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Abstract—A radiometric model has been developed to assess the effects of angular truncation, finite size of
the detector. and angle response characteristics of the cosine sensor on the measurement of the total
scattering coefficient by a transmission cell-reciprocal nephelometer. These effects are computed for
monodisperse polystyrene spheres over the size range 0.02-8 ym based on Mie theory and for smoke
agglomerates ranging from 10 to 107 primary units based on the Fisher-Burford approximation. The
accuracy of the model calculations is determined by comparison with exact solutions for the case of
a detector with an infinitesimal area and for a finite area detector with a diffuse scattering function. The
predicted results are compared with measured results for six different sizes of monodisperse polystyrene
sphere aerosols with particle diameters in the range 0.1-2.35 yum. The measurements were carried out as
a function of the distance between the laser beam and detector for 1.3 and 2.7 cm diameter cosine sensors.
A table of design parameters for making accurate total scattering meusurements is obtained for both
spheres and agglomerates. An accuracy of +5% was obtained for spherical particles with diameters
<11 um with our TCRN, and we estimate that similar performance would be obtained for smoke
agglomerates with up to 3 x 10° primary spheres per agglomerate.
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ing coefficient, smokes.

1. INTRODLUCTION

The optical properties of combustion-generated acro-
sols, which we shall refer to as smoke, are of concern
in regard to the degradation of visibility in pristine
areas, to the global climatic impact of a major nuclear
exchange, as well as the localized climatic impact of
forest fires and oil well fires such as those recently
extinguished in Kuwait. There is a large uncertainty in
the optical properties of smokes including the scatter-
ing and absorption coefficients per unit concentration
of smoke and the single scattering albedo, defined as
the ratio of the total scattering coefficient to the ex-
tinction coefficient. A comparison study (Gerber and
Hinaman, 1982) involving simuitaneous measure-
ments of the optical properties of smoke generated
from the combustion of propane resulted in values
ranging from 3.8-11.4 m? g~ ! for the absorption coef-
ficient and 0.09-0.29 for the single scattering albedo.

Gerber (1979, 1982) developed an instrument for
simultaneously measuring the light extinction coeffic-
ient 5., and the total scattering coefficient o, of ambi-
ent atmospheric aerosols with a multi-pass optical
cell. From these measurements. the single scattering
albedo is obtained as the ratio 4,/0eq and the light
absorption coefficient is obtained as the difference
Oew—a,. The total scattering measurement in
Gerber's instrument utilizes a diffuser before the de-
tector and is the inverse of traditional nephelometry
{Charlson et al.. 1967), which uses a diffuser to provide
a cosine distribution of the light source. We use the
term transmission cell-reciprocal nephelometer
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(TCRN) to describe this instrument. Patterson et al.
(1991) developed a single-pass TCRN and used it to
characterize the optical properties of smoke generated
by the combustion of lumber, various plastics, petro-
leum products, and tire rubber.

This paper assesses the accuracy of the TCRN for
the total scattering measurement through a combina-
tion of modeling and measurement. The model calcu-
lations consist of computing the total flux of light
scattered from particles in a laser beam to the cosine
corrected sensor/detector in the TCRN. We compute
the effects of the finite area of the sensor, the limited
acceptance angle. and the non-ideal sensor perfor-
mance on the TCRN performance as a function of
particle size for polystyrene spheres and smoke ag-
glomerates. The predictions of the radiometric model
are compared with measurements. Of special interest
is the predicted performance of the instrument for
large smoke agglomerates, which might be produced
in the atmosphere as a result of large scale fires such as
the oil well fires in Kuwait (Johnson er al.. 1991).

2. RADIOMETRIC MODEL FOR TCRN

The schematric in Fig. 1 illustrates light scattered
from an incremental scattering volume. Jv, to an
infinitesimal area a, of a circular detector located
a distance 5 from the scattering volume. The basic
quantity of interest is F;j, the flux of light scattered
from volume zlement i to detector element /. The flux
F:;is proportional to the light scattered from element
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LASER BEAM —>

Fig. 1. Geometrical arrangement of laser beam and detector in the TCRN
with DC the diameter of the detector. a, the area of a sector, and E, the
incident laser irradiance.

i in the direction 8, I(8), and to the projected arca
a, cos ¢ of the detector element, and inversely propor-
tional to s2.

Fiy=1(0)a, cos ¢/s* ()

where s, 6, and ¢ all, of course, depend on i and j. This
expression assumes all the light flux incident on the
projected area of the detector element is detected. The
change in the analysis for an actual detector system
are considered below.

The scattering intensity I (0). which is defined as the
scattered flux per solid angle. is equal to the product
of the laser irradiance E,, the volumetric scattering
coefficient #(0), and the scattering volume J¢.

1(0)=Eqo(0)d¢c. (2)

The volumetric scattering coefficient has dimension
m~!'sr™! and /() has dimension Wsr™!.

As the laser beam propagates through the smoke,
the laser intensity will decrease. There will also be
a decrease in intensity of the scattered light as it
travels the distance s from the scattering volume to
the detector. The combined effect will be to reduce the
scattering intensity by a factor P given by Bouguer's
law as

P=exp(—0'm5‘) (3)

where g.. is the extinction coefficient of the aeroso)
and s, is the total pathlength of the light through the
uniformly distributed smoke.

s=s+x+L2 @)

The cell length is L; the origin of the coordinate
system is the center of the laser beam at the midpoint
of the cell so that x corresponds to the coordinate
along the laser beam. The center of the cosine sensor is
at z=D, x=0, and y=0. This light extinction correc-
tion is valid for low concentration aerosols for which
there is little multiple scattering. Substituting from
equation (2) into equation (1) and multiplying the
right-hand side of equation (1) by P as expressed in
equation (3), we obtain

an(G)éval cos ¢ eXP(—0Gens; )

F;;
ij Py

(5)

The scattered light received by the sensor is equal to
the sum of F; over i and j, where j refers to the sum

over the sensor surface elements and i to the sum over
the elements in the length of the laser beam in the vell.
In performing the double summation, it is convenient
to divide the circular sensor into sector elements, as
illustrated in Fig. 2. The concentric circles have radii

Pao
+J1

rn=Jlr, (6)

where r, refers to the radius of the inner circle. Annu-
lar ring J1 is divided up into J2 sectors

J2=200n-1 7

The inner circle is considered the first annular region
with one element J2 = 1. the second annular region is
divided every 120° into three elements J2=3, the
third annular region every 72° into five elements
J2=3, and so on. This method of dividing the disk
insures that every sector has the same area q, given by

, uDC?
a,=nrj= Ty TE (8)
where DC is the diameter of the detector. The second
equality is based on the total number of sectors being
equal to the square of the total number of circles
(S 1man)2.

We can now express the total flux F from the laser
beam to the detector as a triple sum over the elements
1 of the laser beam and elements indexed by /! and
J2 over the area of the detector. Neglecting the light
extinction correction and expressing Jv in terms of dx.

RING NUMBER
NUMBER OF SECTORS
J1 J2

1 1

2 3

3 5

4 7

N 2N -1
Total Number

of Sectors = N2

Fig. 2. Discretization of the circular sensor into equal area
sectors.
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dy and dz, we obtain the following expression for F

T Jlga 2J1-1 G(G)COS¢
F=Eydxdydza, ) — 5T (9)
I=1J1=1J2=1 5
where s, 0, and ¢ can be expressed in terms of the
following:

X.(J1,J2) is the x coordinate of disk

Y. (J1,J2) is the y coordinate of disk

X(I) is the x coordinate along laser beam
XA=X.(J1,J2)—-X(I)

D is the distance from laser beam to the disk.

s?=D¥+ Y(J1,J2)% + X A? (10)
cos¢=£s)— 1y

2 211/2
COS0=[XA +Y(J1,J2°71 XA (12)

s| XA|

At this point we omit the effect of the light extinction
correction to allow comparison with exactly solvable
cases. In Section 7 the effect of the light extinction
correction is discussed.

The scattering function ¢(@) depends on the direc-
tion of polarization of the incident light. We are inter-
ested in the case of unpolarized or natural light, which
can be treated as the sum of two orthogonal, equal
amplitude, linearly polarized waves. This is equivalent
to a laser light source polarized at 45° relative to the
plane defined by the laser beam and the center of the
detector. The fact that the laser light is coherent does
not affect the results for the case of time-averaged
scattering from randomly moving particles.

The polarization direction of the incident laser will
not be 45° relative to the plane defined by a point
displaced vertically from the center of the detector
and the laser. In Fig. 3 we show the direction of
polarization and a projection of the scattering plane
for one point above the center of the detector at angle
a and another point an equal distance below the
center of the detector. In Appendix A, it is shown that
the sum of the scattered light intensities for these two
points is independent of the angle « for spherical
particles and for randomly oriented non-spherical
particles. In other words, the effective polarization
direction is 45° for pairs of points. Our discretization
shown in Fig. 2 is arranged so that for every sector

SENSOR
POLARIZATION [
DIRECTION A
450
o
\ a
LASER BEAM B
{into plane of the paper) | |

Fig. 3. Tlustration of the laser polarization direction and
the scattering direction for points 4 and B on the detector
as viewed down the laser beam.

with a +y coordinate there is a corresponding sector
with a —y coordinate.

It is of interest to consider two special cases of
equation (9) for which there are exact results. The first
case is for a detector with an infinitesimal area. This
case provides a direct connection between the meas-
ured flux and the total scattering coefficient. The
second is for the flux from a point light source to
a finite area detector. This second case provides
a check on the truncation error in our numerical
integration.

2.1. Infinitesimal detector area

For the case of an infinitesimal detector area, the
triple sum reduces to a single sum over the length L of
the laser beam within the cell. Referring to Fig. 4 and
noting that tan¢=x/D, one finds that dx can be
expressed in terms of d¢, where ¢ is defined by the
scattered ray and the normal to the detector’s surface

stde

dx=D.

(13)

Substituting for dx from equation (13) into equation
(9), converting from a sum over L to an integral over
¢, and neglecting the beam extinction effect, one ob-
tains the following expression for the total flux F from
the laser beam to the incremental detector surface a,
nf2
_Egdydza,

F
D

o(B)cos P dg.

-nj2

(14)

The angular limits correspond to the laser beam ex-
tending from x= — o0 to x= + 0.

The total scattering coefficient g, is defined as fol-
lows:

2nn

a,=Ja(w)dw= Jja(ﬂ, Y)sinfdOdy.  (15)

The angle 0 is the scattering angle defined by the
direction of propagation of the incident beam and the
direction of the scattered beam, and  is the azimuthal
angle varying from O to 2z for fixed 6. The scattering
function for spheres is only a function of . For non-
spherical particles, the orientation averaged scattering

SENSOR

ot

Fig. 4. Diagram showing relationship between dx and d¢
with ¢ the angle defined by the scattering direction and the
normal to the sensor.
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function g,(6) is also a function of 8 only. So for these
two cases, the total scattering o, reduces to

2n w

o= j‘ j‘ao(e) sin 0d0dy =2n Jrao(ﬂ) sinf8df. (16)
]

The integral in equation (14) can be expressed in
terms of the scattering angle 6. The range for 8 is 0,
while the range for ¢ is —n/2-+ /2, so that the angle
¢ illustrated in Fig. 4 has a negative value. This is
important in deriving the following trigonometric re-
lation

O=¢+n/2.

From equations (14) and (17), we obtain F as an
integral over 8

(17)

n

jao((?) sin § d6.

[}

__E,dydza,

F D

(18)

Using equation (16), F can be expressed in terms of g,
as

_E,dydza, 0,

F
2nD

(19)
This relation is valid for the two types of particles
described above: spheres and the orientation-aver-
aged total scattering for non-spherical particles. The
general relation between total scattering coefficient
and detector flux was first presented by Beutell and
Brewer (1949) and the derivation given above is
similar to that presented by Gerber (1979). Equation
(19) is the basis for using the TCRN for determining
the total scattering coefficient.

2.2. Light flux from a point source to a disk

To determine the truncation etror in carrying out
the sum over the surface of the detector, we compare
our numerical result with the exact solution for the
case of the light flux F4. from an incremental area
with radiance E, to a circular disk detector. In this
case the radiant flux to the detector is proportional to
the projected area of the source, dxdy cos¢. The
constant radiance source corresponds to a volumetric
differential scattering coefficient proportional to
cos ¢. The solution for this case is obtained from an
exact solution of the inverse problem of light emitted
from a radiating circular disk (Foote, 1916) and the
reciprocity relation (Siegel and Howell, 1981) between
the radiant flux from a source to a detector and the
flux computed for the position of the source and
detector interchanged.

chngc dxdy

x4+ D* g2
1— .
I: [(x*+D*)?+2a%(D? —xY)+ 417 :I (20)
where dxdy is the infinitesimal area and a is the
radius of the disk. For the case where dx dy is directly

below the center of the disk, x=0, equation (20) re-
duces to the following

a2

Fse=nE_dx dyl_m_,.
A qualitative estimate of the effect of the finite size of
the detector on the flux reaching the detector can be
made from equation (21). For the case of a detector
radius much smaller than D, the flux is inversely
proportional to D2 For the case that a/D equals 0.5,
neglecting the a® term in equation (21) will result in
a 25% overestimate in the flux. The basic reason that
the flux per area is smaller for a finite area detector is
the increased distance s for a point off the centerline of
the detector. So, in general, the finite size effect will
result in an underestimate of the scattering coefficient.

We determine the truncation error in using the sum
over the detector area given by equation (9) by com-
paring with the exact result given by equation (21). We
compute the reduced flux F, from the point x=0 to
the detector for the case a/D=0.5 as a function of
J 1 nax using equation (9) with o= E_ cos ¢.

. F
" Epdxdydz

1)
21)

22)

From equation (21), we compute the exact expression
for the reduced flux F,, for this case as

Fye i

Fo=—-t T
* E.dxdy 5 23)

The slight difference in the reduced functions is that
equation (22) was derived based on volumetric scat-
tering while the exact solution is based on a specified
surface radiance. The fractional error 8F is found to
be inversely proportional to the total number of
sectors.

F.—F,. 0.1

OF = ~ .
Fie No. of sectors

(24)

For the case where the detector is divided into 10
annular rings resulting in 100 sectors, the fractional
error is about 0.001. Subsequent calculations were
carried out for the number of rings J 1 ,,,, greater than
or equal to 10.

3. SCATTERING FUNCTIONS

In this study we focus on two types of particles:
polystyrene spheres, which are of interest for calibra-
ting the TCRN, and smoke agglomerates, for which
there is a need for accurate optical property data.

3.1. Spheres

The differential scattering cross sections for spheres,
a,(0) and a,(0), are computed based on Mie theory.
The v and h subscripts refer to the direction of polar-
ization of the incident light. The dimension of & for
a single sphere is (length)?, while above we were con-
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sidering the scattering per unit volume with dimen-
sion (length)~'. The average of ¢,(0) and 6,,(6), o,(),
is equivalent to the differential cross-section for un-
polarized light.

0y(0)=1/2(c,(0)+0,(6)). (25)

The scattering calculations are carried out for the
He-Ne wavelength, 1=632.8 nm, for polystyrene
spheres with refractive index m equal to 1.588, and for
particle diameters of 0.0175, 0.100, 0.234, 0.303, 0.60,
1.101, 2.35, 4.0 and 8.0 um. The diameters from 0.100
to 2.35 ym correspond to the diameters of monodis-
perse polystyrene spheres for which measurements
were made. The values of o,(#) is computed in 1°
increments from 0 to 180° and stored in an array for
use in the radiant flux calculation (equation (9)). The
differential scattering plots for ¢,(f) in Fig. 5 show the
increasing contribution of the near forward scattering
as the particle size is increased from 0.234 to 4.0 ym.

3.2. Smoke agglomerates

Smoke agglomerates are made of nearly uniform
size spherules with a diameter on the order of
0.02-0.04 um (Samson et al., 1987). The light scatter-
ing by computer generated agglomerates has been
calculated by Mountain and Mulholland (1988). They
express the differential scattering cross-section of an
agglomerate g, as a product of the scattering func-
tion of a primary unit S, and the structure factor of the
agglomerate S,,.

Gag =3, Syq-

(26)

The quantity S, corresponds to Rayleigh scattering
from a sphere.

S, =%k*|a|?(1 +cos? 8). 2N

The quantity k is the wavenumber 27/2 and « is the
polarizability. For the scattering from the agglomer-
ates, we use the Fisher—Burford form (1967), which

10°
10°

10’

4.0 ym DIAMETER

10°%¢
10°r
1.0 um DIAMETER

10%F 1

10°f
0.234 pm DIAMETER

SIGMA( 9), nm?

102 I A A, A 2
0 30 60 90 120 150 180
6, DEGREES

Fig. 5. Scattering cross-section for unpolarized, o,(0), is
plotted vs scattering angle for polystyrene spheres with
refractive index = 1.588 and 4 =632.8 nm. The results are
calculated at 1° intervals from 0 to 180° for the TCRN.
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Mountain and Mulholland found to have the same
features as their calculations for simulated smoke
agglomerates, namely

NZ
" [1+2(R,q)*/3D, 17"
where ¢ is related to the scattering angle 6 and
wavelength of light / by the expression

(28)

Sag

q =47n_ sin (0/2). 29)
This expression is based on a fractal structure with
fractal dimension Dy.

This choice of scattering function is adequate for
a first order assessment of the TCRN response to
smoke agglomerates. More quantitative models
(Nelson, 1989b; Drolen et al., 1987; Iskander et al.,
1989), which include multiple scattering have been
developed; however, they are computationally inten-
sive and results are limited to agglomerates with fewer
than 1000 spheres. The calculations of Nelson (1989a)
indicate that multiple scattering may have a small
effect in the case of low density smoke agglomerates.

The quantity R,, the radius of gyration, is defined
as the second moment of the mass distribution of the
agglomerate

n
mRi=Y mr?

i=1

(30)

where m, is the total mass of the agglomerate and m; is
the mass of particle i whose center is at a distance r,
from the centroid. A key characteristic of a fractal
object is the power law relationship between the num-
ber N of primary units in an agglomerate and the
radius of gyration, R,

N=k(Ry/dy)" (31)

where d,, is the diameter of the primary sphere. The
fractal dimension Dy is defined by this equation.

Using equation (26)-(29), we can express o,, in the
following form

2 2
Gagl0) = AN*(1+4cos* ) — (32)
—— 1 2
[1 + 3D, [R,(4n/3)sin(6/2)] :l
where
A=% k*| |, 33)

This expression for ¢,,(8) is substituted into equation
(9) to compute the total flux reaching the detector. An
important feature of the expression for o, is that it
can be integrated exactly over solid angle (see equa-
tion (15)) to give the total scattering o},. To perform
the integration, one expresses the integrand in terms
of sin? (6/2). The final result is given by

. =8AN2[1+2/b-|-2/b2

1 1-02_q
e R T B ]
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2/b+4/b* -
—_— ) ., |
2-D,2 [(1+b) ]
— = [ +bP 221 4
tagop i+ ]] (34)
where b is defined as follows
2
= 47/ 35
b 3Df[Rs( n/1)] (35)

The quantities o4 and o ,,(6) are computed for the
case of fractal agglomerates with D;=1.9, propor-
tionality constant k (equation (31))=5.8, 41=632.8 nm,
primary particle size d,=30 nm, and refractive index
n=17-0.68i. The calculations were carried out for
7 agglomerates sizes, 10, 10, 10%, 10%, 105, 10%, 107
primary spheres.

As can be seen from equation (28), the differential
scattering is proportional to N? at small angles and
then varies as g~ > for large g, or equivalently for large
angles. There are no pronounced oscillations in the
scattering pattern as in the case for the sphere. As the
agglomerates increase in size, the light scattering
becomes more intense in the forward direction as
illustrated in Fig. 6.

4. RESULTS FOR PERFECT COSINE SENSOR

Implicit in the model is the assumption that the
light received by the detector is proportional to the
projected area of the sensor. This is the case for
a perfect cosine sensor. Such a condition is ap-
proached for the case of light entering the aperture of
an integrating sphere. In this section we assume a per-
fect cosine sensor; in the next section we consider
a physical model of an actual cosine corrected sensor
such as used in the TCRN.

10°k
£ 10°%¢
g ¢
« 10* Mﬂlmnv SPHERES 1
=
5
@ 10} 1
. 10 PRIMARY SPHERES

1@@#
0 30 60 90 120 150 180
6 , DEGREES

Fig. 6. Scattering cross-section for unpolarized light,

0,4(0), is plotted vs scattering angle for agglomerates with

fractal dimension of 1.9, prefactor 5.8, refractive index of

1.7-0.68i, 1=632.8 nm, and a primary particle size of
30 nm. The results are calculated at 1° intervals.

G. W. MULHOLLAND and N. P. BRYNER

4.1. Spheres

For the ideal detection system consisting of an
infinitesimal detector and collection of scattered light
from 0 =0 to 2n, we find from equation (19) that g, can
be obtained from F via the following equation

2nDF

=, 36
o Epa dydz (36)

To provide an additional test of the radiometric
model, we compare ¢, obtained from equation (36)
with the exact value o, obtained from Mie theory. The
results are summarized in Table 1 for the case of an
infinitesimal detector located 1cm from the laser
beam and with a cell length L equal 690 cm. The cell
length was taken to be six times larger than the
nominal length in this comparison so that the angle
range, 0.2° <0< 179.8°, approaches 0-180°. The error
is at most 0.7% for particle sizes up to 2.35 um,
increases to 2.6% for the 4 um particle size, and then
to 4.8% for the 8 um particle size. Further increases in
the length produce only slight improvements. The
major cause of discrepancy for the largest particles is
that the scattering calculations are carried out at 1°
increments. The actual error in the flux calculations
for the various designs of the TCRN will be consider-
ably less, at least a factor of 3 less, since the cell length
is fixed at 115 cm.

We have exercised the model for a range of detector
diameters, DC=2.7, 1.3 and 0.43 cm, the first two of
which correspond to the dimensions of the cosine-
corrected sensors studied experimentally. This allows
an estimation of the effect of the finite detector size on
the results. For each value of DC, the calculations
were performed for four values of D: 6.85, 443, 2.38,
and 1cm. The first three correspond to the range
examined experimentally and the fourth to a limiting
case. Performing calculations for differing Ds allows
one to estimate the effect of the angle truncation. In
these calculations, the number of x elements I, typi-
cally equals 300 and the number of sectors of the
detector is typically 144 with J1,,,=12.

The effect of angle truncation is illustrated in Fig. 7
for the case of fixed detector diameter, DC=0.43 cm,
and values of D from 1 to 6.85 cm, which correspond
to the smallest scattering angles 6,,;, of 1-6.8°. Here
we plot the ratio of the simulated value of the total
scattering cross-section g, to the value computed from
Mie theory, o,. For the 6.8° truncation angle, the
error is about 20% for the 2.35 um sphere size, while
for the 1° truncation angle, the error is about 2%.

The role of the finite detector size is assessed by
comparing the simulated and predicted (Mie theory)
total scattering for the three different detector dia-
meters for a value of D equal to 1.0 cm, which corres-
ponds to a smallest scattering angle, 0yi,=1°. The
results are summarized in Fig. 8. The largest detector
underestimates the total scattering intensity by about
20% for the smallest particle size and even exceeds the
theoretical value by about 2% for D=0.60 ym. For
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Table 1. Comparison of exact and model prediction for ¢ for polystyrene

spheres
Sphere diameter Mie theory o, Model* o, | Error|t
{um) (nm?) (nm?) (%)
0.0175 1.165x 1072 1.165x 1072 <0.1
0.234 2,113 x 10* 2.114 x 10* <0.1
0.305 8.058 x 10* 8.056 x 10* <0.1
0.60 1.089 x 10° 1.088 x 10° <0.1
1.101 2.361 x 108 2.355x 106 0.3
235 1.013 x 107 1.007 x 107 0.6
4.0 3.303 x 107 3.388 x 107 26
8.0 1.054 x 108 1.003 x 108 4.8
*0.2°<0<179.8°.
1 |Error|=|(a,—0,)/a,].
1.1 T T A the smallest detector, the ratio is close to unity over
J the entire range.
101 » e e 1 The results for all the combinations of detector sizes
o 0ol "‘-\ "-..,\ ] and dlsta.mces. are summarized .in Table 2 in terms of
e : bae AN the particle size range for which the errors are less
o« 0sl Y % than 2, 5 and 20%. From Table 2 it is apparent that
- i * there are two constraints for obtaining accurate
g 07h y 240 results. The most significant constraint is that there be
5 a wide enough angular integration range. The larger
06 “.‘ o] the particle size the smaller the value of 6,,,, which
. ) L means a small value of D. For example, to obtain 5%
0'%1 1 1 10 uncertainty in the measurement of ¢, for an 8.0 yum
DIAMETER, 1 m sphere, requires 04,,=1.0 (D=10cm for a 115cm

long cell) and DC=1.3 or smaller. The second con-

Fig. 7. Effect of angle truncation on the predicted straint is that the cosine sensor diameter, DC, be

TCRN performance, /0, vs particle size of poly-

styrene spheres for D values of 6.85 cm (0, = 6.8%), comparable to the distance D or smaller to minimize
2.38cm (Opin=24°), and 1.0 cm (65, =17) for the the error associated with the finite size of the detector.
case DC equals 0.43 cm and cell length, L, equals For DC/D < 1.25, the finite-size-effect error is less than

115 cm. The angle 0,,;, equals tan~! (2D/L) and is

, 5%, and for DC/D <0.55, the error is less than 2%.
the smallest scattering angle for the cell.

4.2. Agglomerates

The exact results for the total scattering cross-sec-
tion as a function of agglomerate size are obtained

1.1 T T from equation (34). In Table 3 the radiometric model
results for an infinitesimal detector area, D=1 cm,
10t L=115cm, and the length divided up into 300 in-
crements are compared with the exact results. The
lc__> properties of the agglomerates are as described above.
I 09} In evaluating A given in equation (33), the refractive
< index, m, is taken to be 1.7-0.681i. The polarizability is
E 08t obtained from the Clausius—Mosotti relation
o 2
a=ﬂ<m2“ 1). (37)
07} 1 4n \m”“+2
The difference between the exact result and the pre-
0.6 . . dicted instrument response is <0.5% for agglomer-
01 3 1 10 ates with up to 10* primary units (R;= 1.4 um). The
DIAMETER, pm increasing discrepancy for larger agglomerates is a

. . . . result of the increasing fraction of the total scattering
Fig. 8. Effect of finite detector size on predicted TCRN

performance, 0, /0, vs particle size of polystyrene spheres occurring for angles outside the, detccto'r § range
for DC values of 0.43, 1.3, and 2.7 cm for D= 1.0 cm (0,5, (D=1cm corresponds to detector’s scattering range
equal 1°) and cell length equal 115 cm. from 1.0 to 179.0°).

AE(A) 28:5-1




880

G. W. MULHOLLAND and N. P. BRYNER

Table 2. Particle diameter range (um) of polystyrene spheres for speci-
fied error limits for perfect cosine sensor

D Error Diameter of detector, DC
(cm) (%) 2.7cm 1.3cm 043 cm
6.85 2 <0.31 <0.31 <0.31
Bin = 6.8° ) <06 <0.6 <06
20 <11 <11 <1.1
4.43 2 <0.6 <06 <0.6
Omin =4.4° 5 <11 <11 <11
20 <24 <24 <24
2.38 2 0.31-0.6 <0.6 <11
Onin =2.4° 5 <24 <24 <24
20 <40 <40 <40
1.0 2 None 0.6-24 <4.0
O nin = 1.0° 5 0.6* <80 <80
20 <80 <80 <80

*Only particle size for which error less than 5%.

Table 3. Comparison of exact and model calculation for ¢ for agglomerates

No. of spheres R, D* o, equation (36) a,, model |Error|t
(um) (um) {nm?) (nm?) (%)
10 0040 0065  1522x10° 1.522x 10° <0.1
102 0.13 0.14 8.871 x 104 8.871 x 10* <0.1
10° 0.45 0.30 2.457 x 106 2.456 x 108 <0.1
10* 1.5 0.65 4.329 x 107 4312x 107 04
10° 5.1 1.4 6.108 x 108 5.942 x 108 2.7
10° 17 30 7.704 x 10° 6.807 x 10° 11.6
107 57 6.5 9.120 x 107° 6.975 x 101° 235
* D, is the volume equivalent sphere diameter.
t|Error|=|(o —0,)/al.
In carrying out the light scattering calculations for 1.4
the agglomerates, it was found that a larger grid could
be used because of the nearly monotonic character of 1or
the scattering function. Typically, 10 circular rings ook
(100 sectors) were used and 100 increments in the (=]
x direction were used for the agglomerates compared E o8l
to 12 circular rings (144 sectors) and 300 increments in <
the x direction for the spheres. E 0.7r
In Figs 9 and 10, we indicate in a manner analog- i
ous to the sphere results the effect of the angle trunc- il |
ation and finite size of the detector on the ratio of the o5t
simulated values for the total scattering coefficient to

the exact results obtained from equation (34). The
curves are qualitatively similar to those in Figs 7 and
8. The effect of the finite size of the detector seems to
be more pronounced for the agglomerates than for the
spheres. For DC/D < 0.80, the finite-size-effect error is
less than 5%, and for DC/D <0435, the error is less
than 2%. The results for all the combinations of
detector sizes and distances are summarized in Table 4
in terms of the agglomerate size range for which the
errors are less than 2, 5 and 20%.

5. PHYSICAL COSINE-CORRECTED SENSOR

The analysis up to this point is based on an ideal
cosine sensor. This means that the light flux detected

04 e aint s sintl s sl st
10° 10" 102 10° 10* 10° 10% 107
NUMBER PRIMARY SPHERES

Fig. 9. Effect of angle truncation on the predicted
TCRN performance, 6,/04,, vs number of primary
spheres in the smoke agglomerate for D values of
6.85 (6.8°), 2.38 (2.4°), and 1.0 (1°) for the case DC
equals 0.43 cm and cell length equals 115 cm.

by the sensor is proportional to the product of the
light intensity, incident on the sensor and the cosine of
the angle ¢ defined by the scattering direction and the
normal to the detector surface. As mentioned earlier,
an aperture has a perfect cosine response since the flux



Radiometric model of the TCRN 881

11 T T o] T T T
190F
[+] L
E 0.9
<
x©
F
a 08
7]
07 P < K

os anl. amed. ey 2l sl i
10° 10" 102 10% 10% 10% 10% 107
NUMBER OF PRIMARY SPHERES

Fig. 10. Effect of finite detector size on predicted
TCRN performance, ¢,/0,,, vs the number of
primary spheres in the smoke agglomerate for
DC values of 0.43, 1.3, and 2.7cm for D=10cm
{(Bmin equal 1°) and cell length equal 115 cm.

Table 4. Cluster size range (No. of primary spheres) for
specified error limits for perfect cosine sensor

D Error Diameter of detector, DC
(cm) (%) 2.7cm 13ecm 043 cm
6.85 2 <10 <10? <102
Opmin = 6.8° S <103 <103 <103
20 <10* <10* <10*
443 None <103 <103
Oin = 4.8° 5 <10 <100 <108
20 <10* <10* <10*
2.38 None <103 <103
Oyin = 2.4° 5 103* <104 <10*
20 <10° <108 <10°
1.0 2 None None <10*
Opmin = 1.0° 5 None <10% <10®
20 103-10° <10° <10°

* Only cluster size for error less than 5%.

entering the aperture is proportional to the projected
area which, in turn, is proportional to cos ¢. Once the
aperture is covered with a transparent or translucent
material such as glass, the flux of light penetrating the
glass and passing through the aperture is no longer
simply proportional to the cos ¢. At each angle, some
fraction of the light is reflected in addition to being
diffracted with an increasing fraction being reflected
as the angle ¢ approaches 90°. To compensate for this

! Certain commercial equipment, instruments, or mater-
ials are identified in this paper to specify adequately the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best
available for the purpose.

effect, a physical cosine-corrected sensor is a three-
dimensional device. In this section, we briefly describe
the cosine sensors used in the TCRN and present
a model for the physical cosine sensor used in the
radiometric transfer analysis. The idea here is to cap-
ture the essence of the physical sensor rather than
making an exact mathematical model.

Two schematic designs of physical cosine sensors
together with a truncated cone model of one of the
sensors are shown in Fig. 11. Sensor I, obtained from
EG&G,' contains a polytetrafluoroethylene (PTFE)
membrane roughly in the shape of a truncated cone.
The membrane acts as a diffuser with about 5% of the
incident light transmitted through the membrane at
normal incidence. Sensor II utilizes a 1.3 cm diameter
diffuser and a stepped outer plate to obtain a cosine
response. The dimensions of the stepped plate are
based on the plate design reported by Schotland and
Copp (1980). In both cases, the sensor is attached to
a photomultiplier tube via an approximately 5cm
long, 2.5 cm diameter blackened tube.

Figure 12 shows good agreement between the per-
fect cosine response and our measured response for
Sensor I up to angles of 85° for the case where the
entire sensor area is uniformly illuminated. In Fig. 13
we show the angular response for the nominal 1 mm
diameter laser beam incident on the center of the
sensor. A constant response independent of the angle
¢ is expected in this case for a perfect cosine sensor,
since the beam is not truncated by the area of the
detector. The decreasing response with respect to
angle is a result of an increased amount of reflection.

The mathematical model for sensor I is based on
a truncated cone geometry as illustrated in the center
of Fig. 11. The flat portion of the cone with a diameter
of 2.7 cm is divided into 12 circles with 144 sectors.
Three rings are on the sloped portion, and the number
of sectors for ring N equals 2N --1, just as for the
circular region. The spacing of the rings is determined
by the constraint that all sectors have equal area.

In computing the light flux from an element of the
laser beam to an element of the sensor, we use the
following power law approximation to the measured
response function plotted in Fig. 13

H(p)=[1-(¢/88.2)*1%%,
H($)=0, ¢>8l.

$<81
(38)

This function replaces the cos ¢ in equation (9), which
is correct only for the case of a perfect cosine sensor.

In the case of the circular sensor, some of the light
scattered from every point along the laser beam
reaches every point on the sensor’s surface. This is not
the case for the conical surface for two reasons. First,
the scattering vector can be intercepted by one de-
tector element before reaching a second as illustrated
in Fig. 14. This case would correspond to an angle
¢ greater than 90°. The program for computing the
total flux calculates cos ¢ from the dot product of the
unit vector in the scattering direction, v, and N, the
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Fig. 11. Schematics of sensor I, sensor I, and a geometric representation of sensor I used in
modeling the sensor performance.
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Fig. 12. Comparison of measured and model response of
sensor I to a large beam of light that fills the entire detector
area with uniform illumination. The symbols correspond
to repeat measurements of the intensity vs angle ¢. The
solid curve corresponds to perfect cosine response.
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Fig. 13. Comparison of the measured response for sensor

I and the model response of sensor I, to a small (laser)

beam of light. The curve for perfect cosine response is also
included.

unit normal to the detector surface.
cosp=v-N. (39)

If cos ¢ <0, which is equivalent to ¢ >90°, the pro-.
gram eliminates this term from the sum given by
equation (9).

Secondly, for small scattering angles, the scattered
light can be blocked by the “ears” from reaching the
detector as illustrated in Fig. 14. The “ears” are de-
signed to limit the range of scattering angles reaching
the detector to 0--180°. In carrying out the total flux
calculations, there is a check to see if the scattered
light is intercepted by the “ears”.

To test our computer program, we computed the
light flux from a point source located far from the
detector (10 ¢m). First we found that the computed
intensity agreed within + 1% with a cosine response
for a circular detector. Then the program was applied
to the physical cosine corrected sensor with equation
(38) replacing cos ¢ in computing the radiant flux to
the detector, and good agreement was obtained be-
tween experiment and the model results over the angle
range of the measurements as shown in Fig. 12.

The model was developed based on measurements
with a conical sensor. The cosine response was not
measured by us for the solid plastic sensor, though
Schotland and Copp indicate less deviation from per-
fect cosine response than we obtained for the conical
shaped sensor. In the analysis below, we use the phys-
ical model based on the conical shape for both
Sensors.

We applied the physical cosine sensor model in
computing the light scattered from the polystyrene
spheres in essentially the same way as for the perfect
cosine sensor. The ratio of the total flux to o, was
computed for each particle size. The ratio is multiplied
by a normalization factor, which makes the sigma
ratio equal to unity for the smallest particle size. In
general, there is agreement within 5% between the
physical and perfect cosine sensor for the case of large



Radiometric model of the TCRN 383

(a
) CASE 1

(b)

CASE 2
LIGHT BLOCKED
BY EARS

1 8 3

5o 0 0 2 8 9 7 O O

Laser Beam —>»

IRTTTTRHATIRY

Laser Beam =——>»

Fig. 14. Tllustration of two unphysical conditions which must be checked
for each radiant flux calculation for the physical cosine sensor (a) ¢ >90°
and (b) blockage by “ears”.
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Fig. 15. Comparison of performance of “physical” and

perfect cosine sensor for large (D = 6.85 corresponds to

O min=6.8°) and small truncation angles (D=10 cor-

responds to On,=1°) for polystyrene spheres. The

symbols correspond to the computed points for the
“physical” sensor.

truncation angle, >5° For small truncation angles
there is a large difference between the two for large
particle sizes as illustrated in Fig. 15. The difference is
primarily a result of the response of the physical
sensor for small angles. Large fractional errors in the
cosine response for the model are evident in Fig. 12.
The larger the particle size the more important that
the cosine response be valid at ever smaller angles.

No attempt was made to make the model give cosine
response at arbitrarily small angles. Rather, the model
was designed to agree with measured values for scat-
tering angles as small as 5° (¢ up to 85°).

6. EXPERIMENTAL RESULTS

Here we provide a brief account of the experimental
procedure and the results. A complete description of
the instrumentation and its performance is intended
for a separate publication. An aerosol of polystyrene
spheres was produced by atomizing a suspension of
polystyrene spheres in filtered, deionized water. The
liquid droplets produced by the atomizer evaporate as
they pass through a diffusion drier leaving primarily
individual polystyrene spheres. Dilution and passage
through a mixing chamber further insure the droplets
have evaporated before entering the TCRN (see
Fig. 16). The concentration of the polystyrene suspen-
sion was adjusted so that the laser intensity typically
decreased by 3-8% on passing through a 1.15m
cell. The following particle diameters were used: 0.100,
0.234, 0.305, 0.60, 1.101, and 2.35 um. This general
procedure is widely used in the aerosol community for
producing monodisperse aerosols (Raabe, 1976) for
calibration.

The TCRN measurements include the incident and
transmitted laser intensity using photodiode detectors
and the scattered light intensity with a cosine sensor
followed by a Hamamatsu R-955 9-stage photomul-
typlier tube operating at 1000 volts. The photomulti-
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Fig. 16. Schematic of experimental setup for testing the TCRN performance with
monosize polystyrene spheres. The cell is just starting to be filled as indicated by
the dots.

plier (PM) output is integrated with a simple RC
circuit with a 100 ms time constant. The analog sig-
nals from the two photodiodes, the PM tube, and the
ratio circuit which computes the ratio of the two
photo-diodie outputs, are converted to digital signals,
which are read and stored every Ss by a com-
puter/data acquisition system. Typically a 10-point
average is used in analysing the data. A measurement
sequence consists of background measurements with
filtered air, measurements of the polystyrene sphere
aerosol for sensor I at a fixed position, measurements
with the cosine sensor moved to a second and third
position, and then remeasured with clean air to check
for background drift. This sequence of measurements
was performed for each of the particle sizes during
a single day and a repeat measurement was typically
performed for one particle size. Also, the entire series
of measurements were repeated on a second day.
A similar set of measurements was performed with the
smaller cosine sensor.

For each set of measurements, the light extinction
coefficient was computed using the Beer—-Lambert law

_log(le/1)

Oen="—7p (40)

where L is the optical pathlength in the cel, 115 cm.
The quantity I, is measured as the ratio of the trans-
mitted to incident laser intensity with no aerosol pres-
ent and the quantity [ is measured as the same ratio
with the aerosol present. The reduced photomultiplier
output is computed as

_ Vem
IaO'ext

R 41

where V3, is the output voltage of the photomultiplier

tube minus the background voltage corresponding to
no aerosol present and I, is the incident laser beam
intensity.

While there has not been a detailed evaluation of
the linearity of the detectors, a preliminary series of
measurements based on using three neutral density
filters spanning a six-fold intensity range indicated
that the detector outputs deviated from the linear
response by 3% at most. The major source of
measurement uncertainty for Jow aerosol concentra-
tions arises from the background drift in the intensity
ratio, typically about 0.05%. For the largest particle
sizes, 1.101 and 2.35 um, the aerosol concentration
was low because of the difficulty of atomizing large
spheres and the resulting extinction coefficients were
about 0.025 m™! for the 1.101 um spheres and about
0015m™" for the larger spheres. For these cases
a background drift in the intensity ratio of 0.05%
results in ~2% change in oe, for the 1.101 um
spheres and x3% change for the 2.35 um spheres.
For the smaller sphere sizes, o, was in the range
0.035-0.07 with an error less than 1% resulting from
the background drift. Repeat measurements for
oex and R typically agree within 2% while day-to-day
variation is typically less than 4% for the smaller
particle sizes. An overall estimate of the measurement
precision for aerosols with ge, =003 m™!is +4% of
the mean value at the 95% confidence interval (20).

For an ideal TCRN, the quantity R would be a con-
stant for non-absorbing spheres such as polystyrene
spheres, since both the numerator and denominator
are proportional to the total scattering coefficient. In
Figs 17 and 18, we see general agreement between the
experimental results for the reduced R and the model
predictions of the physical cosine sensor. Both the
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measured and predicted results show less effect of
particle size on response for the detector closer to the
laser beam. The measured results for R for the largest
particle size have the largest uncertainty both because
of the low extinction coefficient and because of par-
ticle sedimentation. A 15% decrease in the light ex-
tinction coefficient was measured for the 2.35 um
spheres over a 60s period starting 120s after the
aerosol was collected in the cell. The nominal resi-
dence time in the TCRN is about 90 s.

There seems to be a systematic decrease in R for the
0.305 um spheres and a systematic increase for both
sensors for D=6.85 cm for the 0.60 um spheres. The
decrease in the case of the 0.305 um spheres may be
a result of the larger extinction coefficient for this
particle size as discussed in the next section. We do
not have an explanation for the systematic increase at
0.60 ym.

The finite-size-effect can be seen best by plotting the
product of the PM output times the distance from the
cosine sensor. According to equation (19), the product
of radiant flux and D should be a constant if there
were no finite-size-effect. As seen in Fig. 19, the meas-
ured finite-size-effect is about 5% for the 1.3 cm
detector and about 14% for the 2.7 cm detector com-
pared to predicted values of about 3 and 7%, respec-
tively, for both detectors positioned closest to the
laser beam.

7. DISCUSSION

This study represents the first quantitative
modeling for the TCRN. However, there have been
a number of calculations of the effect of angle trunc-
ation on the performance of the standard nephelo-

R/ R(o.za pm

D=6.85¢cm

0.7

Rl ' 1 10
DIAMETER, um

Fig. 17. Comparison of measured and predicted
behavior (solid line) of TCRN, R/R (0.234 um), as
a function of particle size for the 2.7 cm diameter
PTFE sensor (sensor I) positioned 2.25 cm (upper
curve) and 6.85 cm (lower curve) from the laser
beam. The different symbols correspond to
measurements made on different days and the two
square symbols for 0.6 um spheres correspond to
repeat measurements on the same day.
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Fig. 18. Comparison of measured and predicted
behavior (solid line) of TCRN, R/R (0.234), as
a function of particle size for the 1.3 cm diameter
sensor (sensor II) positioned 2.40 cm (upper curve)
and 6.85 cm (lower curve) from the laser beam.
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Fig. 19. Measured and predicted finite size effect for sen-

sor I (solid symbols) and for sensor II (open symbols).

Circles correspond to 0.100 um spheres, squares to
0.234 um spheres, and triangles to 0.305 um spheres.

meter (Ensor and Waggoner, 1970; Fitzgerald, 1977,
Hasan and Lewis, 1983; Sloane et al., 1991). Most of
these studies have focused on the performance of
commercially available nephelometers, the Meteoro-
logy Research Inc. (MRI) 1560 and 1590. These are
widely used in ambient air quality monitoring, and
the current version is manufactured by the Belfort
Instrument Company.The nominal angle range for this
instrument is 8-170°. In their studies of angular trunc-
ation errors, Fitzgerald (1977) and Sloane et al. (1991)
found pronounced oscillatory behavior in the correc-
tion factor for monodisperse aerosols with particle
diameters larger than about 2 ym for an angular in-
tegration range from 8 to 170°. A similar effect would
be expected in our Fig. 7 for D= 6.85 if the sigma ratio
were computed for more particle sizes in the range
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between 1 and 10 um. There is an indication of the
expected oscillatory behavior for the last two points.
As indicated in Sloane et al. (1991), this oscillatory
effect is less significant as the angle acceptance range
increases. This oscillatory behavior, which becomes
most evident for corrections on the order of 20% or
more, suggests that the particle diameter range given
in Table 2 may be overstated at least for the case of
D=6.8S for 20% error.

The calculated results in this paper assume there is
no attenuation of the faser beam. In reality the attenu-
ation of the beam will result in a lower measured light
scattering coefficient compared to the true value. We
have carried out a series of calculations including the
attenuation factor (see equation (5)) for light extinc-
tion coefficients equal to 0.01, 0.03 and 0.07 m~ !, for
D, of 0.0175, 0.60, and 8.0 um, for DC=2.7 cm and for
D equal to both 2.38 (Omin=2.4°) and 6.85 (O in = 6.8°).
Over this range of parameters we find that the follow-
ing expression agrees with the numerical result to
within 0.1% for the ratio, R,, of the light flux reaching
the detector with beam attenuation included to the
light flux without beam attenuation.

Ry=exp(—keaLy) (42)

where

L,=L2+D. (43)
As expected, this correction is most accurate for large
particles where most of the light is scattered in the
forward direction so that the pathlength of the light
reaching the detector is close to the value given by
equation (43), while the value is systematically high
for the smallest particle size, since a significant frac-
tion of the scattered light comes from back scattering
with a resulting longer pathlength. For our experi-
ments, the correction is largest for the 0.305 um
spheres, for which 6ex=007m~! and R,=0.959
(equation (42)). This may account for the lower value
for R in the plots given in Figs 17 and 18 for the
0.305 um spheres. If the value of 6.y increases beyond
0.07 m !, multiple scattering will become more im-
portant and affect the accuracy of the measurements.
There is a need to extend the model presented here to
quantify the effect of multiple scattering on the
measurement of . We expect the multiple scattering
to be less significant for smoke agglomerates, since
more of the light is absorbed than scattered.

A significant issue in the present study is the effect
of finite size of the detector on the instrument perfor-
mance; there has been no parallel study in the case of
the standard nephelometer. We make a rough esti-
mate of the finite-size-effect for the 1590 Mode! Neph-
elometer based on the diameter of the light diffuser,
1.9 cm, and the distance from the diffuser to the center
of the detection cone, 3.2 cm. We estimate the finite-
size-effect for the standard nephelometer to be on the
order of 1% for spherical particles and about 2% in
the case of agglomerates. The estimate is based on the
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performance of the TCRN for approximately the
same value of the ratio DC/D.

There is a tradeoff between finite-size-effects and
angle truncation. The closer the cosine sensor is to the
light beam, the smaller the angle truncation error is but
the larger the finite-size-effect error. There are situ-
ations such as in the measurement of optical proper-
ties of larger particles where it is advantageous to
move the detector close to the beam. The finite-size-
effect error is smaller for large particle sizes than for
small ones because the increased forward scattering
results in a larger effective scattering pathlength for
the larger particles. For example, for the 1.3 ¢cm dia-
meter detector 1 cm from the beam, the error pre-
dicted by the radiometric model is less than 2% for
particle size in the range 0.6-2.35 ym but increases to
5% for 0.0175 um diameter spheres.

A major advantage of the TCRN over the standard
nephelometer is the capability of experimentally test-
ing for errors associated with angle truncation and
finite size by performing both a total scattering and
a light extinction measurement within the same op-
tical cell. The key quantity of interest is the ratio of the
PM output to the light extinction coefficient (equa-
tion (41)). Our study show that this ratio can be
measured to a precision of +4% for g.y, in the range
0.03-0.07 m~!. The primary sources of imprecision in
the current design are the background drift in the
measurement of the ratio of incident to transmitted
light, about 0.05%, and the drift in the PM tube
response.

We find that for our TCRN design with a 1.3 cm
cosine sensor positioned 2.4 cm from the detector
{Bmin=2.38°) all the measurements and the predicted
values agree within + 5% for spherical particles with
diameters < 1.1 um. We estimate that a similar uncer-
tainty would apply for agglomerates with up to about
3 x 10® primary spheres. This design is similar to the
one used by Patterson et al. (1991), which had the
same size sensor, a slightly larger minimum angle of 3°
compared to 2.4°, and a slightly larger finite-size-effect
resulting from the laser beam being 2 cm from the
detector compared to 2.4 cm in our study. To main-
tain 5% uncertainty for spheres up to 8 um and ag-
glomerates up to 10° spheres, it is estimated that the
response of the cosine sensor must be within a few
percent of perfect (cos ¢) for a scattering range from
1to 179°

Acknowledgements—This work was funded in part by
Grant W-17,980 from the Life Sciences Division of NASA
and was monitored by Dr Guy Fogleman. Marjorie
McClain provided programming assistance. Comments
made by Craig Bohren (Pennsylvania State University) were
crucial to the analysis in Appendix A.

REFERENCES

Beutell R. G. and Brewer A. W. (1949) Instruments for the
Measurement of the Visual Range. J. Sci. Instrum. 26,
357-359.



Radiometric model of the TCRN 887

Bohren C. F. and Huffman D. R. (1983) Absorption and
Scattering of Light by Small Particles. John Wiley, New
York.

Charlson R. J., Horvath H. and Pueschel R. F. (1967) The
direct measurement of atmospheric light scattering coeffic-
ient for studies of visibility and pollution. Atmospheric
Environment 1, 469-478.

Drolen B. L. and Tien C. L. (1987) Absorption and scattering
of agglomerated soot particulate. J. Quant. Spect. Rad.
Transfer 37, 433.

Ensor D. S. and Waggoner A. P. (1970) Angular truncation
error in the integrating nephelometer. Atmospheric Envi-
ronment 4, 481-487.

Fisher M. E. and Burford R. J. (1967) Theory of critical point
scattering and correlation. I. The Ising model. Phys. Rev.
156, 583.

Fitzgerald J. W. (1977) Angular truncation error of the
integrating nephelometer in the fog droplet size range. J.
appl. Met. 16, 198-204.

Foote P. D. (1916) Illumination from a radiating disk. Bull.
Bur. Stand. 12, 583-586.

Gerber H. E. (1979) Portable cell for simultaneously measur-
ing the coefficients of light scattering and extinction for
ambient aerosols. Appl. Opt. 18, 1009-1014.

Gerber H. E. (1982) Simultaneous measurements of aerosol
scattering and extinction coefficients in a multi-pas cell. In
Light Absorption by Aerosol Particles (edited by Gerber
H. E. and Hindman E. E.), pp. 231-241. Spectrum Press,
Hampton, VA.

Hasan H. and Lewis C. W. (1983) Integrating nephelometer
response corrections for bimodal size distributions. Aero-
sol Sci. Technol. 2, 443—-453.

Iskander M. F., Chen H. Y. and Penner J. E. (1989) Optical
scattering and absorption by branched chains of aerosols.
Appl. Opt. 28, 3083.

Johnson D. W.,, Kilsby C. G, McKenna D. S, Saunders
R. W, Jenkins G. J., Smith F. B. and Foot J. S. (1991)
Airborne observations of the physical and chemical char-
acteristics of the Kuwait oil smoke plume. Nature 353,
617-621.

Mountain R. D. and Mulholland G. W. (1988) Light scatter-
ing from simulated smoke agglomerates. Langmuir 4,
1321-1326.

Nelson J. (1989a) Fractality of sooty smoke: implications for
the severity of nuclear winter. Nature 339, 611.

Nelson J. (1989b) Test of a mean field theory for the optics of
fractal clusters. J. mod. Opt. 36, 1031.

Patterson E. M., Duckworth R. M., Wyman C. M., Powell
E. A. and Gooch J. W. (1991) Measurement of the optical
properties of the smoke emission from plastics, hydrocar-
bons, and other urban fuels for nuclear winter studies.
Atmospheric Environment 25A, 2539-2552.

Raabe O. G. (1976) The generation of aerosols of fine par-
ticles. In Fine Particles Aerosol Generation, Measurement,

Sampling and Analysis (edited by Liu B. Y. H.). Academic
Press, New York.

Samson R. J., Mulholland G. W. and Gentry J. W. (1987)
Structural analysis of soot agglomerates. Langmuir 3,
272-281.

Schotland R. M. and Copp J. D. (1980) A narrow band
spectral pyranometer. International Radiation Sympo-
sium, Volume of Extended Abstracts, pp. 562-564. Col-
orado State University, Fort Collins, CO.

Siegel R. and Howell J. R. (1981) Thermal Radiation Heat
Transfer, p. 174. Hemisphere, New York.

Sloane C. S., Rood M. J. and Rogers C. F. (1991) Measure-
ments of aerosol particle size: improved precision by sim-
ultaneous use of optical particle counter and nephelom-
eter. Aerosol Sci. Technol. 14, 289-301.

APPENDIX A

Calculation of I 4+ 1y

The following expression relates the horizontal and verti-
cal components of the scattered electric fields, E}, and E}, to
the incident fields.

E_c 52(0) $30)\ { Eb

E; 5.(0) 8,0/ \E;}
where C is a coefficient independent of 6.

The horizontal and vertical planes are relative to the

scattering plane, which is defined by the incident and scatter-
ing directions. For the upper point, 4, the scattering plane is
at an angle o from the horizontal (see Fig. 3). The compo-
nents of the incident fields are given by

(A1

Ei=Eqcosa+E,sina

, for point 4 A2
E!=—Eycosa+ Egsina P A2
E\=E,cosa—Egsina .

. ., for point B. (A3)
E,=—Eqcosa—Eysina

The scattered field components are calculated from equa-
tions (A1)-(A3) and the intensity I, at point A is computed
from the fields as follows

1(A)=EREx* + ESE.*. (A4)

We obtain a similar expression for Iz. The sum I, + I reduc-
es to the following expression in terms of the components of
the Mueller Matrix

14+ 15=4|C|*|Eo]*[S1:(0)—cos(22)§;3(0)].  (AS)

The quantity S, 5 vanishes for randomly oriented non-spheri-
cal particles that are superposable on their mirror image so
that the final result is independent of a.



