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ABSTRACT 
Industrial assembly of manufactured products is often performed 
by first bringing parts together in a kit and then moving the kit to 
the assembly area where the parts are used to assemble products. 
Kitting, the process of building kits, has not yet been automated in 
many industries where automation may be feasible. Consequently, 
the cost of building kits is higher than it could be. We are 
addressing this problem by building models of the knowledge that 
will be required to operate an automated kitting workstation. A 
first pass has been made at modeling non-executable information 
about a kitting workstation that will be needed, such as 
information about a robot, parts, kit designs, grippers, etc. A 
model (or models) of executable plans for building kits is also 
needed. The plans will be used by execution systems that control 
robots and other mechanical devices to build kits. The first steps 
in building a kitting plan model are to determine what the 
functional requirements are and what model constructs are needed 
to enable meeting those requirements. This paper discusses those 
issues. 

 Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – frameworks, data types and structures, classes and 
objects, control structures. 

General Terms 
Design, Standardization, Languages 
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assembly, functional requirements, kitting, language, model, 
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1. INTRODUCTION 
Industrial assembly of manufactured products is often performed 
by first bringing parts together in a kit and then moving the kit to 
the assembly area where the parts are used to assemble products. 
Kitting, the process of building kits, has not yet been automated in 
many industries where automation may be feasible. Consequently, 
the cost of building kits is higher than it could be. We are 
addressing this problem by building models of the knowledge that 
will be required to operate an automated kitting workstation. A 
first pass has been made at modeling non-executable information 
about a kitting workstation, such as information about a robot, 
parts, kit designs, grippers, etc. The model is written in Web 
Ontology Language (OWL) [5]. A model (or models) of 
executable plans for building kits is also needed. Thus far, we 
have only a mock-up of a sample plan that includes a natural 
language description of the elements of a plan model. We intend 
to build that model in OWL, also. The plans will be used by 
execution systems that control robots and other mechanical 
devices to build kits. The first steps in building a kitting plan 
model are to determine what the functional requirements are and 
what model constructs are needed to support those requirements. 

We are working towards developing standard representations of 
both kitting workstations and process plans for kitting. Kitting is 
accomplished by discrete processes, so we consider only process 
plans for discrete processes. We are also committed to using 
hierarchical control. In the case of a kitting workstation, there are 
at least two control levels, the workstation level and the robot 
level. The robot controller will take commands from the 
workstation controller. In this paper we deal only with planning 
models for the workstation level. 

In section 2 we introduce existing process plan models. Section 3 
discusses functional requirements for the language used to build a 
process plan model. Section 4 presents constructs often found in 
process plan models, relates them to the functionality they serve, 
and describes the extent to which we are currently planning on 
using them in the plan model for kitting. Section 5 discusses 
planning considerations that affect the need for various types of 
functionality. Section 6 describes how we plan to evaluate the 
adequacy of the model for kitting process plans and gives 
suggestions for further work. 

NIST = National Institute of Standards and Technology 
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This paper does not deal with process models or with the 
connection between process plans and processes.  

2. EXISTING PROCESS PLAN MODELS 
A few standard discrete process plan models and many non-
standard models have been developed. 

2.1 Standard Process Plan Models 
Since we are interested in standards, we have examined existing 
standards for discrete process plans.  These include the following. 

ISO 10303, generally known as STEP (STandard for the 
Exchange of Product model data), includes a Part 49, “Process 
structure and properties” [1]. The model is built in the EXPRESS 
language (as are all ISO 10303 models). It is a very general, 
domain-independent model. The central object of the model is 
“action_method.” Other than describing itself as specifying “the 
elements of a process plan,” which is “the specification of 
instructions for a task,” the document containing the model 
provides no description of the functionality of a process plan that 
it is intended to provide. The concepts defined in STEP Part 49 
are used in Part 240 of STEP, which is focused on process plans 
for machined products [3]. 

Part 10 of ISO 14649 [2] “specifies the process data which is 
generally needed for NC-programming within all machining 
technologies.” This includes the definition of a general process 
plan model that might be used outside of the machining domain as 
well as inside. A central element of the model is “Executable.” 
Instances of Executable “initiate actions on a machine” when 
executed. Part 10 of ISO 14649 is remodeled in STEP terms in 
STEP Part 238 [4]. 

Languages for programming machine tool controllers may be 
regarded as process plan models. The Dimensional Measuring 
Interface Specification (DMIS) is the only standard language for 
writing programs to be executed by the controller of coordinate 
measuring machines [6]. DMIS has many of the plan constructs 
described in section 4. 

2.2 Other Process Plan Models 
Since we are using OWL to model the environment of a kitting 
workstation, we looked at the Process.owl section of the most 
recent version of OWL-S [7]. OWL-S was originally developed 
for the World Wide Web Consortium (W3C), but was never 
adopted as a W3C recommendation. 

There is an enormous body of literature regarding planning, 
particularly planning on state spaces. The book Automated 
Planning [9], for example, includes over 500 references. There is 
a correspondingly wide variety of plan models. We do not attempt 
to describe them here. 

The language A Language for Process Specification (ALPS) was 
developed at the National Institute of Standards and Technology 
(NIST) and has been used in a few NIST projects [10]. 

3. LANGUAGE AND STRUCTURE 
FUNCTIONAL REQUIREMENTS 
The language used to represent a process plan model should make 
it possible to use plan instances easily. Specifically, the model 
should be written in a language that is automatically processable 
into computer code that (1) has data structures for representing a 
plan, (2) can read a plan file and save it in terms of the 

automatically defined structures, (3) has access functions for 
getting data out of the structures and putting data into them, and 
(4) can write a plan file from the structures. Languages for which 
mature software exists that can generate computer code as just 
described include EXPRESS and XML schema. Software exists 
that can process OWL that way, but it is at an early stage of 
development and is not yet widely used [11]. 
 
Even if a code generator for a language can do the four things 
listed above, if the structure of the model is too general, the 
information available by using the access functions may be too 
atomic for even an expert in both programming and process 
planning to use readily. This is the case with both Part 238 of 
STEP and Part 240 of STEP. A set of computer code written by a 
STEP expert is required to extract meaningful process plan data 
usable by a programmer building a process planner or a process 
plan executor. On the other hand, automatically generated code 
built by processing ISO 14649 (which, like the two STEP parts, is 
written in EXPRESS) using the same code generator is readily 
usable by an application builder [17]. 

It is not sufficient, of course, to have a plan model. It must be 
possible to represent plans that are instances of the model. For 
EXPRESS models, there is more than one standard way in which 
this may be done, the most commonly used of which is a 
“physical file” [11]. For XML schema, instances are built in XML 
files that conform to the schema [18]. For OWL, instances and 
structures may be put into the same file. It is more convenient, 
however, to have a fixed structures file and build instance files 
that use the structure file via an “import” statement. Curiously, 
while C++ is a widely used standard programming language [16] 
and would be entirely adequate for building class models of many 
planning domains, there is no standard textual data file 
representation for C++ class instances. 

4. PLAN CONSTRUCTS 
The plan model needs to be rich enough to represent all aspects of 
the kit building process. This process includes operations ranging 
from selecting the appropriate gripper for moving kit trays or 
parts to iterating through a list of steps that place parts in a kit. In 
order to meet these requirements, we have examined techniques 
for representing parameters, variables, resources, and actions. 

An abbreviated example kitting plan is shown in Fig. 1 using 
XML format. The example uses the constructs described in the 
remainder of this section. 

<ProcessPlan> 
  <About> 
    <PlanId>kitABCPlan</PlanId> 
    <PlanVersion>1.0</PlanVersion> 
    ... 
    <TargetSKU>kitABC</TargetSKU> 
  </About> 
  <PlanRequirements> 
    <PlanRequirement> 
      <Name>boxOfEmptyTrays</Name> 
      <Type>LargeContainer</Type> 
      <SkuRef>Box1</SkuRef> 
      <ContentsType> 
        <SkuRef>KitTrayX</SkuRef> 
      </ContentsType> 
    </PlanRequirement> 
   ... 
  </PlanRequirements> 
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  <PlanParameters> 
    <PlanParameter> 
      <Name>NumberOfKitsToMake</Name> 
      <Type>positiveInteger</Type> 
    </PlanParameter> 
  </PlanParameters> 
  <InternalVariables> 
    <InternalVariable> 
      <Name>BoxWithEmptyTrays</Name> 
      <Type>LargeContainer</Type> 
      <Requirement>boxOfEmptyTrays</Requirement> 
    </InternalVariable> 
    <InternalVariable> 
      <Name>CurrentKitTray</Name> 
      <Type>KitTray</Type> 
      <SkuRef>KitTrayX</SkuRef> 
      <InitialValue>NULL</InitialValue> 
    </InternalVariable> 
    ... 
  </InternalVariables> 
  <ToDo> 
    <Start></Start> 
    <DoInGivenOrder> 
      <DoInAnyOrder> 
        <Bind> 
          <Variable>BoxWithEmptyTrays</Variable> 
          <WhichOne>ANY</WhichOne> 
          <ErrorAction>QUIT</ErrorAction> 
        </Bind> 
        <Bind> 
          <Variable>BoxForFullTrays</Variable> 
          <WhichOne>ANY</WhichOne> 
          <ErrorAction>QUIT</ErrorAction> 
        </Bind> 
        ... 
      </DoInAnyOrder> 
      <Set> 
        <Variable>n</Variable> 
        <Value>0<Value> 
      </Set> 
      <LoopInGivenOrderWhile> 
        <Test>n LessThan NumberOfKitsToMake</Test> 
        ... 
        <RobotMoveAbove>CurTrayPose</RobotMoveAbove> 
        <RobotPickUp>CurrentKitTray</RobotPickUp> 
        <RobotMoveAbove>KitTrayPose</RobotMoveAbove> 
        <RobotPutDown> 
          <What>CurrentKitTray</What> 
          <Where>KitTrayPose</Where> 
        </RobotPutDown> 
        ... 
        <Set> 
          <Variable>n</Variable> 
          <Value>n+1<Value> 
        </Set>         
      </LoopInGivenOrderWhile> 
    </DoInGivenOrder> 
    <Stop></Stop> 
  </ToDo> 
</ProcessPlan> 
 
Fig. 1 Kitting Process Plan Example (abbreviated) 
 
 

4.1 Plan Parameters 
Plans can have parameters, such as the name of a file of decision 
rules to use or the number of kits to be put together. If plan 
parameters are used, structures to support their use may be needed 
in the plan model. Having a parameter for the number of kits, for 
example, requires some structure that implements looping. Plan 
parameters are set in the command to execute the plan. Typically, 
plan parameters are not reset during plan execution. Plan 
parameters serve the function of allowing execution time 
specification of what to do or how to do it. The current kitting 
process plan model has a plan parameters section. 

4.2 Plan Variables 
Plan variables are variables set in the course of executing a plan, 
not in the command to run the plan. It is useful if plan variables 
have specific data types. A given variable may represent different 
objects of the same type during plan execution. The current 
kitting process plan model has an InternalVariables section that 
contains plan variables. 

4.3 Resources 
The current kitting process plan model has a PlanRequirements 
section that gives required resources. 

4.3.1 Resource Requirements 
A process plan that is intended to be executable should make it 
easy for a user to determine if the resources required to execute 
the plan are available. The straightforward way to do this is to 
have a separate section of the plan that lists the required 
resources. Each step of a plan should identify each resource it 
requires beyond what the plan as a whole assumes is available. It 
is not sufficient, however, to mention resources only as they are 
associated with steps of the plan, since if only that is done, it may 
be difficult to determine the total set of required resources. 

A plan model for a specific domain (a kitting workstation, for 
example) may assume the availability of fixed resources in the 
environment (a robot, for example). The resource section of a 
plan does not need to include those resources. If a plan is intended 
to be usable in several different environments of the same type 
(different kitting workstations, for example), then the resources 
section of the plan will need to include specific values applicable 
to the fixed resources in that type of environment (the extent of a 
robot work volume, for example). 

Where plans include alternative actions and those actions use 
different resources, it may be hard for the user to determine if 
available resources are adequate. Where one resource may be 
substituted for another and at least one of a set of alternative 
resources must be used, there is no difficulty. The list of required 
resources simply contains sets of mutually substitutable resources 
(three alternative grippers, for example). If alternative ways of 
executing the plan require different sets of resources, there is a 
problem. On the one hand, it is counterproductive to force the 
user to assemble all the resources that might be required. The user 
should have to assemble only a minimal set of required resources. 
On the other hand, until an execution of the plan is performed, it 
is not known which resources will be used. Where decisions on 
which alternative to use are made on the basis of environmental 
conditions that change slowly, one way to deal with this is to run 
a simulation of executing the plan. Then the resource 
requirements can be pared down to those resources used in the 
simulation. At the same time, the plan would be pruned of those 
branches that are not used. The reduced plan would be usable as 
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long as the conditions under which the reduced plan is executed 
are close enough to those under which the reduced plan was 
generated. Simulation before execution is also useful when a user 
has a set of resources and a complex plan and needs to determine 
if the plan can be executed with that set of resources. 

4.3.2 Resource Descriptions 
The description of a resource might be given at any of three levels 
of abstraction. 

 a description of the capabilities of the resource (for 
example, the lifting capacity and maximum opening of 
a gripper) 

 a specification of a resource in a catalog (for example, 
GripCo model 123) 

 a specific instance of a resource (for example, GripCo 
model 123 with serial number ABC). 

Which resource description level to use, if any, depends on the 
level of abstraction a plan is intended to have. Section 5 discusses 
levels of abstraction. 

4.4 Actions 
The actions section of a plan specifies what to do. This is by 
definition a functionality every sort of process plan must have. 
The actions section must always include tasks. The actions 
section may also include explicit control structures, or 
information to be used for control may be contained in the task 
description. In any event, some method of controlling the order in 
which tasks are performed is required. The current kitting process 
plan model has a ToDo section that contains the actions. 

4.4.1 Explicit Control Structures 
The current kitting process plan model includes all of the 
following types of control structure except for synchronous 
operation, DoSimultaneously, and DoSome. 

4.4.1.1 Do In Given Order 
In many process planning models and most computer 
programming languages, the default rule for execution order is to 
do things in the order in which they are listed in the file, and there 
is no explicit control structure for doing things in that order. 

The functionality of being able to execute plan steps in the order 
in which they are given in a file is very convenient. Unless a 
process plan model uses implicit control structures throughout the 
actions section, the model should include a default rule or an 
explicit DoInGivenOrder control structure. If the plan model 
includes explicit commands for ordering, such as described 
immediately below, then having an explicit DoInGivenOrder 
will help avoid confusion. 

4.4.1.2 Do In Any Order 
In theory, an extraordinarily simple process plan language might 
specify in its natural language execution rules that the steps of all 
plans may be executed in any order. In any realistic plan model, 
however, if the ability to say that some set of steps may be 
performed in any order is needed, then an explicit control 
structure implementing this functionality is needed. 

A DoInAnyOrder functionality is desirable if it is expected that 
there will be circumstances in which no particular task order is 
required and the system executing the plan is either capable of 

multitasking or is expected to have better information available 
for setting the order than is available at the time the plan is made. 

The DoInAnyOrder control structure might have subtypes that 
allow or disallow simultaneous execution of tasks. If the 
execution system is known be able to perform operations in 
parallel, then the plan model should include a DoSimultaneously 
control structure that requires parallel execution. 

4.4.1.3 Do One 
The DoOne control structure is followed by a list of alternatives. 
The execution system picks one alternative and executes it. The 
execution system is free to pick any of the alternatives. It may 
pick one at random, or it may evaluate the goodness of the 
alternatives by whatever criteria it prefers and pick the best one. 
The alternatives will usually have the same primary effect but 
may have different secondary effects. For example, in kitting, if it 
is necessary to get at box A which is underneath box B, the plan 
might include a DoOne with the alternatives of putting box A on 
the table or putting box A on box C. 

Some languages include a DoSome control structure that 
specifies that any N of a set of alternatives should be executed. 
This is more powerful than DoOne, since when N is 1, it is 
equivalent to DoOne, but occasions when N is not 1 will 
probably be rare – remove three of the six boxes on the table, for 
example. 

4.4.1.4 Branch on Condition  
Another type of control structure includes a condition to be tested 
followed by a specification of what to do if the condition is met. 
In common computer languages, these are called if or switch or 
select. All of them may be combined with else, which specifies 
what to do if none of the explicit conditions is met. Switch and 
select have cases. Implementing condition testing requires that 
the plan language include variables and (usually) expressions, for 
example, "(x+y) > 3" is a condition that is a Boolean expression 
using a less than operator to compare an arithmetic expression 
containing variables and an addition operator with a numerical 
constant. The Boolean test may be implicit rather than explicit, 
but variables are always needed. 

Branching on a condition is a functionality that is hard to do 
without whenever a plan model includes plan parameters and/or 
variables. 

4.4.1.5 Loop 
When a set of steps must be repeated a number of times or as long 
as a condition holds, a control structure that implements looping 
(iteration) is needed. The simplest form of loop simply states that 
a set of steps must be executed N times, and there is no explicit 
test (the execution system is expected to keep track), but in most 
of the many varieties of loop structure ([15] has a 40-page chapter 
on looping), a condition is tested at some point in the loop that 
stops the looping. 

For kitting plans, our model includes LoopInAnyOrderWhile and 
LoopInGivenOrderWhile. In these control structures, a condition 
is tested before any step in the list of conditional steps is 
executed. The rest of the action of these loops is as implied by 
their names. 

4.4.1.6 Synchronous Operation  
If two devices must operate together to accomplish something 
(such as two robot arms picking up opposite ends of a pipe), a 
control structure for synchronization is needed in the plan. 
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4.4.1.7 Create and Destroy Instances 
Control structures that are able to create and destroy instances 
will be useful in the plan model for any activity in which 
instances come into existence or go out of existence during plan 
execution. In kitting, for example, kits come into existence that 
did not exist before plan execution was started, and part supplies 
go out of existence when they are empty (the empty container that 
remains is no longer a part supply). 

4.4.1.8 Bind Resources 
A model of a step that binds a plan variable to an instance of a 
resource is useful in the plan model. When a “bind” step is 
executed, a plan variable representing a resource is set to a 
specific object in the workstation matching the description of a 
resource. This requires being able to obtain information about 
what is in the workstation. Such information would reside in a 
dynamic knowledge base, so implementing resource binding 
requires that a dynamic knowledge base be available to the plan 
executor. Resource binding might be combined with resource 
allocation. For example, when a bind command is executed, the 
resource might be marked as unavailable as the value of a set 
command or another bind command. 

4.4.1.9 Set Variables 
A model of a step that sets a plan variable to a value is useful in 
the plan model. When a “set” step is executed, the value of a plan 
variable is set. The value to which the variable is set may be 
obtained by a straightforward knowledge base inquiry (such as the 
location of a solid object) or it may be obtained by evaluating an 
expression (for example, (a + b)) or making a function call (for 
example, a call to a function that returns the first item in a list). 
The last two methods, of course, require that the plan model 
include an expression model and a function model. 

4.4.1.10 Start and Stop 
Because explicit start and stop control structures simplify 
executing plans, the plan model should include Start and Stop. 
Only one Start step is allowed in a plan, and it must be the first 
step. Either multiple Stop steps or only one might be allowed. If 
only one is allowed, it must be the last step. 

4.4.2 Implicit Control Structures 
The order in which steps of a plan are executed may be controlled 
implicitly by putting a list of predecessor (and/or successor) steps 
into each step. In some implementations of this ([10], for 
example), only “join” steps, which are steps that join threads 
coming from a matching “split” step may have more than one 
predecessor. In other implementations, any step may have 
multiple predecessors, and the control rule is that all the 
predecessors of a step must be executed before the step may be 
executed. The two approaches may be combined using split/join 
pairs that enable/disable the use of multiple predecessors. This 
was implemented in [13]. The use of multiple predecessors allows 
the plan to be executed in multiple orders that would otherwise be 
allowed only by including a combinatorial explosion of split/join 
pairs. 

4.4.2.1 Do In Precondition Order 
Enabling the use of multiple predecessors for a portion of a plan 
may be implemented by the DoInPreconditionOrder control 
structure. A DoInPreconditionOrder step is followed by a list of 
steps, each of which has a sequence number and a list of the 
sequence numbers of other steps that must be executed 
previously. All the steps in the list must eventually be executed. 

4.4.3 Support Structures 
Where steps or conditions in a plan require numbers or Boolean 
values, it is convenient if plan parameters, plan variables, object 
properties, operator expressions, and functions are used. These all 
may be classed as subtypes of expression. Some plan models, 
such as STEP part 49 and ALPS, observe that an expression 
model is required without modeling one. Other plan models, such 
as DMIS, include explicit models of expressions. 

For kitting, in order to deal with location information and do 
geometric reasoning, all of the support structures just listed are 
required. For example, in order to take a part out of a part supply, 
a function that finds the first part remaining in the part supply is 
needed, and the location property of that part must be found in 
order to generate an instruction telling the robot where to go to 
pick up the part. As another example, if there is a stack of empty 
trays in a box and we want to pick up the one on top (which is not 
necessarily the first one in the list of trays in the box), a function 
that finds the tray on top is needed. 

4.4.4 Kitting Actions 
A set of task types specific to kitting is required in a kitting 
process plan model. The last subsection of this subsection 
presents the task types we intend to use first. The stage is set by 
brief descriptions of the objects in a kitting workstation, the 
scenario our plan model must support, and the execution model 
we intend to follow. 

4.4.4.1 Objects in a Kitting Workstation 
Our initial kitting workstation model is relatively simple. A 
kitting workstation contains some fixed equipment: a robot, a 
work table, a part gripper, a tray and kit gripper, and a gripper 
changing station. Items that enter the workstation include empty 
kit trays, boxes in which to put finished kit trays or empty part 
supply trays, and part supplies. A part supply may be a tray or 
box with parts inside in known or unknown locations or a box 
containing trays with parts. Items that leave the workstation may 
be boxes with finished kits inside, empty part trays, empty boxes, 
or boxes with empty part trays inside. 

4.4.4.2 Scenario 
In our kitting project, the first version of the plan model is 
designed to support the following scenario. An external agent 
(which we call the factotum) sets up the workstation by putting 
into it: 

 a box of empty kit trays (may be only partially full) 
 a box for finished kits (may have some kits in it 

already) 
 a box for empty part supply trays 
 several part supply trays 

The knowledge base for the workstation includes descriptions of 
the designs of kits, parts, and trays involved. The knowledge base 
also has descriptions of where all the objects in the workstation 
are. The factotum that sets up the workstation fills in the 
knowledge base so that it describes the setup correctly. After the 
initial setup, objects are expected to move only if the robot or 
factotum moves them. Whenever an object is moved by the robot 
or factotum, its location is updated. The workstation control 
system builds kits by: 

 telling the robot to take an empty kit tray out of the box 
of empty kit trays and to put it on the work table 

 telling the robot several times to take a part out of a part 
supply and put it in the kit being built 
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 telling the robot, whenever a kit is finished, to put the 
finished kit in the finished kit box 

 telling the robot to change its gripper as necessary for 
handling either parts or part trays 

 telling the factotum, whenever necessary, to remove 
empty parts trays, to put part supplies in, to put boxes of 
empty kit trays in, or to remove full boxes of finished 
kits. 

4.4.4.3 Kitting Task Execution 
The scenario is carried out by having the workstation controller 
execute a workstation level process plan. The workstation 
controller can, by itself, execute steps that set variables, choose 
among alternatives, etc. To move things, however, the 
workstation controller requires the robot or the factotum to 
execute instances of specific types of kitting tasks. This is 
expected to be accomplished by having the workstation controller 
send a command to the robot controller or the factotum. The robot 
controller or factotum will carry out the command and report back 
whether command succeeded or failed. If the command succeeds, 
the workstation controller will execute the next step in the plan. If 
the command fails, the workstation controller will either just stop 
executing the plan or deal with the error condition outside of 
executing the process plan and then resume executing the plan. As 
currently envisioned, resuming plan execution after an error will 
be feasible only if the error condition can be corrected and the 
workstation environment can be set to the state it would have 
been in if the command that failed had succeeded. 

Currently, the kitting process plan model contains no error 
handling tasks. The workstation controller is expected to deal 
with error conditions independently from executing the process 
plan. 

4.4.4.4 Types of Kitting Tasks 
The task types that have been defined to enable writing a plan that 
follows the scenario include the following. 

 FactotumRefill - This is followed by a variable 
representing a requirement. When the statement is 
executed, the factotum puts an object of the required 
type in the workstation and updates the workstation 
model. 

 FactotumRemove - This is followed by a variable 
representing the object to remove. When the statement 
is executed, the factotum removes the object and 
updates the workstation model. 

 FactotumReplace - This is followed by a variable 
representing the object to replace. When the statement 
is executed, the factotum removes the object, puts 
another object of the same type in the same place, and 
updates the workstation model. The new object should 
be different from the old one in an appropriate way. 

 RobotChangeEndEffector - This is followed by the 
name of an EndEffector to change to. When the 
statement is executed, if the robot is not already holding 
the named EndEffector, the robot moves to the 
changing station, puts down the EndEffector it has (if it 
has one) and picks up the named EndEffector. If the 
robot is already holding the named EndEffector, no 
action is taken. 

 RobotMoveAbove - This is followed by a Pose. When 
this statement is executed, the controlled point on the 
robot's end effector moves to a point that has the same 
X and Y values of the location of the Pose but has a 
greater Z value by some amount the executor thinks will 
be sufficient so that the robot will not collide with 
anything near the location point. This statement is not 
particularly well defined and might be modified. 

 RobotPickUp - This is followed by a variable whose 
value is the object to pick up. When the statement is 
executed, the robot moves its gripper down into position 
for grasping the object, the gripper grasps the object, 
and the robot moves up so that the height of the lowest 
point of the object is the same as what the height of the 
lowest point of the gripper was previously. 

 RobotPutDown - This is followed by a variable 
representing the object to put down and a variable 
representing the Pose of the object at which the object 
should be released. When the statement is executed, the 
robot moves the object into the given Pose and releases 
the gripper's grip on the object. Then the robot moves 
up so that the lowest point of the gripper is clear of the 
object that was put down. 

4.5 Other Plan Contents 
A process plan file needs to include information that may be used 
to keep track of the document. This information is not used by the 
process plan execution system at execution time, though it may be 
used immediately before execution starts to verify that the right 
plan is being used. The current kitting process plan model 
includes an About section with subsections for PlanId, 
PlanVersion, PlanDateAndTime, PlanAuthor, PlanWorkstation, 
Description, and TargetSKU (an identifier for the stock keeping 
unit data that is a detailed description of the type of kit to be 
made). 

5. PLANNING CONSIDERATIONS 
The ways in which plans are intended to be generated and used is 
a major consideration in deciding what constructs to include in 
the plan.  

5.1 Abstraction 
The most abstract (or high-level) plan may specify only the 
intended effects of the plan. For a kitting workstation, a high-level 
plan might state that a number of kits of a particular type are to be 
made. For a quality control system, a high-level plan might state 
that parts of a particular type are to have the tolerances on a 
particular set of features checked. 

If a plan is intended to be executable, the plan should include 
resources, executable operations, and whatever degree of ordering 
is required for executing the operations. 

In many industrial settings, it is useful if a process plan can be 
refined in stages. The NIST Manufacturing Systems Integration 
(MSI) project, for example, identified three stages, which were 
called (1) process plans (2) production-managed plans, and (3) 
production plans [12]. As used in the MSI project, “A 
production-managed plan is an expansion of a process plan 
which supports the production of a required number of 
products using a given factory configuration. A production 
plan is a refinement of a production-managed plan which 
identifies specific resources for each step and the times of 
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their usage for that step.” As described, a production plan is a 
combination of a plan and a schedule. Scheduling, in our view, is 
beyond the scope of a process plan, but supporting the other types 
of refinement described by the MSI project, as well as refinement 
by pruning branches of a plan, is a functionality that may be 
required of a process plan model. With this functionality, a single 
plan model will support both a plan and any refinements of it 
(possibly in a chain of successive refinements). This implies, for 
example, that all levels of action abstraction and resource 
description should be supported by the plan model. 

Plan refinement was implemented in the Feature Based Inspection 
and Control System at NIST [13] and was discussed in [14]. 
Refining a plan may require generating a separate document 
containing the refined plan. A plan model that supports 
representing both a plan and its refinement in a single document 
may be unnecessarily complex. Regardless of the way in which 
refinement is handled, there must be a link from any refinement 
back to the plan it refines. 

5.2 Decision-making Responsibilities 
Planning decisions might be made in either the planner or the plan 
executor. Depending on the assignment of planning 
responsibilities to the planner or the plan executor, the functional 
requirements of the plan model may be very different. 

At one extreme, if the planner knows enough to make all the 
decisions, a plan format may suffice that is simply an ordered list 
of tasks to perform. In this case, since no decisions need to be 
made at execution time, no Boolean expressions, if-thens, or 
structures that allow alternatives are needed in the plan. In 
addition, since the natural form of a file is an ordered list, no 
ordering structures are needed. All that is necessary is to be able 
to tell where one step ends and the next begins. Because a file is 
an ordered list by nature, the most abstract plans will require 
using a structure such as DoInAnyOrder that is able to disorder 
the steps. 

At the other extreme, if there may be foreseen but random 
changes in the environment in which the plan is executed (e.g., 
the robot is apt to drop things) or if the conditions of the 
environment are not known at planning time (e.g., the location of 
the part supply is not set until execution time), the plan will need 
to include items such as variables, if-thens, sets of alternatives, 
and Boolean expressions. 

5.3 Extendible Generic Plan Model 
It is extremely desirable to have a generic model of process plans 
that may be extended into specific domains. If models for 
different domains build on a common core, people who 
understand the plan model for one domain can gain understanding 
of other plan models much more easily than if there is no common 
core. Similarly, it will be possible to use the core software of a 
system that executes plans in one domain when building a plan 
execution system for a new domain.  

Because the target level of plan abstraction varies from 
application to application, the generic model must be built so as to 
support different levels of abstraction efficiently and clearly. It 
may be possible to support different levels of abstraction by using 
optional elements. This notion needs further examination since 
items that are optional at a high level may be required at lower 
levels. 

A generic plan model might specify the sections of the plan, 
control structures, some aspects of resource description, and a 
generic task. Specializations of the generic plan for specific 
domains would have specialized resource and task descriptions 
that are subtypes of generic tasks and resources. 

5.4 Human Comprehensibility 
 
With a human in the loop during plan generation (always or as 
needed), the range of good plans that can be generated expands 
greatly. Thus, one functional requirement is that the semantics of 
the plan model should be readily understandable to trained 
humans. The syntax does not need to be human-friendly since 
user-friendly interfaces can be built to generate syntax from user 
actions that convey the semantics. Since computers can handle a 
wide variety of syntax, however, it should be possible to design a 
syntax that is friendly to both humans and computers. That will be 
helpful when no user-friendly interface is available and a human 
needs to do planning. 

6. CONCLUSION 
We plan to build: 

 an OWL model of kitting workstation process plans 
 example process plans conforming to the model 
 C++ software for representing, reading, writing, and 

accessing the plans 
 a C++ kitting workstation plan executor 
 a simulated kitting workstation 
 an actual kitting workstation 

Using the simulated and actual workstations, we plan to evaluate 
the performance of the kitting process plan model. Where we find 
a need for additional functionality in the model, it will be added. 
If we discover plan functionality that is not used in our example 
plans and does not appear likely to be used in any plans, it will be 
removed. 

We intend to include sensory processing in the kitting 
workstation. Some of this, such as a switch that detects whether a 
gripper is seated properly in a gripper changer, might be used 
only by the robot controller. Other sensory data will be reported 
to the workstation’s knowledge base. For example, we might have 
fixed cameras that feed into a system that computes the observed 
locations of objects in the workstation. For any observed object, 
the observed location data might be fused with the location data 
that is a priori or entered in the course of plan execution. A large 
difference between the stored and observed values might trigger 
an error signal. 

The sensory processing described in the previous paragraph 
requires nothing from the contents of a process plan or from a 
process planner. The only thing it requires from a process plan 
executor is the ability to receive error signals and react to them. 
Other elements of the system would handle sensory processing 
and knowledge base maintenance. Hence, we currently do not 
deal with sensory processing in the process plan model. 

If we find that the robot needs to help with sensory processing or 
that sensory devices need explicit instructions that are coordinated 
with robot actions, then the process plan model will need to be 
expanded to include tasks for sensory processing devices or robot 
tasks that serve sensory processing. For example, a camera end 
effector might be defined and used. If a part were dropped and 
could not be found by fixed sensors, the robot would change to 
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the camera end effector and move it into position to see where 
fixed cameras cannot see. As another example, if a box with one 
part in it is dropped and the part cannot be located, the robot 
might be commanded to move the box in order to determine if the 
part is now under the box. 

As mentioned earlier, there are currently no kitting workstation 
tasks in the process plan model designed specifically for error 
recovery. If it is found that error recovery tasks are needed in the 
process plan model, they will be added. 
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