Proceedings of the ASME 2012 International Symposium On Flexible Automation

. . ISFA 2012
June 18-20, 2012, St. Louis, Missouri, USA

ISFA2012-7179

USARSIM/ROS: A COMBINED FRAMEWORK FOR ROBOTIC CONTROL AND
SIMULATION

Stephen Balakirsky*
Intelligent Systems Division
National Institute of Standards and Technology
Gaithersburg, Maryland 20899
Email: stephen.balakirsky@nist.gov

ABSTRACT

The Robot Operating System (ROS) is steadily gaining pop-
ularity among robotics researchers as an open source framework
for robot control. Additionally, the Unified System for Automa-
tion and Robot Simulation (USARSim) has already been used for
many years by robotics researchers and developers as a vali-
dated framework for simulation. This paper presents a new ROS
node that is designed to seamlessly interface between ROS and
USARSim. It provides for automatic configuration of ROS trans-
forms and topics to allow for full utilization of the simulated
hardware. The design of the new node, as well as examples of
its use for mobile robot and robotic arm control are presented.

INTRODUCTION

Robots have now become a part of many people’s everyday
lives. Whether as simple toys used by children, floor cleaning
robots used in the home, or high precision industrial manipula-
tors used in manufacturing, these systems are quickly changing
the ways in which we play and work. One can no longer make
the assumption that robots will exist in enclosed areas, or that the
programmer or developer of the systems will be highly-skilled
robotics experts. Indeed, new open source projects in robotic
control systems such as the Robot Operating System (ROS)! [1]

*Address all correspondence to this author.

ICertain commercial software and tools are identified in this paper in order
to explain our research. Such identification does not imply recommendation or
endorsement by the authors, nor does it imply that the software tools identified
are necessarily the best available for the purpose.

Zeid Kootbally
Department of Mechanical Engineering
University of Maryland
College Park, Maryland, 20742
Email: zeid.kootbally@nist.gov

allow even novice users with a Linux platform to download and
run some of the most advanced robotic algorithms. If the users
desire a deeper knowledge of how these algorithms work, there
is even a free robotics course from Stanford University that may
be taken online.

However, one thing that many of these individuals are miss-
ing is robotic hardware. Simulators exist to fill this void and
allow both experts and novices to experiment with robotic algo-
rithms in a safe, low-cost environment. In order to truly pro-
vide valid simulation, the simulator must provide noise models
for sensors and must be validated. One modern robotic simu-
lator, known as the Unified System for Automation and Robot
Simulation (USARSim) [2], provides such a simulation platform.
This simulator has been used by the expert robotics community
for several years and has played an important role in developing
robotics applications. Its uses include rapid prototyping, debug-
ging, and development of many tasks ranging from legged robots
playing soccer [3] to urban search and rescue (USAR) [4,5]. In
fact, a search for the keyword “USARSim” on Google Scholar
returns over 700 articles that have referenced the simulation plat-
form.

A simulation environment enables researchers to focus on
algorithm development without having to worry about the hard-
ware aspects of the robots. Simulation can be an effective first
step in the development and deployment of new algorithms and
provides extensive testing opportunities without the risk of harm-
ing personnel or equipment. Major components of the robotic ar-
chitecture (for example, advanced sensors) can be simulated and
enable the developers to focus on the algorithms or components

in which they are interested without the need to purchase ex-
pensive hardware. This can be advantageous when development
teams are working in parallel or when experimenting with novel
technological components that may not be fully implemented or
available.

Simulation can also be used to provide access to environ-
ments that would normally not be available to the development
team. Particular test scenarios can be run repeatedly, with the
assurance that conditions are identical for each run. The envi-
ronmental conditions, such as time of day, lighting, or weather,
as well as the position and behavior of other entities in the world
can be fully controlled. In terms of performance evaluation, it
can truly provide an “apples-to-apples” comparison of different
software running on identical hardware platforms in identical en-
vironments. Another important feature of a robotic simulator is
easy integration of different robotic platforms, different scenar-
ios, different objects in the scene, as well as support for multi-
robot applications.

This paper examines a new interface that allows the ROS
control framework to communicate directly with USARSim thus
opening up sophisticated robot control and development to an en-
tirely new audience. Novice robot developers can now work with
world class algorithms from the safety of their computer with-
out the expense of actual robotic hardware. This paper describes
a ROS node that acts as an interface connecting the USARSim
framework with the ROS framework. The following sections de-
scribe, analyze, and illustrate the new interface for the navigation
of a mobile robot base, control of a robotic arm, and interface to
existing sensors. In addition, a novel sensor interface is presented
that allows the simulator to mimic a sensor processing system
that produces the 6-degree-of-freedom pose for known objects.

BACKGROUND

In order to experiment with robotic systems, a researcher
requires a controllable robotic platform, a control system that
interfaces to the robotic system and provides behaviors for the
robot to carry out, and an environment to operate in. This paper
examines an open source (the game engine is free, but license
restrictions do apply), freely available framework capable of ful-
filling all of these requirements. This framework is composed of
the USARSim framework that provides the robotic platform and
environment, and the ROS framework that provides the control
system.

The USARSim Framework

USARSIim [4, 5] is a high-fidelity physics-based simulation
system based on the Unreal Developers Kit (UDK) [6] from
Epic Games. USARSim was originally developed under a Na-
tional Science Foundation grant to study Robot, Agent, Person
Teams in Urban Search and Rescue [7]. Since that time, it has

(a) Test Room.

(c) Factory,

(d) Road course.

FIGURE 1. Sample of 3D environments in USARSim.

been turned into a National Institute of Standards and Technol-
ogy (NIST)-led, community-supported open source project that
provides validated models of robots, sensors, and environments.

Through its usage of UDK, USARSim utilizes the physX
physics engine [8] and high-quality 3D rendering facilities to cre-
ate a realistic simulation environment that provides the embodi-
ment of, and the environment for a robotic system. The current
release of USARSIm consists of various model environments,
models of commercial and experimental robots, and sensor mod-
els. High fidelity at low cost is made possible by building the
simulation on top of a game engine. By delegating simulation
specific tasks to a high volume commercial platform (available
for free to most users) which provides superior visual render-
ing and physical modeling, full user effort can be devoted to the
robotics-specific tasks of modeling platforms, control systems,
sensors, interface tools and environments. These tasks are in turn
accelerated by the advanced editing and development tools inte-
grated with the game engine. This leads to a virtuous spiral in
which a wide range of platforms can be modeled with greater
fidelity in a short period of time.

USARSim was originally based upon simulated environ-
ments in the USAR domain. Realistic disaster scenarios as well
as robot test methods were created (Figure 1(a)). Since then,
USARSim has been used worldwide and more environments
have been developed for different purposes. Other environ-
ments such as the NIST campus (Figure 1(b)) and factories (Fig-
ure 1(c)) have been used to test the performance of algorithms in
different efforts [9—11]. The simulation is also widely used for
the RoboCup Virtual Robot Rescue Competition [12], the IEEE
Virtual Manufacturing and Automation Challenge [13], and has
been applied to the DARPA Urban Challenge (Figure 1(d)).

(b) Air Robot AR100B.

(c) Kuka KR60,

(d) Kiva Robot.

FIGURE 2. Sample of vehicles in USARSim.

USARSIim was initially developed with a focus on differen-
tial drive wheeled robots. However, USARSim’s open source
framework has encouraged wide community interest and sup-
port that now allows USARSim to offer multiple robots, in-
cluding humanoid robots (Figure 2(a)), aerial platforms (Fig-
ure 2(b)), robotic arms (Figure 2(c)), and commercial vehicles
(Figure 2(d)). In USARSim, robots are based on physical com-
puter aided design (CAD) models of the real robots and are im-
plemented by specialization of specific existing classes. This
structure allows for easier development of new platforms that
model custom designs.

All robots in USARSim have a chassis, and may contain
multiple wheels, sensors, and actuators. The robots are con-
figurable (e.g. specify types of sensors/end effectors) through
a configuration file that is read at run-time. The properties of
the robots can also be configured, such as the battery life and the
frequency of data transmission.

The ROS Framework

ROS [1] is an open source framework designed to provide an
abstraction layer to complex robotic hardware and software con-
figurations. It provides libraries and tools to help software devel-
opers create robot applications and has found wide use in both
industry and academia. Examples of ROS applications include
Willow Garage’s Personal Robots Program [14] and the Stanford
University STAIR project [15]. Developers of ROS code are en-
couraged to contribute their code back to the community and to
provide documentation and maintenance of their algorithms.

ROS possesses a large range of tools and services that both
users and developers alike can benefit from. The philosophical
goals of ROS include an advanced set of criteria and can be sum-

marized as: peer-to-peer, tools-based, multi-lingual, thin, and
free and open-source [16]. Furthermore, debugging at all lev-
els of the software is made possible with the full source code of
ROS being publicly available. Thus, the main developers of a
project can benefit from the community and vice-versa.

Nomenclature ROS uses the concept of nodes, mes-
sages, topics, services, stacks, and packages. These terms are
used throughout the rest of the paper and are detailed below [16].

- Node: A process that performs computation. Nodes com-
municate with each other by passing messages.

- Message: A strictly typed data structure. A node sends a
message by publishing it to a given topic.

- Topic: A communication channel between two or more
nodes. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multi-
ple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple
topics.

- Service: A remote procedure call defined by a string name
and a pair of strictly typed messages: one for the request and
one for the response.

- Package: A compilation of nodes that can easily be com-
piled and ported to other computers. Packages are necessary
to build a complete ROS-based robot control system.

- Stack: Packages in ROS are organized into ROS stacks
which simplifies the process of code sharing.

THE USARSIM/ROS INTERFACE

USARSIim is designed to communicate over an American
Standard Code for Information Interchange (ASCII) Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) socket with a
host computer. The host computer initiates the socket interface
and creates the desired robot in the simulated world that is cur-
rently running on the game server. A robot’s configuration is
controlled by an initialization file that resides on the simula-
tion system’s computer. This file controls such aspects as sensor
configuration, battery life, and simulated noise models. Please
see the USARSim wiki for more information on robot configu-
ration [2]. One socket connection is established per simulated
robot, with both commands and sensor data being transmitted
over the socket. An additional separate socket is established for
high-volume sensors such as camera systems.

ROS stacks are designed with their lowest-level node at a
hardware abstraction layer that provides basic topics to and from
the robot. For example, the mobility stack expects to control
a platform by writing commands to low-level topics that con-
trol items such as platform velocities, and to receive feedback
from sensors over other low-level topics. These stacks may also
place constraints or naming conventions on the topics. In or-

Parameter Default Definition

robotType P3AT Type of robot to spawn.

hostname localhost | Name of host running
USARSim.

port 3000 TCP/IP Port on which
USARSim listens.

Named location where robot
should be spawned. This loca-
tion is simulated world depen-
dent.

startPosition | Vehiclel

odomSensor | InsTest Odometry sensor that should be
used as the default sensor for

feeding the odom topic of ROS.

TABLE 1. Parameters for USARSim ROS node.

view_frames Result

Recorded at time: 1323725912.572

Broadcaster: /RosSim
Average rate: 5.218 Hz
Most recent transform: 0.139 sec old
Buffer length: 4.791 sec

/base_GndTruth

Broadcaster: /RosSim
Average rate: 9.993 Hz
Most recent transform: 0.139 sec old
Buffer length: 5.004 sec

Broadcaster: /RosSim
Average rate: 5.218 Hz
Most recent transform: 0.136 sec old
Buffer length: 4.791 sec

/Ims200

Broadcaster: /RosSim
Average rate: 10.227 Hz
Most recent transform: 0.042 sec old
Buffer length: 4.889 sec

/base_footprint

FIGURE 3. Auto-generated tf Transform tree for P3AT robot.

der to close this low-level loop between ROS and USARSim, a
USARSim package was created. This package contains a node
called RosSim that publishes a ROS transform tree (from the ROS
tf package) and sensor messages, and also accepts platform and
actuator motion commands. When run, it provides a mechanism
for spawning a robot in USARSim, and then auto-discovering
the robot’s sensors, actuators, and drive configuration in order to
provide the necessary ROS topics.

The RosSim node relies on several parameters for its con-
figuration. These are detailed in Table 1, and provide informa-
tion necessary for the creation of a robot in USARSim and a
transform tree in ROS. A transform tree for the P3AT robot is

shown in Figure 3. This transform tree is built automatically
from data obtained from the USARSim geometry geo and con-
figuration conf messages. Since USARSim supports more than
one localization sensor on a robot, the odomSensor parameter
is consulted to determine which sensor should be built into the
tree. That sensor’s name is automatically changed to odom. The
base_footprint, representing the robot platform and the base_link,
representing robot sensor mounting points, are also automati-
cally generated. Additional localization sensors (e.g., the ground
truth sensor for the P3AT robot) are provided with their own
transform tree.

Vehicle movement commands into USARSim vary depend-
ing on the robot type. For example, skid-steered vehicles re-
quire left and right wheel velocities while Ackerman steered ve-
hicles required steering angle and linear velocity. ROS provides
a cmd_vel topic that includes both linear and angular velocities.
The RosSim node automatically converts these velocities into the
appropriate commands and values for the USARSim simulator
based on the robots steering type, wheelbase, and wheel separa-
tion. Vehicle speeds are also clamped to not exceed maximum
velocities that are set in the simulation.

Sensor Interface

ROS provides a rich vocabulary of sensor interface mes-
sages. The RosSim node strives to automatically match simulated
sensors to the appropriate ROS topic. Currently, USARSim’s
inertial navigation, ground truth, and LADAR sensors are sup-
ported. These sensors automatically join the robot transform tree
and publish their sensor messages at the rate that the RosSim
node receives the sensor output. It is the intent of the authors
to implement the full array of USARSim’s sensors as time and
resources permit.

The USARSim/ROS interface allows one to utilize known,
published algorithms with simulated sensors and environments.
However, the computational expense of the sensor processing
must still be carried by the target hardware. One benefit of sim-
ulation is that one can not only simulate raw sensor output, but
also the results from complex sensor processing tasks. One such
example is the USARSim object recognition sensor. This sensor
is simulated in much the same manner as a laser scanner. How-
ever, instead of reporting the range that each beam travels, the
sensor accumulates the number of beam hits that occur on each
detected object. The number of hits, along with the percentage
of the object that is visible may then be used to determine the
amount of noise to add to the objects position and recognized
type. This information may then be sent over standard ROS top-
ics, without incurring the overhead burden of running the actual
object and pose recognition algorithms.

FIGURE 4. Pioneer 3-AT (P3AT) in USARSim.

Mobile Robot Control with the ROS Navigation Stack

Control of mobile robots through the USARSim/ROS inter-
face is performed with the ROS navigation stack [17]. The navi-
gation stack provides for 2D navigation and takes in information
from odometry, sensor streams, and a goal pose while outputting
safe velocity commands that are sent to a mobile base. The ve-
locity commands are sent in the form of: x velocity, y velocity,
and theta velocity. Better performance of the navigation stack
can be achieved by meeting the following requirements:

- The robot has to use either differential drive or holonomic
drive.

- A planar laser has to be mounted on the mobile base. This
laser is used for map building and localization.

- The performance of the navigation stack will be best on
robots that are nearly square or circular. It does work on
robots of arbitrary shapes and sizes, but it may have dif-
ficulty with large rectangular robots in narrow spaces like
doorways.

Although different models of mobile robot are developed
in USARSim, the Pioneer 3-AT (P3AT) (Figure 4) appears to
be a suitable candidate to use the navigation stack. The P3AT
is a small square-shaped differential drive wheeled robot. As
configured in our experiments, it includes a SICK Laser Mea-
surement Sensor (LMS) 200 mounted on his base. The P3AT is
also widely employed for research and prototyping applications
involving mapping, navigation, monitoring, reconnaissance, vi-
sion, manipulation, cooperation, and other behaviors.

Low-level Navigation The USARSim/ROS interface
allows the start-up and the control of the default P3AT base con-
trollers by directly sending velocity commands to the base. This
task was performed using the following commands:

1. Bring up an environment in USARSim.

2. $roscore

3. $roslaunch usarsim usarsim.launch

4. $rosrun teleop_twist_keyboard teleop_twist_keyboard.py

5. $rosrun gmapping slam_gmapping scan:=lms200

_odom_frame:=odom

/tf

feleop_twist_keyboard femd vel @ s Jslam_gmapping
/lms200

FIGURE 5. Mobile robot control using zeleop

(a) USARSim environment.

(b) Map of the environment.

FIGURE 6. Environment in USARSim and the corresponding map.

In step 1, an environment is started on the server side
(USARSim). If an environment is not up and running, pass-
ing messages between ROS and USARSim will fail. Step 2
starts roscore, a collection of nodes and programs that are a pre-
requisites of a ROS-based system for ROS nodes to communi-
cate. Step 3 launches the usarsim.launch file. This launch file
contains the parameters specified in Table 1 and starts the RosSim
node that provides a connection between ROS and USARSim.
Step 4 starts the teleop_twist_keyboard node which sends veloc-
ity commands to the RosSim node through the computer key-
board. At this point, the P3AT can be controlled by keyboard
teleop in the USARSim environment. Step 5 starts the node
slam_gmapping which transforms each incoming scan from the
laser into the odometry tf frame to build a map. Here, the topic
scan is used to create the map with the parameter _odom_frame,
the frame attached to the odometry system.

Figure 5 is a graph generated by rxgraph with the op-
tion “quiet”. The graph illustrates the communication between
the nodes RosSim, teleop_twist_keyboard, and slam_gmapping.
The keyboard inputs are converted in velocity commands and
then communicated to the RosSim node on the topic cmd_vel.
slam_gmapping uses the topics (Ims200) and (¢#f) as inputs to
build the map. To save the generated map, the following com-
mand is used:

$rosrun map_server map._saver

The generated map is stored in pair of files: a YAML file
(YAML is recursively defined as “YAML Ain’t Markup Lan-
guage”) which describes the map meta-data and the image file
that encodes the occupancy data. Figure 6(a) is a bird’s eye view
of the environment used to run the teleop command on the P3AT
and Figure 6(b) is the map generated by the map_saver utility-
command.

“move_base_simple/goal”
geometry_msgs/PoseStamped

move_base map_server
global_planner

recovery_behaviors

“/map”

global_costmap
nav_msgs/GetMap

sensor

sensor topics

sensor_msgs/LaserScan
tf/tfMessage

sensor_msgs/PointCloud|
lodometry source odom local_planner local_costmap
nav_msgs/Odometry I
sensor sources
“cmd_vel” | geometry_msgs/Twist

Provided node
base controller

FIGURE 7. Navigation stack setup using move_base

s

]

internal
nav_msgs/Path

Optional provided node

Platform specific node

High-level Navigation The USARSim/ROS interface
also provides high-level navigation through the navigation stack.
At this level, goals are sent to the P3AT to move to a particular lo-
cation in the environment. High-level navigation is possible with
the action specification for move_base. This package provides an
implementation of an action (actionlib) that, given a goal in the
world, will attempt to reach it with a mobile base. The move_base
node provides a ROS interface for configuring, running, and in-
teracting with the navigation stack on a robot. The move_base
node links together a global and local planner to accomplish its
global navigation task.

Figure 7 (taken from [18]) depicts a high-level view of
the move_base node and its interaction with other components
of the navigation stack. The white components are required
components, the green components are optional components,
and the blue components must be created for each robot plat-
form. The white and green components are already implemented.
For the navigation stack to work properly for the P3AT, the
nodes and topics generated should match the configuration of the
move_base node with the navigation stack.

Before running the move_base node on the P3AT, local-
ization, mapping, and navigation information are filled in the
move_base.launch file:

- Localization uses map, laser data, and odometry to situate
the robot in relation to the environment. The amcl and the
map_server nodes are necessary for robot localization. amcl
is a probabilistic localization system for a robot moving in
2D and implements the KLLD-sampling [19]. The amcl node
is launched from the examples directory of the amcl pack-
age.

- The map_server node uses an a priori map generated by the
map_saver command-line utility. The example described in
this paper uses the map depicted in Figure 6(b) and its cor-
responding YAML file.

/ims200

/move_base/goal

(¥ o rema L fossim

/map_server

FIGURE 8. Mobile robot control with move_base.

- The navigation stack uses cost-maps files (YAML files) to
store information about obstacles in the world:

- A global cost-map for creating long-term plans.

- Alocal cost-map for local planning and obstacle avoid-
ance.

- A common cost-map file which stores configuration
options used by the global and local cost-maps.

- The navigation stack uses a base local planner to compute
velocity commands to send to the robot. Information on the
base local planner is stored in a YAML file which sets con-
figuration options based on the specs of the robot.

Once the move_base.launch file is set up with the appropri-
ate configuration options, the move_base node is run with the
following command:

$roslaunch move_base.launch

To send commands to the P3AT, the package sim-
ple_navigation_goals was created (based on [20]). The new
package mainly includes the action specification for move_base,
an action client used to communicate with the action named
move_base that adheres to the MoveBaseAction interface, and
a goal to send to move_base. Sending commands through the
code to the P3AT is performed by starting the executable for the
simple_navigation_goals package:

$./bin/simple_navigation_goals

Figure 8 is a graph generated by rxgraph with the option
“quiet”. The graph depicts the nodes and topics involved while
sending a goal to the navigation stack to move the P3AT. A par-
allel comparison of this graph with the navigation stack setup
diagram (Figure 7) reveals that the blue components have been
implemented and the grey components were properly used. The
node move_base receives messages on the topic #f from the nodes
amcl, RosSim, and slam_mapping. RosSim publishes Odometry
(odom) and sensor information (Ims200) to move_base. The op-
tional node map_server publishes the topic map to move_base.
Incoming messages are interpreted by move_base which outputs

velocity commands on the topic cmd_vel to be sent to the node
RosSim.

Robotic Arm Interface

Although not as complete as the navigation interface, an
interface has also been developed to allow for the use of the
ROS arm_navigation [21] stack. The RosSim node once again
strives to allow for auto-discovery of the robot and thus elimi-
nate the need for hand-generated configuration files. In the case
of the arm_navigation stack, a Unified Robot Description Format
(URDF) file that describes the arm must be created as well as
various launch files.

Under USARSim, a robotic arm is composed of individual
static meshes that are attached to one another via links known
as actuators. Each actuator has its own coordinate frame. Fig-
ure 9 depicts a Kuka KR60 robot that has been modeled in
USARSim. The position and orientation of each actuator’s coor-
dinate frame is controlled by convention. Actuators must rotate
(rotatory joints) or expand/contract (prismatic joints) about the
z-axis. The x-axis must point towards the next joint in the kine-
matic chain. The location of the axis origin is constrained such
that rotation/expansion occurs around z = 0 and the x-axis passes
through the origin of the next frame in the kinematic chain. The
RosSim node automatically builds the transform tree for the var-
ious actuator coordinate frames by reading the USARSim Conf
and Geo messages. The transform tree for the KR60 robot is
depicted in Figure 10. This transform is published and made
available to any other ROS node.

When a new robotic arm is used for the first time, the
usar_urdf node of the USARSim ROS package must be run. This
node accepts the same parameters shown in Table 1 in order to
determine the robot to be created and then performs the follow-
ing actions:

1. The node creates the robot model inside the simulated world
in order to be able to read the USARSim Conf and Geo mes-
sages.

2. From these messages, the node composes the transform tree
with a transform for each joint in the robotic arm. Infor-
mation on maximum and minimum rotations of joints and
maximum joint velocities and torques is also maintained.

3. The node auto-generates an URDF file that contains all of
the joint and link information that defines the robot arm.
Rather than exact depictions of the robot’s visual form, the
URDF file contains simple cylinders to represent each link.

This URDF file may now be utilized by the arm_naviation’s
Planning Description Configuration Wizard in order to generate
a stack that contains specific launch files that will be used in arm
planning.

FIGURE 9. Location of joint axes in USARSim model of Kuka KR60
6 degree-of-freedom robot arm as depicted in USARSim.

_~ftifik_4 /Link. 6

Link_1—/Lin k 2

/KREUArmM

FIGURE 10. Depiction of joint axes from TF topic in ROS for 6
degree-of-freedom Kuka KR60 robot arm.

CONCLUSION AND FUTURE WORK

This paper has presented a new ROS package that allows
for the seamless interface of USARSim with ROS. The package
provides for auto-discovery of robots and sensors, and produces
the standard ROS topics that one would expect from a physical
platform. Further work is still required to auto-generate ROS
launch files for running standard motion control algorithms for
both platform and arm control. In addition, additional sensors
must have their USARSim interfaces wrapped to be supported in
the ROS environment.

REFERENCES
[1] Garage, W., 2011. “ROS Wiki”. http://www.ros.org/wiki.

[2] USARSim, 2011.
http://www.usarsim.sourceforge.net.

[3] Zaratti, M., Fratarcangeli, M., and lIocchi, L., 2007.
RoboCup 2006: Robot Soccer World Cup X, LNAI,
Vol. 4434. Springer, ch. A 3D Simulator of Multiple
Legged Robots based on USARSim, pp. 13-24.

[4] Carpin, S., Wang, J., Lewis, M., Birk, A., and Jacoff, A.,
2006. Robocup 2005: Robot Soccer World Cup IX, LNAI,
Vol. 4020. Springer, ch. High Fidelity Tools for Rescue
Robotics: Results and Perspectives, pp. 301-311.

[5] Wang, J., Lewis, M., and Gennari, J., 2003. “A Game En-
gine Based Simulation of the NIST Urban Search and Res-
cue Arenas”. In Proceedings of the 2003 Winter Simulation
Conference, Vol. 1, pp. 1039-1045.

[6] Games, E., 2011. “Unreal Development Kit”.
http://udk.com.

[7] Lewis, M., Sycara, K., and Nourbakhsh, I., 2003. “De-
veloping a Testbed for Studying Human-Robot Interaction
in Urban Search and Rescue”. In Proceedings of the 10"
International Conference on Human Computer Interaction,
pp- 22-27.

[8] Nvidia, 2011. “PhysX Description”.
http://www.geforce.com/Hardware/Technologies/physx.

[9] Wang, J., Lewis, M., Hughes, S., Koes, M., and Carpin, S.,
2005. “Validating USARSim for use in HRI Research”. In
Proceedings of the Human Factors and Ergonomics Society
49" Annual Meeting, pp. 457-461.

[10] Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M., and
Scrapper, C., 2008. “USARSim: a Validated Simulator for
Research in Robotics and Automation”. In IEEE/RSJ IROS
2008 Workshop on Robot Simulators: Available Software,
Scientific Applications and Future Trends.

“UsarSim Web”.

[11] Kootbally, Z., Schlenoff, C., and Madhavan, R., 2010. “Per-
formance Assessment of PRIDE in Manufacturing Envi-
ronments”. ITEA Journal, 31(3), pp. 410-416.

[12] RoboCup, 2011. “RoboCup Rescue Homepage”.
http://www.robocuprescue.org.

[13] IEEE, 2011. “Virtual Manufacturing and Automation
Home Page”. http://www.vma-competition.com.

[14] Wyobek, K., Berger, E., der Loos, H. V., and Salisbury,
K., 2008. “Towards a Personal Robotics Development
Platform: Rationale and Design of an Intrinsically Safe
Personal Robot”. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp- 2165-2170.

[15] Quigley, M., Berger, E., and Ng, A. Y., 2007. AAAI 2007
Robotics Workshop, Vol. 85. ch. STAIR: Hardware and
Software Architecture, pp. 6-23.

[16] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., and Ng, A. Y., 2009.
“ROS: an open-source Robot Operating System”. In ICRA
Workshop on Open Source Software.

[17] Marder-Eppstein, E., 2011. “ROS Navigation Stack”.
http:/fwww.ros.org/wiki/navigation.

[18] ROS, 2011. “Move Base”.
http://www.ros.org/wiki/move __base.

[19] Fox, D., 2003. “Adapting the Sample Size in Particle Fil-
ters Through KLD-Sampling”. International Journal of
Robotics Research, 22, pp. 985-1003.

[20] ROS, 2011. “Sending Goals to the Navigation Stack”.

http://www.ros.org/wiki/navigation/Tutorials/SendingSimpleGoals.

[21] Jones, E., 2011. “ROS Arm Navigation”.
http://www.ros.org/wiki/arm_navigation.

