p exp½−ðx − μ2Þ2=2σ22�, where x = log(intensity/volume), and

a1; a2; μ1; μ2; σ
2
1; σ

2
2 are free parameters. The fitting was performed using the

nonlinear curve-fitting function lsqcurvefit in Matlab (Optimization Toolbox).
The parameters a1; a2 give the relative weighting of each Gaussian. The best-
fit values in Fig. S2A were a1 = 0:33; a2 =0:67; μ1 = 4:2; μ2 = 5:5; σ21 = 0:19;
and σ22 = 0:62. For Fig. 3A, the weightings were changed to be a1 =0:86
and a2 = 0:14; therefore, a2

a1
= kHL

kLH
= 1

6 and the parameters used were μ1 = 1.2,
μ2 = 2.5, σ1 = 0.20, and σ2 = 0.58.

Quantifying the Portion of Cells in Low State. For Fig. 4 and Fig. S3, the
histograms measured by flow cytometry are reduced to a single scalar:
the fraction of cells in the low state, which we determine by a threshold.
The threshold was chosen to be the local minimum (between the two
peaks) of the log-transformed GFP concentration. The portion of cells
above and below this threshold was found to well approximate a1 and a2
from fitting (Fig. S2A).
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