
Functional Requirements of a Model for Kitting Plans
Stephen Balakirsky

NIST MS 8230
100 Bureau Drive

Gaithersburg, MD 20899, USA
301-975-4791

stephen.balakirsky@nist.gov

Raj Madhavan
Maryland Robotics Center

Inst. for Systems Research, UMD
College Park, MD 20742, USA

301-975-2865
madhavan@umd.edu

Zeid Kootbally
Dept. of Mechanical Engineering

University of Maryland
College Park, MD 20742, USA

301-975-3428
zeid.kootbally@nist.gov

Craig Schlenoff

NIST MS 8230
100 Bureau Drive

Gaithersburg, MD 20899, USA
301-975-3456

craig.schlenoff@nist.gov

Thomas Kramer
Dept. of Mechanical Engineering
Catholic University of America
Washington, DC 20064, USA

301-975-3518
thomas.kramer@nist.gov

Michael Shneier

NIST MS 8230
100 Bureau Drive

Gaithersburg, MD 20899, USA
 301-975-3421

michael.shneier@nist.gov

ABSTRACT
Industrial assembly of manufactured products is often performed
by first bringing parts together in a kit and then moving the kit to
the assembly area where the parts are used to assemble products.
Kitting, the process of building kits, has not yet been automated in
many industries where automation may be feasible. Consequently,
the cost of building kits is higher than it could be. We are
addressing this problem by building models of the knowledge that
will be required to operate an automated kitting workstation. A
first pass has been made at modeling non-executable information
about a kitting workstation that will be needed, such as
information about a robot, parts, kit designs, grippers, etc. A
model (or models) of executable plans for building kits is also
needed. The plans will be used by execution systems that control
robots and other mechanical devices to build kits. The first steps
in building a kitting plan model are to determine what the
functional requirements are and what model constructs are needed
to enable meeting those requirements. This paper discusses those
issues.

 Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – frameworks, data types and structures, classes and
objects, control structures.

General Terms
Design, Standardization, Languages

Keywords
assembly, functional requirements, kitting, language, model,
planning, process planning,

Permission to make digital or hard copies of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the
U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes.
PerMIS ‘12 March 20-22 2012 College Park, MD, USA
Copyright 2012 ACM 978-1-4503-1126-7-3/22/12...$10

1. INTRODUCTION
Industrial assembly of manufactured products is often performed
by first bringing parts together in a kit and then moving the kit to
the assembly area where the parts are used to assemble products.
Kitting, the process of building kits, has not yet been automated in
many industries where automation may be feasible. Consequently,
the cost of building kits is higher than it could be. We are
addressing this problem by building models of the knowledge that
will be required to operate an automated kitting workstation. A
first pass has been made at modeling non-executable information
about a kitting workstation, such as information about a robot,
parts, kit designs, grippers, etc. The model is written in Web
Ontology Language (OWL) [5]. A model (or models) of
executable plans for building kits is also needed. Thus far, we
have only a mock-up of a sample plan that includes a natural
language description of the elements of a plan model. We intend
to build that model in OWL, also. The plans will be used by
execution systems that control robots and other mechanical
devices to build kits. The first steps in building a kitting plan
model are to determine what the functional requirements are and
what model constructs are needed to support those requirements.

We are working towards developing standard representations of
both kitting workstations and process plans for kitting. Kitting is
accomplished by discrete processes, so we consider only process
plans for discrete processes. We are also committed to using
hierarchical control. In the case of a kitting workstation, there are
at least two control levels, the workstation level and the robot
level. The robot controller will take commands from the
workstation controller. In this paper we deal only with planning
models for the workstation level.

In section 2 we introduce existing process plan models. Section 3
discusses functional requirements for the language used to build a
process plan model. Section 4 presents constructs often found in
process plan models, relates them to the functionality they serve,
and describes the extent to which we are currently planning on
using them in the plan model for kitting. Section 5 discusses
planning considerations that affect the need for various types of
functionality. Section 6 describes how we plan to evaluate the
adequacy of the model for kitting process plans and gives
suggestions for further work.

NIST = National Institute of Standards and Technology

29

This paper does not deal with process models or with the
connection between process plans and processes.

2. EXISTING PROCESS PLAN MODELS
A few standard discrete process plan models and many non-
standard models have been developed.

2.1 Standard Process Plan Models
Since we are interested in standards, we have examined existing
standards for discrete process plans. These include the following.

ISO 10303, generally known as STEP (STandard for the
Exchange of Product model data), includes a Part 49, “Process
structure and properties” [1]. The model is built in the EXPRESS
language (as are all ISO 10303 models). It is a very general,
domain-independent model. The central object of the model is
“action_method.” Other than describing itself as specifying “the
elements of a process plan,” which is “the specification of
instructions for a task,” the document containing the model
provides no description of the functionality of a process plan that
it is intended to provide. The concepts defined in STEP Part 49
are used in Part 240 of STEP, which is focused on process plans
for machined products [3].

Part 10 of ISO 14649 [2] “specifies the process data which is
generally needed for NC-programming within all machining
technologies.” This includes the definition of a general process
plan model that might be used outside of the machining domain as
well as inside. A central element of the model is “Executable.”
Instances of Executable “initiate actions on a machine” when
executed. Part 10 of ISO 14649 is remodeled in STEP terms in
STEP Part 238 [4].

Languages for programming machine tool controllers may be
regarded as process plan models. The Dimensional Measuring
Interface Specification (DMIS) is the only standard language for
writing programs to be executed by the controller of coordinate
measuring machines [6]. DMIS has many of the plan constructs
described in section 4.

2.2 Other Process Plan Models
Since we are using OWL to model the environment of a kitting
workstation, we looked at the Process.owl section of the most
recent version of OWL-S [7]. OWL-S was originally developed
for the World Wide Web Consortium (W3C), but was never
adopted as a W3C recommendation.

There is an enormous body of literature regarding planning,
particularly planning on state spaces. The book Automated
Planning [9], for example, includes over 500 references. There is
a correspondingly wide variety of plan models. We do not attempt
to describe them here.

The language A Language for Process Specification (ALPS) was
developed at the National Institute of Standards and Technology
(NIST) and has been used in a few NIST projects [10].

3. LANGUAGE AND STRUCTURE
FUNCTIONAL REQUIREMENTS
The language used to represent a process plan model should make
it possible to use plan instances easily. Specifically, the model
should be written in a language that is automatically processable
into computer code that (1) has data structures for representing a
plan, (2) can read a plan file and save it in terms of the

automatically defined structures, (3) has access functions for
getting data out of the structures and putting data into them, and
(4) can write a plan file from the structures. Languages for which
mature software exists that can generate computer code as just
described include EXPRESS and XML schema. Software exists
that can process OWL that way, but it is at an early stage of
development and is not yet widely used [11].

Even if a code generator for a language can do the four things
listed above, if the structure of the model is too general, the
information available by using the access functions may be too
atomic for even an expert in both programming and process
planning to use readily. This is the case with both Part 238 of
STEP and Part 240 of STEP. A set of computer code written by a
STEP expert is required to extract meaningful process plan data
usable by a programmer building a process planner or a process
plan executor. On the other hand, automatically generated code
built by processing ISO 14649 (which, like the two STEP parts, is
written in EXPRESS) using the same code generator is readily
usable by an application builder [17].

It is not sufficient, of course, to have a plan model. It must be
possible to represent plans that are instances of the model. For
EXPRESS models, there is more than one standard way in which
this may be done, the most commonly used of which is a
“physical file” [11]. For XML schema, instances are built in XML
files that conform to the schema [18]. For OWL, instances and
structures may be put into the same file. It is more convenient,
however, to have a fixed structures file and build instance files
that use the structure file via an “import” statement. Curiously,
while C++ is a widely used standard programming language [16]
and would be entirely adequate for building class models of many
planning domains, there is no standard textual data file
representation for C++ class instances.

4. PLAN CONSTRUCTS
The plan model needs to be rich enough to represent all aspects of
the kit building process. This process includes operations ranging
from selecting the appropriate gripper for moving kit trays or
parts to iterating through a list of steps that place parts in a kit. In
order to meet these requirements, we have examined techniques
for representing parameters, variables, resources, and actions.

An abbreviated example kitting plan is shown in Fig. 1 using
XML format. The example uses the constructs described in the
remainder of this section.

<ProcessPlan>
 <About>
 <PlanId>kitABCPlan</PlanId>
 <PlanVersion>1.0</PlanVersion>
 ...
 <TargetSKU>kitABC</TargetSKU>
 </About>
 <PlanRequirements>
 <PlanRequirement>
 <Name>boxOfEmptyTrays</Name>
 <Type>LargeContainer</Type>
 <SkuRef>Box1</SkuRef>
 <ContentsType>
 <SkuRef>KitTrayX</SkuRef>
 </ContentsType>
 </PlanRequirement>
 ...
 </PlanRequirements>

30

 <PlanParameters>
 <PlanParameter>
 <Name>NumberOfKitsToMake</Name>
 <Type>positiveInteger</Type>
 </PlanParameter>
 </PlanParameters>
 <InternalVariables>
 <InternalVariable>
 <Name>BoxWithEmptyTrays</Name>
 <Type>LargeContainer</Type>
 <Requirement>boxOfEmptyTrays</Requirement>
 </InternalVariable>
 <InternalVariable>
 <Name>CurrentKitTray</Name>
 <Type>KitTray</Type>
 <SkuRef>KitTrayX</SkuRef>
 <InitialValue>NULL</InitialValue>
 </InternalVariable>
 ...
 </InternalVariables>
 <ToDo>
 <Start></Start>
 <DoInGivenOrder>
 <DoInAnyOrder>
 <Bind>
 <Variable>BoxWithEmptyTrays</Variable>
 <WhichOne>ANY</WhichOne>
 <ErrorAction>QUIT</ErrorAction>
 </Bind>
 <Bind>
 <Variable>BoxForFullTrays</Variable>
 <WhichOne>ANY</WhichOne>
 <ErrorAction>QUIT</ErrorAction>
 </Bind>
 ...
 </DoInAnyOrder>
 <Set>
 <Variable>n</Variable>
 <Value>0<Value>
 </Set>
 <LoopInGivenOrderWhile>
 <Test>n LessThan NumberOfKitsToMake</Test>
 ...
 <RobotMoveAbove>CurTrayPose</RobotMoveAbove>
 <RobotPickUp>CurrentKitTray</RobotPickUp>
 <RobotMoveAbove>KitTrayPose</RobotMoveAbove>
 <RobotPutDown>
 <What>CurrentKitTray</What>
 <Where>KitTrayPose</Where>
 </RobotPutDown>
 ...
 <Set>
 <Variable>n</Variable>
 <Value>n+1<Value>
 </Set>
 </LoopInGivenOrderWhile>
 </DoInGivenOrder>
 <Stop></Stop>
 </ToDo>
</ProcessPlan>

Fig. 1 Kitting Process Plan Example (abbreviated)

4.1 Plan Parameters
Plans can have parameters, such as the name of a file of decision
rules to use or the number of kits to be put together. If plan
parameters are used, structures to support their use may be needed
in the plan model. Having a parameter for the number of kits, for
example, requires some structure that implements looping. Plan
parameters are set in the command to execute the plan. Typically,
plan parameters are not reset during plan execution. Plan
parameters serve the function of allowing execution time
specification of what to do or how to do it. The current kitting
process plan model has a plan parameters section.

4.2 Plan Variables
Plan variables are variables set in the course of executing a plan,
not in the command to run the plan. It is useful if plan variables
have specific data types. A given variable may represent different
objects of the same type during plan execution. The current
kitting process plan model has an InternalVariables section that
contains plan variables.

4.3 Resources
The current kitting process plan model has a PlanRequirements
section that gives required resources.

4.3.1 Resource Requirements
A process plan that is intended to be executable should make it
easy for a user to determine if the resources required to execute
the plan are available. The straightforward way to do this is to
have a separate section of the plan that lists the required
resources. Each step of a plan should identify each resource it
requires beyond what the plan as a whole assumes is available. It
is not sufficient, however, to mention resources only as they are
associated with steps of the plan, since if only that is done, it may
be difficult to determine the total set of required resources.

A plan model for a specific domain (a kitting workstation, for
example) may assume the availability of fixed resources in the
environment (a robot, for example). The resource section of a
plan does not need to include those resources. If a plan is intended
to be usable in several different environments of the same type
(different kitting workstations, for example), then the resources
section of the plan will need to include specific values applicable
to the fixed resources in that type of environment (the extent of a
robot work volume, for example).

Where plans include alternative actions and those actions use
different resources, it may be hard for the user to determine if
available resources are adequate. Where one resource may be
substituted for another and at least one of a set of alternative
resources must be used, there is no difficulty. The list of required
resources simply contains sets of mutually substitutable resources
(three alternative grippers, for example). If alternative ways of
executing the plan require different sets of resources, there is a
problem. On the one hand, it is counterproductive to force the
user to assemble all the resources that might be required. The user
should have to assemble only a minimal set of required resources.
On the other hand, until an execution of the plan is performed, it
is not known which resources will be used. Where decisions on
which alternative to use are made on the basis of environmental
conditions that change slowly, one way to deal with this is to run
a simulation of executing the plan. Then the resource
requirements can be pared down to those resources used in the
simulation. At the same time, the plan would be pruned of those
branches that are not used. The reduced plan would be usable as

31

long as the conditions under which the reduced plan is executed
are close enough to those under which the reduced plan was
generated. Simulation before execution is also useful when a user
has a set of resources and a complex plan and needs to determine
if the plan can be executed with that set of resources.

4.3.2 Resource Descriptions
The description of a resource might be given at any of three levels
of abstraction.

 a description of the capabilities of the resource (for
example, the lifting capacity and maximum opening of
a gripper)

 a specification of a resource in a catalog (for example,
GripCo model 123)

 a specific instance of a resource (for example, GripCo
model 123 with serial number ABC).

Which resource description level to use, if any, depends on the
level of abstraction a plan is intended to have. Section 5 discusses
levels of abstraction.

4.4 Actions
The actions section of a plan specifies what to do. This is by
definition a functionality every sort of process plan must have.
The actions section must always include tasks. The actions
section may also include explicit control structures, or
information to be used for control may be contained in the task
description. In any event, some method of controlling the order in
which tasks are performed is required. The current kitting process
plan model has a ToDo section that contains the actions.

4.4.1 Explicit Control Structures
The current kitting process plan model includes all of the
following types of control structure except for synchronous
operation, DoSimultaneously, and DoSome.

4.4.1.1 Do In Given Order
In many process planning models and most computer
programming languages, the default rule for execution order is to
do things in the order in which they are listed in the file, and there
is no explicit control structure for doing things in that order.

The functionality of being able to execute plan steps in the order
in which they are given in a file is very convenient. Unless a
process plan model uses implicit control structures throughout the
actions section, the model should include a default rule or an
explicit DoInGivenOrder control structure. If the plan model
includes explicit commands for ordering, such as described
immediately below, then having an explicit DoInGivenOrder
will help avoid confusion.

4.4.1.2 Do In Any Order
In theory, an extraordinarily simple process plan language might
specify in its natural language execution rules that the steps of all
plans may be executed in any order. In any realistic plan model,
however, if the ability to say that some set of steps may be
performed in any order is needed, then an explicit control
structure implementing this functionality is needed.

A DoInAnyOrder functionality is desirable if it is expected that
there will be circumstances in which no particular task order is
required and the system executing the plan is either capable of

multitasking or is expected to have better information available
for setting the order than is available at the time the plan is made.

The DoInAnyOrder control structure might have subtypes that
allow or disallow simultaneous execution of tasks. If the
execution system is known be able to perform operations in
parallel, then the plan model should include a DoSimultaneously
control structure that requires parallel execution.

4.4.1.3 Do One
The DoOne control structure is followed by a list of alternatives.
The execution system picks one alternative and executes it. The
execution system is free to pick any of the alternatives. It may
pick one at random, or it may evaluate the goodness of the
alternatives by whatever criteria it prefers and pick the best one.
The alternatives will usually have the same primary effect but
may have different secondary effects. For example, in kitting, if it
is necessary to get at box A which is underneath box B, the plan
might include a DoOne with the alternatives of putting box A on
the table or putting box A on box C.

Some languages include a DoSome control structure that
specifies that any N of a set of alternatives should be executed.
This is more powerful than DoOne, since when N is 1, it is
equivalent to DoOne, but occasions when N is not 1 will
probably be rare – remove three of the six boxes on the table, for
example.

4.4.1.4 Branch on Condition
Another type of control structure includes a condition to be tested
followed by a specification of what to do if the condition is met.
In common computer languages, these are called if or switch or
select. All of them may be combined with else, which specifies
what to do if none of the explicit conditions is met. Switch and
select have cases. Implementing condition testing requires that
the plan language include variables and (usually) expressions, for
example, "(x+y) > 3" is a condition that is a Boolean expression
using a less than operator to compare an arithmetic expression
containing variables and an addition operator with a numerical
constant. The Boolean test may be implicit rather than explicit,
but variables are always needed.

Branching on a condition is a functionality that is hard to do
without whenever a plan model includes plan parameters and/or
variables.

4.4.1.5 Loop
When a set of steps must be repeated a number of times or as long
as a condition holds, a control structure that implements looping
(iteration) is needed. The simplest form of loop simply states that
a set of steps must be executed N times, and there is no explicit
test (the execution system is expected to keep track), but in most
of the many varieties of loop structure ([15] has a 40-page chapter
on looping), a condition is tested at some point in the loop that
stops the looping.

For kitting plans, our model includes LoopInAnyOrderWhile and
LoopInGivenOrderWhile. In these control structures, a condition
is tested before any step in the list of conditional steps is
executed. The rest of the action of these loops is as implied by
their names.

4.4.1.6 Synchronous Operation
If two devices must operate together to accomplish something
(such as two robot arms picking up opposite ends of a pipe), a
control structure for synchronization is needed in the plan.

32

4.4.1.7 Create and Destroy Instances
Control structures that are able to create and destroy instances
will be useful in the plan model for any activity in which
instances come into existence or go out of existence during plan
execution. In kitting, for example, kits come into existence that
did not exist before plan execution was started, and part supplies
go out of existence when they are empty (the empty container that
remains is no longer a part supply).

4.4.1.8 Bind Resources
A model of a step that binds a plan variable to an instance of a
resource is useful in the plan model. When a “bind” step is
executed, a plan variable representing a resource is set to a
specific object in the workstation matching the description of a
resource. This requires being able to obtain information about
what is in the workstation. Such information would reside in a
dynamic knowledge base, so implementing resource binding
requires that a dynamic knowledge base be available to the plan
executor. Resource binding might be combined with resource
allocation. For example, when a bind command is executed, the
resource might be marked as unavailable as the value of a set
command or another bind command.

4.4.1.9 Set Variables
A model of a step that sets a plan variable to a value is useful in
the plan model. When a “set” step is executed, the value of a plan
variable is set. The value to which the variable is set may be
obtained by a straightforward knowledge base inquiry (such as the
location of a solid object) or it may be obtained by evaluating an
expression (for example, (a + b)) or making a function call (for
example, a call to a function that returns the first item in a list).
The last two methods, of course, require that the plan model
include an expression model and a function model.

4.4.1.10 Start and Stop
Because explicit start and stop control structures simplify
executing plans, the plan model should include Start and Stop.
Only one Start step is allowed in a plan, and it must be the first
step. Either multiple Stop steps or only one might be allowed. If
only one is allowed, it must be the last step.

4.4.2 Implicit Control Structures
The order in which steps of a plan are executed may be controlled
implicitly by putting a list of predecessor (and/or successor) steps
into each step. In some implementations of this ([10], for
example), only “join” steps, which are steps that join threads
coming from a matching “split” step may have more than one
predecessor. In other implementations, any step may have
multiple predecessors, and the control rule is that all the
predecessors of a step must be executed before the step may be
executed. The two approaches may be combined using split/join
pairs that enable/disable the use of multiple predecessors. This
was implemented in [13]. The use of multiple predecessors allows
the plan to be executed in multiple orders that would otherwise be
allowed only by including a combinatorial explosion of split/join
pairs.

4.4.2.1 Do In Precondition Order
Enabling the use of multiple predecessors for a portion of a plan
may be implemented by the DoInPreconditionOrder control
structure. A DoInPreconditionOrder step is followed by a list of
steps, each of which has a sequence number and a list of the
sequence numbers of other steps that must be executed
previously. All the steps in the list must eventually be executed.

4.4.3 Support Structures
Where steps or conditions in a plan require numbers or Boolean
values, it is convenient if plan parameters, plan variables, object
properties, operator expressions, and functions are used. These all
may be classed as subtypes of expression. Some plan models,
such as STEP part 49 and ALPS, observe that an expression
model is required without modeling one. Other plan models, such
as DMIS, include explicit models of expressions.

For kitting, in order to deal with location information and do
geometric reasoning, all of the support structures just listed are
required. For example, in order to take a part out of a part supply,
a function that finds the first part remaining in the part supply is
needed, and the location property of that part must be found in
order to generate an instruction telling the robot where to go to
pick up the part. As another example, if there is a stack of empty
trays in a box and we want to pick up the one on top (which is not
necessarily the first one in the list of trays in the box), a function
that finds the tray on top is needed.

4.4.4 Kitting Actions
A set of task types specific to kitting is required in a kitting
process plan model. The last subsection of this subsection
presents the task types we intend to use first. The stage is set by
brief descriptions of the objects in a kitting workstation, the
scenario our plan model must support, and the execution model
we intend to follow.

4.4.4.1 Objects in a Kitting Workstation
Our initial kitting workstation model is relatively simple. A
kitting workstation contains some fixed equipment: a robot, a
work table, a part gripper, a tray and kit gripper, and a gripper
changing station. Items that enter the workstation include empty
kit trays, boxes in which to put finished kit trays or empty part
supply trays, and part supplies. A part supply may be a tray or
box with parts inside in known or unknown locations or a box
containing trays with parts. Items that leave the workstation may
be boxes with finished kits inside, empty part trays, empty boxes,
or boxes with empty part trays inside.

4.4.4.2 Scenario
In our kitting project, the first version of the plan model is
designed to support the following scenario. An external agent
(which we call the factotum) sets up the workstation by putting
into it:

 a box of empty kit trays (may be only partially full)
 a box for finished kits (may have some kits in it

already)
 a box for empty part supply trays
 several part supply trays

The knowledge base for the workstation includes descriptions of
the designs of kits, parts, and trays involved. The knowledge base
also has descriptions of where all the objects in the workstation
are. The factotum that sets up the workstation fills in the
knowledge base so that it describes the setup correctly. After the
initial setup, objects are expected to move only if the robot or
factotum moves them. Whenever an object is moved by the robot
or factotum, its location is updated. The workstation control
system builds kits by:

 telling the robot to take an empty kit tray out of the box
of empty kit trays and to put it on the work table

 telling the robot several times to take a part out of a part
supply and put it in the kit being built

33

 telling the robot, whenever a kit is finished, to put the
finished kit in the finished kit box

 telling the robot to change its gripper as necessary for
handling either parts or part trays

 telling the factotum, whenever necessary, to remove
empty parts trays, to put part supplies in, to put boxes of
empty kit trays in, or to remove full boxes of finished
kits.

4.4.4.3 Kitting Task Execution
The scenario is carried out by having the workstation controller
execute a workstation level process plan. The workstation
controller can, by itself, execute steps that set variables, choose
among alternatives, etc. To move things, however, the
workstation controller requires the robot or the factotum to
execute instances of specific types of kitting tasks. This is
expected to be accomplished by having the workstation controller
send a command to the robot controller or the factotum. The robot
controller or factotum will carry out the command and report back
whether command succeeded or failed. If the command succeeds,
the workstation controller will execute the next step in the plan. If
the command fails, the workstation controller will either just stop
executing the plan or deal with the error condition outside of
executing the process plan and then resume executing the plan. As
currently envisioned, resuming plan execution after an error will
be feasible only if the error condition can be corrected and the
workstation environment can be set to the state it would have
been in if the command that failed had succeeded.

Currently, the kitting process plan model contains no error
handling tasks. The workstation controller is expected to deal
with error conditions independently from executing the process
plan.

4.4.4.4 Types of Kitting Tasks
The task types that have been defined to enable writing a plan that
follows the scenario include the following.

 FactotumRefill - This is followed by a variable
representing a requirement. When the statement is
executed, the factotum puts an object of the required
type in the workstation and updates the workstation
model.

 FactotumRemove - This is followed by a variable
representing the object to remove. When the statement
is executed, the factotum removes the object and
updates the workstation model.

 FactotumReplace - This is followed by a variable
representing the object to replace. When the statement
is executed, the factotum removes the object, puts
another object of the same type in the same place, and
updates the workstation model. The new object should
be different from the old one in an appropriate way.

 RobotChangeEndEffector - This is followed by the
name of an EndEffector to change to. When the
statement is executed, if the robot is not already holding
the named EndEffector, the robot moves to the
changing station, puts down the EndEffector it has (if it
has one) and picks up the named EndEffector. If the
robot is already holding the named EndEffector, no
action is taken.

 RobotMoveAbove - This is followed by a Pose. When
this statement is executed, the controlled point on the
robot's end effector moves to a point that has the same
X and Y values of the location of the Pose but has a
greater Z value by some amount the executor thinks will
be sufficient so that the robot will not collide with
anything near the location point. This statement is not
particularly well defined and might be modified.

 RobotPickUp - This is followed by a variable whose
value is the object to pick up. When the statement is
executed, the robot moves its gripper down into position
for grasping the object, the gripper grasps the object,
and the robot moves up so that the height of the lowest
point of the object is the same as what the height of the
lowest point of the gripper was previously.

 RobotPutDown - This is followed by a variable
representing the object to put down and a variable
representing the Pose of the object at which the object
should be released. When the statement is executed, the
robot moves the object into the given Pose and releases
the gripper's grip on the object. Then the robot moves
up so that the lowest point of the gripper is clear of the
object that was put down.

4.5 Other Plan Contents
A process plan file needs to include information that may be used
to keep track of the document. This information is not used by the
process plan execution system at execution time, though it may be
used immediately before execution starts to verify that the right
plan is being used. The current kitting process plan model
includes an About section with subsections for PlanId,
PlanVersion, PlanDateAndTime, PlanAuthor, PlanWorkstation,
Description, and TargetSKU (an identifier for the stock keeping
unit data that is a detailed description of the type of kit to be
made).

5. PLANNING CONSIDERATIONS
The ways in which plans are intended to be generated and used is
a major consideration in deciding what constructs to include in
the plan.

5.1 Abstraction
The most abstract (or high-level) plan may specify only the
intended effects of the plan. For a kitting workstation, a high-level
plan might state that a number of kits of a particular type are to be
made. For a quality control system, a high-level plan might state
that parts of a particular type are to have the tolerances on a
particular set of features checked.

If a plan is intended to be executable, the plan should include
resources, executable operations, and whatever degree of ordering
is required for executing the operations.

In many industrial settings, it is useful if a process plan can be
refined in stages. The NIST Manufacturing Systems Integration
(MSI) project, for example, identified three stages, which were
called (1) process plans (2) production-managed plans, and (3)
production plans [12]. As used in the MSI project, “A
production-managed plan is an expansion of a process plan
which supports the production of a required number of
products using a given factory configuration. A production
plan is a refinement of a production-managed plan which
identifies specific resources for each step and the times of

34

their usage for that step.” As described, a production plan is a
combination of a plan and a schedule. Scheduling, in our view, is
beyond the scope of a process plan, but supporting the other types
of refinement described by the MSI project, as well as refinement
by pruning branches of a plan, is a functionality that may be
required of a process plan model. With this functionality, a single
plan model will support both a plan and any refinements of it
(possibly in a chain of successive refinements). This implies, for
example, that all levels of action abstraction and resource
description should be supported by the plan model.

Plan refinement was implemented in the Feature Based Inspection
and Control System at NIST [13] and was discussed in [14].
Refining a plan may require generating a separate document
containing the refined plan. A plan model that supports
representing both a plan and its refinement in a single document
may be unnecessarily complex. Regardless of the way in which
refinement is handled, there must be a link from any refinement
back to the plan it refines.

5.2 Decision-making Responsibilities
Planning decisions might be made in either the planner or the plan
executor. Depending on the assignment of planning
responsibilities to the planner or the plan executor, the functional
requirements of the plan model may be very different.

At one extreme, if the planner knows enough to make all the
decisions, a plan format may suffice that is simply an ordered list
of tasks to perform. In this case, since no decisions need to be
made at execution time, no Boolean expressions, if-thens, or
structures that allow alternatives are needed in the plan. In
addition, since the natural form of a file is an ordered list, no
ordering structures are needed. All that is necessary is to be able
to tell where one step ends and the next begins. Because a file is
an ordered list by nature, the most abstract plans will require
using a structure such as DoInAnyOrder that is able to disorder
the steps.

At the other extreme, if there may be foreseen but random
changes in the environment in which the plan is executed (e.g.,
the robot is apt to drop things) or if the conditions of the
environment are not known at planning time (e.g., the location of
the part supply is not set until execution time), the plan will need
to include items such as variables, if-thens, sets of alternatives,
and Boolean expressions.

5.3 Extendible Generic Plan Model
It is extremely desirable to have a generic model of process plans
that may be extended into specific domains. If models for
different domains build on a common core, people who
understand the plan model for one domain can gain understanding
of other plan models much more easily than if there is no common
core. Similarly, it will be possible to use the core software of a
system that executes plans in one domain when building a plan
execution system for a new domain.

Because the target level of plan abstraction varies from
application to application, the generic model must be built so as to
support different levels of abstraction efficiently and clearly. It
may be possible to support different levels of abstraction by using
optional elements. This notion needs further examination since
items that are optional at a high level may be required at lower
levels.

A generic plan model might specify the sections of the plan,
control structures, some aspects of resource description, and a
generic task. Specializations of the generic plan for specific
domains would have specialized resource and task descriptions
that are subtypes of generic tasks and resources.

5.4 Human Comprehensibility

With a human in the loop during plan generation (always or as
needed), the range of good plans that can be generated expands
greatly. Thus, one functional requirement is that the semantics of
the plan model should be readily understandable to trained
humans. The syntax does not need to be human-friendly since
user-friendly interfaces can be built to generate syntax from user
actions that convey the semantics. Since computers can handle a
wide variety of syntax, however, it should be possible to design a
syntax that is friendly to both humans and computers. That will be
helpful when no user-friendly interface is available and a human
needs to do planning.

6. CONCLUSION
We plan to build:

 an OWL model of kitting workstation process plans
 example process plans conforming to the model
 C++ software for representing, reading, writing, and

accessing the plans
 a C++ kitting workstation plan executor
 a simulated kitting workstation
 an actual kitting workstation

Using the simulated and actual workstations, we plan to evaluate
the performance of the kitting process plan model. Where we find
a need for additional functionality in the model, it will be added.
If we discover plan functionality that is not used in our example
plans and does not appear likely to be used in any plans, it will be
removed.

We intend to include sensory processing in the kitting
workstation. Some of this, such as a switch that detects whether a
gripper is seated properly in a gripper changer, might be used
only by the robot controller. Other sensory data will be reported
to the workstation’s knowledge base. For example, we might have
fixed cameras that feed into a system that computes the observed
locations of objects in the workstation. For any observed object,
the observed location data might be fused with the location data
that is a priori or entered in the course of plan execution. A large
difference between the stored and observed values might trigger
an error signal.

The sensory processing described in the previous paragraph
requires nothing from the contents of a process plan or from a
process planner. The only thing it requires from a process plan
executor is the ability to receive error signals and react to them.
Other elements of the system would handle sensory processing
and knowledge base maintenance. Hence, we currently do not
deal with sensory processing in the process plan model.

If we find that the robot needs to help with sensory processing or
that sensory devices need explicit instructions that are coordinated
with robot actions, then the process plan model will need to be
expanded to include tasks for sensory processing devices or robot
tasks that serve sensory processing. For example, a camera end
effector might be defined and used. If a part were dropped and
could not be found by fixed sensors, the robot would change to

35

the camera end effector and move it into position to see where
fixed cameras cannot see. As another example, if a box with one
part in it is dropped and the part cannot be located, the robot
might be commanded to move the box in order to determine if the
part is now under the box.

As mentioned earlier, there are currently no kitting workstation
tasks in the process plan model designed specifically for error
recovery. If it is found that error recovery tasks are needed in the
process plan model, they will be added.

7. REFERENCES
[1] ISO 1998. Industrial automation systems and integration –

Product data representation and exchange – Part 49:
Integrated generic resources: Process structure and
properties, 1998, International Organization for
Standardization.

[2] ISO 2004. Industrial automation systems and integration –
Physical device control – Data model for computerized
numerical controllers -- Part 10: General process data,
2004, International Organization for Standardization.

[3] ISO 2005. Industrial automation systems and integration –
Product data representation and exchange – Part 240:
Application protocol: Process plans for machined products,
2005, International Organization for Standardization.

[4] ISO 2007. Industrial automation systems and integration –
Product data representation and exchange – Part 238:
Application protocol: Application interpreted model for
computerized numerical controllers, 2007, International
Organization for Standardization.

[5] W3C 2009. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax 4.1, W3C Editor's
Draft 21 September 2009, W3C,
http://www.w3.org/2007/OWL/draft/ED-owl2-syntax-
20090921.

[6] Dimensional Measurement Standards Consortium 2009.
Dimensional Measuring Interface Standard Part 1 Revision
5.2, ANSI/DMIS 105.2 Part 1-2009, Dimensional
Measurement Standards Consortium.

[7] SRI 2008. OWL-S 1.2 Release,
http://www.ai.sri.com/daml/services/owl-s/1.2.

[8] Nof, S. Y., Wilhelm, W. E., Warnecke, H-J., 1997. Industrial
Assembly , Chapman & Hall, London, UK.

[9] Ghallab, M., Nau, D., Traverso, P., 2004. Automated
Planning Theory and Practice, Morgan Kaufmann, San
Francisco, USA.

[10] Catron, B., Ray, S., 1991. ALPS – A Language for Process
Specification, International Journal of Computer Integrated
Manufacturing, Vol. 4, No. 2, pp 105-113.

[11] http://sourceforge.net/apps/mediawiki/owl-cpp

[12] Wallace, S., Senehi, M. K., Barkmeyer, E., Ray, S., Wallace,
E., 1993. Manufacturing Systems Integration Control Entity
Interface Specification, NISTIR 5272, National Institute of
Standards and Technology, Gaithersburg, MD, USA.

[13] Kramer, T. R., Horst, J. A., Huang, H. M., Messina, E.,
Proctor, F. M., Scott, H. A., 2004. Feature-Based Inspection
and Control System, NISTIR 7098, National Institute of
Standards and Technology, Gaithersburg, MD, USA.

[14] Jasthi, S. R. K., Rao, P. N., Tewari, N. K., 1995. Studies on
Process Plan Representation in CAPP systems, Computer
Integrated Manufacturing Systems, Vol. 8, No. 3, pp 173-
184.

[15] Steele, G. L, 1990. Common LISP the Language, Second
Edition, Digital Equipment Corporation.

[16] ISO/IEC 14882:2011. Information Technology –
Programming Languages – C++, 2011, International
Organization for Standardization.

[17] Kramer, T. R., Proctor, F., Xu X., Michaloski, J. L., 2006.
Run-time interpretation of STEP-NC: implementation and
performance; International Journal of Computer Integrated
Manufacturing, Volume 19, Issue 6, pp 495 – 507.

[18] W3C 2004. XML Schema Part 1: Structures Second Edition,
W3C Recommendation 28 October 2004,
http://www.w3.org/TR/xmlschema-1.

36

