
Measurement 46 (2013) 3745–3752
Contents lists available at SciVerse ScienceDirect

Measurement

journal homepage: www.elsevier .com/ locate/measurement
Combinatorial testing for software: An adaptation of design
of experiments
0263-2241/$ - see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.measurement.2013.02.021

⇑ Corresponding author. Tel.: +1 301 975 2109.
E-mail address: raghu.kacker@nist.gov (R.N. Kacker).
Raghu N. Kacker a,⇑, D. Richard Kuhn a, Yu Lei b, James F. Lawrence a,c

a National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
b University of Texas, Arlington, TX 76019, USA
c George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 14 March 2013

Keywords:
Computer security
Covering arrays
Design of experiments
Measurement
Metrology
Orthogonal arrays
Software engineering
Software testing
Software has become increasingly ubiquitous in tools and methods used for science, engi-
neering, medicine, commerce, and human interactions. Extensive testing is required to
assure that software works correctly. Combinatorial testing is a versatile methodology
which is useful in a broad range of situations to detect faults in software. It is based on
the insight that while the behavior of a software system may be affected by a large number
of factors, only a few factors are involved in a failure-inducing fault. We discuss the devel-
opment of combinatorial testing for software as adaptation of design of experiment meth-
ods. Combinatorial testing began as pairwise testing in which first orthogonal arrays and
then covering arrays were used to make sure that all pairs of the test settings were tested.
Subsequent investigations of actual software failures showed that pairwise (2-way) testing
may not always be sufficient and combinatorial t-way testing for t greater than 2 may be
needed. Until recently efficient tools for generating test suites for combinatorial t-way test-
ing were not widely available. Combinatorial testing has become practical because efficient
and free downloadable tools with support of constraints have become available.

Published by Elsevier Ltd.
1. Introduction

A software fault is a mistake in the code which when
encountered may cause the software to fail. Failure means
that the software behaves in unexpected (incorrect) ways.
A variety of testing methods are used to avoid, detect, and
correct faults during and after development of software. A
2002 report estimated that the cost to the US of inadequate
infrastructure for software testing was between $22.2 and
$59.5 billion [1]. In a decade since then software has be-
come more complex and the detection of faults has be-
come more challenging. An often used approach for
detecting software faults is dynamic testing in which the
software system under test (SUT) is exercised (run) for a
set of test cases, the expected (correct) behavior of the sys-
tem is predetermined for each test case, and the actual
behavior is compared against the expected. The SUT passes
a test case when the behavior is as expected and fails when
the behavior is different from the expected behavior. When
the SUT fails for one or more test cases the underlying
faults in the software which induce the failure are searched
and then corrected. The SUT could be any part of a software
system however small or large for which test cases can be
constructed, the expected (correct) behavior can be deter-
mined for each test case, tests executed, and the actual
behavior can be observed and assessed. Dynamic testing
is often used for independent verification and validation
of software systems.

Combinatorial testing is a type of dynamic testing in
which distinct (but possibly related) test factors are speci-
fied from the requirements, knowledge of system imple-
mentation and internal operations, and other information
available about the SUT. The possible values of test factors
may reside on continuous or discrete scales. In either case,
for each test factor relatively few discrete test settings are

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2013.02.021&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2013.02.021
mailto:raghu.kacker@nist.gov
http://dx.doi.org/10.1016/j.measurement.2013.02.021
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement


Table 1
Orthogonal array OA (8, 24 � 41, 2).

1 2 3 4 5

1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2
7 0 1 1 0 3
8 1 0 0 1 3

3746 R.N. Kacker et al. / Measurement 46 (2013) 3745–3752
specified by equivalence partitioning, boundary value anal-
ysis, and expert judgment. Then each test case is expressed
as a combination of one test setting for every test factor [2–
5]. Suppose the first test factor has v1 test settings, the sec-
ond test factor has v2 test settings, etc., and the k-th test
factor has vk test settings, where v1,v2, . . .,vk could be all
different. Then a test case is a combination of k test set-
tings, one for each test factor (a k-tuple). The number of
different test cases possible is the product of all k numbers
v1,v2, . . .,vk of test settings. For example, suppose out of
nine test factors, if 3 have three test settings each, 4 have
four test settings each, and 2 have five test settings each
then the number of possible test cases is
334452 = 1,72,800. The exponential expression 334452 rep-
resents the combinatorial test structure and its expanded
form 1,72,800 is the number of possible test cases. In many
practical applications the number of possible test cases is
too large to test them all. In combinatorial testing, combi-
natorial mathematics and computational methods are used
to determine a small set (called test suite) of test cases
which covers all test settings of each factor and all t-way
combinations (t-tuples) of test settings for some t P 2.
The value of t (called strength of the test suite) is chosen
with the objective that the test suite will exercise the com-
binations corresponding to the faults for which the SUT
could fail. Methods for specification of test factors, test set-
tings, and the strength t are largely application domain
specific and a subject of continuing research [4]. In this pa-
per we address the problem of constructing (generating)
the test suite after the test factors and the test settings
have been specified.

Orthogonal arrays (OAs) are tabular arrangements of
symbols which satisfy certain combinatorial properties.
In the1960s and1970s Japan and starting in the 1980s
in the US and Europe, Genichi Taguchi promulgated
the use of OAs (of strength two) as templates for De-
sign of Experiments (DoEs) [6–8]. In the late 1980s
and early 1990s, inspired in part by Taguchi, some
software engineers started investigating the use of
OAs for pairwise (2-way) combinatorial testing of soft-
ware and hardware–software systems. In Section 2, we
review the use of OAs for DoEs and software testing.
Soon the limitations of OAs to generate test suites for
software testing became apparent. Covering arrays
(CAs) are generalizations of OAs with slightly relaxed
combinatorial properties. Covering arrays were found
to be better suited than OAs for generating test suites
for software testing. In Section 3 we discuss the use of
CAs for pairwise (2-way) testing of software. Subse-
quent investigations of the reports of actual software
failures showed that pairwise (2-way) testing is useful
but it may not always be sufficient. Also, test factors
and test settings are subject to various types of con-
straints imposed by the semantics of the SUT and the
runtime environment. In Section 4, we discuss t-way
combinatorial testing (CT) for t P 2 with support of
constraints. Combinatorial testing for t P 2 is now
practical because efficient tools for generating test
suites for t-way testing with support of constraints
have become available. A brief summary appears in
Section 5.
2. Use of orthogonal arrays for design of experiments
and software testing

The concept of Orthogonal arrays (OAs) was formally
defined by Rao [9]. OAs are generalization of Latin squares
[10]. The matrix shown in Table 1 is an orthogonal array
(OA) referred to as OA(8, 24 � 41, 2). The first parameter
(which is 8) indicates the number of rows and the second
parameter (which is 24 � 41) indicates that there are five
columns of which four have 2 distinct elements each, de-
noted here by {0,1}, and one column has 4 distinct ele-
ments, denoted here by {0,1,2,3}. The third parameter
(which is 2) indicates that this OA has strength 2, which
means that every set of two columns contains all possible
pairs of elements exactly the same number of times. Thus
every pair of the first four columns contains the four pos-
sible pairs of elements {00,01,10,11} exactly twice and
every pair of columns involving the fifth column contains
the eight possible pairs of elements
{00,01,02,03,10,11,12,13} exactly once. In an OA of
strength 3, every set of three columns contains all possible
triplets of elements exactly the same number of times.

A fixed-value orthogonal array denoted by OA(N,vk, t) is
an N � k matrix of elements from a set of v symbols
{0,1, . . ., (v � 1)} such that every set of t-columns contains
each possible t-tuple of elements the same number of
times. The positive integer t is the strength of the orthogo-
nal array. In the context of an OA, elements such as
0,1,2, . . ., (v � 1) used in Table 1 are symbols rather than
numbers. The combinatorial property is not affected by
the symbols that are used for the elements. Every set of
three columns of a fixed value orthogonal array of strength
2 represents a Latin square (one column representing the
rows, one column representing the columns and the third
column representing the symbols). A mixed-value orthog-
onal array is an extension of fixed-value OA where
k = k1 + k2 + . . . + kn; k1 columns have v1 distinct elements,
k2 columns have v2 distinct elements, etc., and kn columns
have vn distinct elements, where v1,v2, . . .,vk are different.
Mathematics of OAs and extensive references can be found
in [11]. Neil Sloane maintains an electronic library of
known OAs [12].

The term design of experiments (DoEs) refers to a meth-
odology for conducting controlled experiments in which a
system is exercised (worked in action) in a purposeful (de-
signed) manner for chosen test settings of various input
variables (called factors). The corresponding values of one
or more output variables (called responses) are measured



R.N. Kacker et al. / Measurement 46 (2013) 3745–3752 3747
to generate information for improving the performance of
a class of similar systems. Conventional DoE methods were
developed in the 1920s and 1930s by Ronald Fisher and his
contemporaries and their followers to improve agricultural
production [13,14]. Later DoEs were adapted for experi-
ments with animals, medical research, and then to im-
prove manufacturing processes subject to uncontrolled
variation. Frequently, the effects of many factors each hav-
ing multiple test settings are investigated at the same time
and the DoE plans satisfy relevant combinatorial properties
[15–19]. The objective in conventional DoEs is to improve
the mean response over replications. Taguchi promulgated
a variation of DoE methods for industrial experiments
whose objective is to determine test settings at which
the variation due to uncontrolled factors was least [6–
8,20,21]. Taguchi promoted use of OAs of strength two as
templates for DoE plans. Before Taguchi’s use of OAs, they
were not very well known outside the world of mathemat-
ics and statistics.

Consider an industrial DoE which has five factors A, B, C,
D, and E and one response Y. Suppose A, B, C, and D have
two test values each, denoted by {A0,A1}, {B0,B1}, {C0,C1}
and {D0,D1}, respectively, and the factor E has four test val-
ues, denoted by {E0,E1,E2,E3}. The combinatorial test struc-
ture of this DoE is the exponential expression 24 � 41

which indicates that there are five factors of which four
have two test settings each and one has four test settings.
The number of possible test cases is 24 � 41 = 64. The OA
(8, 24 � 41, 2) can be used to set up an experiment to eval-
uate the change in response when the test value of each
factor is changed. The factors A, B, C, D, and E are associated
with the columns of OA (8, 24 � 41, 2) and the test values
are associated with the entries of the columns. Then the
rows of OA (8, 24 � 41, 2) specify 8 of the 64 possible test
cases shown in Table 2.

The last column of Table 2 displays the values
y1,y2, . . .,y8, of the response Y for the eight test cases. A sali-
ent property of DoE is that they enable evaluation of a sta-
tistic called main effect of each test factor [18]. The main
effect of a factor is its average effect on the response for
all test values of the other factors. The average response
corresponding to test value A1 is (y2 + y4 + y6 + y8)/4 and
the average response corresponding to test value A0 is
(y1 + y3 + y5 + y7)/4. The main effect of factor A is the differ-
ence (y2 + y4 + y6 + y8)/4 � (y1 + y3 + y5 + y7)/4 between the
two averages. The combinatorial property of orthogonal ar-
rays guarantees that the test value of each factor is paired
with all test values of every other factors the same number
Table 2
DoE plan based on OA(8, 24 � 41, 2).

Test cases A B C D E Response

1 A0 B0 C0 D0 E0 y1

2 A1 B1 C1 D1 E0 y2

3 A0 B0 C1 D1 E1 y3

4 A1 B1 C0 D0 E1 y4

5 A0 B1 C0 D1 E2 y5

6 A1 B0 C1 D0 E2 y6

7 A0 B1 C1 D0 E3 y7

8 A1 B0 C0 D1 E3 y8
of times. Thus in each of the two averages for A1 and A0,
each test level of every other factor is represented exactly
the same number of times (see Table 2). Thus the main ef-
fect of factor A is meaningful for all test values of the other
factors. Similarly, the main effects of factors B, C, D, and E
are meaningful for all test values of the other factors.
Orthogonal arrays (and other DoE plans) enable evaluation
of the main effects.

Along with the advent of computers and telecommuni-
cation systems in the 1980s, independent verification and
validation of software and hardware–software systems be-
came important. Taguchi inspired the use of OAs for testing
software systems. Software engineers in various compa-
nies (especially Fujitsu in Japan and the descendent organi-
zations of the AT&T Bell System in the US) started to
investigate use of DoE methods for testing software and
hardware–software systems. The earliest papers include
the following: [2,3,22–24]. In the US, starting in the late
1980s and early 1990s, AT&T researcher Madhav Phadke
and his colleagues developed a tool called OATS (Orthogo-
nal Array Testing System) to generate test suites (based on
OAs of strength 2) for Taguchi DoEs and for testing soft-
ware based systems [25]. OATS was an AT&T proprietary
tool for intra-company use only. Use of OAs of strength 2
assured that all test settings for each test factor and all
pairs of test settings for every pair of test factors were
tested (executed). Thus began pairwise (2-way) testing, a
type of dynamic testing in which the SUT is exercised for
a test suite which satisfies the property that for every pair
of test factors all possible pairs of test settings are tested.
3. Pairwise (2-way) testing using covering arrays

When AT&T software tester George Sherwood tried to
use OATS to specify ‘‘client test configurations for a local
area network product’’, he realized the limitations of OATS
and the limitations of using OAs to construct test suites for
software testing [26]. Often, an OA matching the required
combinatorial test structure does not exist. Also, fre-
quently, OA based test suites included invalid test cases
(which cannot be executed). Suppose out of five factors,
four have two test settings each and one has three test set-
tings; thus the combinatorial test structure is 24 � 31. An
OA of strength 2 matching the test structure 24 � 31 does
not exist (it is mathematically impossible). In such cases
a suitable OA is modified to fit the need. For example, if
the symbols in the rows 7 and 8 of the column 5 of OA(8,
24 � 41, 2) shown in Table 1 are changed from 3 to 2, we
Table 3
Combinatorial arrangement for the test structure 24 � 31.

1 2 3 4 5

1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2
7 0 1 1 0 2
8 1 0 0 1 2



3748 R.N. Kacker et al. / Measurement 46 (2013) 3745–3752
get the combinatorial arrangement shown in Table 3. Ta-
ble 3 is not an OA but it covers all pairs of test settings
and it can be used to construct a pairwise testing suite
for the test structure 24 � 31.

Suppose the five test factors of combinatorial test struc-
ture 24 � 31 were (1) operating system (OS) with two test
settings {XP,Linux}, (2) browser with two test settings
{Internet Explorer (IE),Firefox}, (3) protocol with two test
settings {IPv4, IPv6}, (4) CPU type with two test settings
{Intel,AMD}, and (5) database management system
(DBMS) with three test settings {MySQL,Sybase,Oracle}.
Then a test suite for pairwise testing based on Table 3 is
shown in Table 4. To obtain Table 4 from Table 3, the five
test factors OS, Browser, Protocol, CPU type, and the DBMS
are associated with the five columns of Table 3 and the
symbols in the columns {0,1,2} are replaced with the test
settings of the respective test factors. The eight rows of Ta-
ble 4 form a test suite based on Table 3. Since the browser
Internet Explorer (IE) does not run on the operating system
Linux, the pair {Linux, IE} appearing in test cases 6 and 8 of
Table 4 is invalid. Therefore, these two test cases are disal-
lowed (invalid) and cannot be executed. In that case the
other valid pairs of test settings covered by these two test
cases will not be tested, for example, the pairs {IPv6,Ora-
cle}, {Intel,Oracle}, {IPv4,Oracle}, and {AMD,Oracle} will
not be tested. Thus the test suite shown in Table 4 with test
cases 6 and 8 omitted would not test all valid pairs of test
settings.

Since for many combinatorial test structures OAs are
not mathematically possible and since test suites based
on OAs may include invalid pairs of test settings, in the
early 1990s, Sherwood developed a tool called CATS (Con-
strained Array Testing System) to generate test suites
which cover all valid combinations of test settings with a
small number of test cases [26]. The test suite generation
tool CATS (like OATS) was an AT&T proprietary tool for in-
tra-company use only. Test suites generated by CATS were
related to tabular arrangements of symbols called covering
arrays.

The concept of Covering Arrays (CAs) was formally de-
fined by AT&T mathematician Neil Sloane [27]. Significant
earlier contributions leading to the concept of CAs include
the following: [28–30]. Additional references on CAs can be
found in the following recent papers: [31,32]. A fixed-value
covering array denoted by CA(N,vk, t) is an N � k matrix of
elements from a set of v symbols {0,1, . . ., (v � 1)} such that
every set of t-columns contains each possible t-tuple of
elements at least once. The positive integer t is the strength
Table 4
Test suite based on Table 3.

Tests OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL
2 Linux Firefox IPv6 AMD MySQL
3 XP IE IPv6 AMD Sybase
4 Linux Firefox IPv4 Intel Sybase
5 XP Firefox IPv4 AMD Oracle
6 Linux IE IPv6 Intel Oracle
7 XP Firefox IPv6 Intel Oracle
8 Linux IE IPv4 AMD Oracle
of the covering array. A fixed value covering array may also
be denoted by CA(N,k,v, t). A mixed-value covering array is
an extension of fixed value CA where k = k1 + k2 + . . . + kn;
k1 columns have v1 distinct elements, k2 columns have v2

distinct elements, etc., and kn columns have vn distinct ele-
ments. The first six rows of the eight rows of Table 1 form a
covering array CA(6, 24 � 31, 2). In these six rows each set
of two columns contains each possible pair of symbols at
least once. The combinatorial property of covering arrays
is more relaxed (less stringent) than that of orthogonal ar-
rays: a CA need not be balanced in the sense that not all t-
tuples need to appear the same number of times. All OAs
are CAs but not all CAs are OAs. Thus the concept of cover-
ing arrays is a generalization of OAs.

Methods for constructing CAs can be put in three main
categories: (1) algebraic methods (for example
[27,30,33,34], and others), (2) meta-heuristic methods
such as simulated annealing and tabu search (for example
[32,35–38], and others), and (3) greedy search methods
(for example [39–44], and others). Algebraic methods ap-
ply only to certain mathematically conforming combinato-
rial test structures; however, when they apply they are
extremely fast techniques and may produce CAs of small-
est possible size. Meta-heuristic methods are computation-
ally intensive and they have produced CAs of the smallest
size known. Greedy methods are faster than meta-heuristic
methods; they apply to arbitrary test structures but may or
may not produce smallest size CAs. However Michael For-
bes’s greedy algorithm has produced some CAs of the
smallest size known [44]. The three approaches are some-
times combined to yield additional methods for construct-
ing covering arrays, for example [43–46], and others.
Charlie Colbourn maintains a web page of smallest known
sizes (N) of various covering arrays CA(N,k,v, t) of strength t
up to seven [47]. Tables of covering arrays of smallest
known sizes are available in the following webpages [48–
50].

Dalal and Mallows are among the leading promulgators
of the use of covering arrays for software testing [51]. They
made the case that evaluation of the main effects of factors
is important in DoE and OAs enable evaluations of the
main effects; however, in testing software systems there
is no need to evaluate the main effects of test factors. In-
stead interest lies in covering all pairs (in general all t-tu-
ples) of test settings. Therefore covering arrays are better
suited than OAs for testing software. A decade earlier, Tats-
umi had made the same observation [3]. In addition, he
pointed out that in generating test suites invalid combina-
tions must be excluded.

It turns out that CAs have several advantages over OAs:
(1) CAs can be constructed for any combinatorial test
structure of unequal numbers of test settings. (2) If for a
combinatorial test structure an OA exists (is mathemati-
cally possible) then a CA of the same or fewer test cases
can be obtained. (3) CAs can be constructed for any re-
quired strength (t-way) testing, while OAs are generally
limited to strength 2 and 3 [12]. (4) In generating test
suites based on CAs invalid combinations can be deliber-
ately excluded.

The first publicly available tool for generating test suites
based on CAs for pairwise (and higher strength) testing of



R.N. Kacker et al. / Measurement 46 (2013) 3745–3752 3749
software systems was AETG [52–54]. In 1998, Yu Lei devel-
oped a tool called IPO for generating test suites for pair-
wise testing based on CAs which excluded invalid pairs
of test settings [39,40]. Usefulness of CAs led to a great
interest among mathematicians and computer scientists
to develop tools for generating test suites based on CAs
for pairwise testing. A website (pairwise.org) maintained
by Jacek Czerwonka lists 37 tools (beginning with OATS,
CATS, AETG and IPO) for generating test suites for combi-
natorial testing [55].

4. Combinatorial (t-way) testing with support of
constraints

A team of the US National Institute of Standards and
Technology (NIST) researchers investigated 15 years’
worth of recall data due to failures of software embedded
in medical devices and failure reports for a browser, a ser-
ver, and a database system. The initial purpose of these
investigations was to generate insights into the kinds of
software testing that could have detected the underlying
faults and prevented the failures in use [56–58]. Subse-
quently the NIST researchers counted the numbers of indi-
vidual factors that were involved in the faults underlying
the actual failures. In the four systems investigated by
the NIST team, 29–68% of the faults involved a single fac-
tor; 70–97% of the faults involved one or two factors;
89–99% of the faults involved three or fewer factors; 96–
100% of the faults involved four or fewer factors; 96–
100% of the faults involved five or fewer factors, and no
fault involved more than six factors [58]. These investiga-
tions suggest the following empirical interaction rule. Only
a few factors are involved in failure-inducing faults in soft-
ware. Most failures are induced by single factor faults or by
the joint combinatorial effect (interaction) of two factors;
progressively fewer failures are induced by interactions
between three, four, or more factors. The maximum degree
of interaction in actual faults so far observed is six. The
interaction rule implies that pairwise (2-way) testing is
useful but it may not be sufficient. Combinatorial (t-way)
testing for t greater than 2 may sometimes be needed.
These conclusions are supported by other investigations
including the following [59–62]. This insight motivated
the authors of this paper to advance methods and tools
for combinatorial (t-way) testing for t P 2.

Combinatorial (t-way) testing (CT) is a type of dynamic
testing for software systems in which the SUT is exercised
for a suite of test cases which satisfies the property that for
every subset of t test factors (out of all k factors where
k P t) all t-tuples (of the test settings) are tested at least
once (disallowed combinations being excluded). The ex-
pected (correct) behavior of the system is predetermined
for each test case, and the actual behavior is compared
against the expected. The SUT passes a test case when
the behavior is as expected and fails when the behavior
is different. When the SUT fails for one or more test cases,
various approaches are used to isolate the failure-inducing
combinations of test settings from the pass/fail data. To
isolate failure-inducing combinations additional tests
may be required [63]. Once one or more failure-inducing
combinations have been identified, follow up investiga-
tions are conducted to reveal and correct the underlying
faults in the SUT.

Our NIST and UTA (University of Texas at Arlington)
team has developed a tool called ACTS for generating com-
binatorial t-way test suites for arbitrary combinatorial test
structures and any strength t with support of constraints
(to exclude invalid combinations). ACTS is an extension
of the IPO referred to earlier [39–41]. The tool ACTS is a
free research tool downloadable from a NIST web site
[64]. Special features of the ACTS tool include the follow-
ing. (1) ACTS excludes those combinations of the test set-
tings which are invalid according to the user specified
constraints. (2) ACTS supports two test generation modes:
scratch and extend. The former builds a test suite from the
scratch, whereas the latter allows a test suite to be built by
extending a previously constructed test suite which can
save earlier effort in the testing process. (3) ACTS supports
construction of variable-strength test suites. For example,
of the 10 test factors all could be covered with strength 2
and a particular subset of 4 out of 10 factors (which are
known to be inter-related) could be covered with higher
strength 4. (4) ACTS verifies whether the test suite sup-
plied by a user covers all t-way combinations. (5) ACTS al-
lows the user to specify expected output for each test case
in terms of the number of output parameters and their val-
ues. (6) ACTS supports three interfaces: a Graphical User
Interface (GUI), a Command Line Interface (CLI), and an
Application Programming Interface (API). The GUI interface
allows a user to perform most operations through menu
selections and button clicks. The CLI interface can be more
efficient when the user knows the exact options that are
needed for specific tasks. The CLI interface is also very use-
ful for scripting. The API interface is designed to facilitate
integration of ACTS with other tools.

Combinatorial testing is a versatile methodology which
could be useful in a broad range of testing situations. The
most basic use of CT is for testing various configurations
of a system or various inputs to a system from a user or
from another system [5]. Combinatorial testing can also
be used for testing databases and state models [65]. Our
team and collaborators have investigated the use of CT in
the following situations: (1) testing concurrent systems
[66], (2) testing web applications [67], (3) security testing
of access control implementations [68], (4) navigation of
dynamic web structures [69], (5) optimization of discrete
event simulation models [70], (6) analyzing system state-
space coverage [71], (7) detecting deadlocks for varying
network configurations [72], (8) detecting buffer overflow
vulnerabilities [73], (9) conformance testing for standards
[74], (10) event sequence testing [75], and (11) prioritizing
user session based test suites for web applications [76].

Combinatorial testing can greatly improve the effi-
ciency of dynamic software testing. If faults involving more
than t test factors are absent then t-way testing would be
as good as the more expensive exhaustive testing requiring
a larger number of test cases. A recent NIST study demon-
strates the efficiency of CT by showing that 4-way testing
could detect all faults using less than five percent of the
tests required by exhaustive testing [74].

An alternative to CT is random testing in which test
cases are formed from random draws of the discrete test



3750 R.N. Kacker et al. / Measurement 46 (2013) 3745–3752
settings of test factors. Generally combinatorial testing re-
quires fewer test cases than random testing for equivalent
coverage [72]. The benefit of CT in terms of the reduced
testing effort relative to random testing increases as the
strength t increases.

The following example shows that the size of combina-
torial t-way test suite increases rapidly as t increases. An-
droid is an open source platform for smart phone
applications. A resource configuration file for Android
applications has 35 options. These options can be ex-
pressed in terms of 9 test factors with the combinatorial
test structure 334452 [77]. The number of possible test
cases is 334452 = 1,72,800. Exhaustive testing is not practi-
cal. The sizes (number of test cases) of t-way test suites
determined using ACTS for t = 2, 3, 4, 5, and 6 are respec-
tively 29, 137, 625, 2532, and 9168. This highlights the
important question of how the strength t should be set?

A reasonable choice of the strength t requires experi-
ence with the type of SUT being tested. The available
knowledge about the SUT and the nature of possible faults
is used in the specification of test factors, test setting, and
the strength t. When the available knowledge about the
SUT is severely limited, the choice of t is difficult. The
choice of t requires a tradeoff between the cost of testing
(determined by the size of test suite) and the potential
benefits of higher strength testing. In the four systems
investigated by the NIST researchers in 1990s about 96–
100% the faults involved four or fewer factors [58]; there-
fore, t of four or less may be reasonable. In some situations
it may be more effective to try t-way test suites for t = 2 or
3 with different test settings (and possibly different test
factors as well) than testing with higher values of t. Some
software testers determine combinatorial coverage of their
skillfully developed test suites and then append additional
test cases to achieve a desired t-way (or variable strength)
coverage.

The challenges in CT include the following. (1) Modeling
of the test space including specification of test factors, test
settings and their constraints. (2) Efficient generation of t-
way test suites, especially involving support of constraints.
(3) Determination of the expected behavior of the system
for each possible test case and checking whether the actual
behavior agrees with the expected behavior. (4) Identifica-
tion of the failure-inducing test value combinations from
pass/fail results of CT. (5) Integration of CT in the existing
infrastructures for testing. Our research team is addressing
these challenges in collaboration with academia and
industry.

The choice of test factors and their test settings defines
and limits the scope of the combinatorial testing. Clearly, a
failure-inducing fault may not be detected when the test
factors and settings associated with that fault are not exer-
cised [3]. When continuous-valued factors are involved,
the discrete test settings preclude testing certain values.
Therefore combinatorial testing can detect faults but it
cannot guarantee their absence. Combinatorial testing
complements other approaches used to assure correctness
of software.

Combinatorial (t-way) testing is an adaptation of the
design of experiment methods for testing software (and
hardware–software) systems because in both cases
information about a system is gained by exercising it and
the test suite (DoE plan) satisfies relevant combinatorial
properties. In combinatorial testing (unlike DoE), the ex-
pected behavior of the system for each test case must be
pre-determined. This requires additional information such
as a mathematical model of the SUT or a benchmark imple-
mentation. In addition some tool is needed to check
whether the actual behavior of the SUT matches the ex-
pected behavior and to make a verdict of passing or failing
for each test case. Conventional DoE methods (unlike CT)
use a statistical model for the relationship between the in-
put factors and the output response to predict response for
untested conditions. In CT all conclusions are based on
(and limited to) the actual tests conducted. In DoE, exper-
imental error treated as random is an important compo-
nent of the variation of response values. In CT random
error is absent, negligible, or can be avoided by appropriate
modeling of the test factors.
5. Summary

Combinatorial (t-way) testing evolved from the use of
design of experiments based on orthogonal arrays for
generating test suites for software testing. Combinatorial
testing requires specification of test factors and their dis-
crete test settings. A test case is a combination of one se-
lected test setting for each test factor. Combinatorial
testing began as pairwise (2-way) testing in which the
software system under test is exercised for a test suite
of test cases which satisfies the property that for every
pair of test factors all possible pairs of the test settings
are tested at least once. First orthogonal arrays were used
as templates for constructing pairwise test suites. How-
ever, orthogonal arrays could not support constraints
among the test settings and test factors. Therefore cover-
ing arrays were found to be better suited than orthogonal
arrays for combinatorial testing. Investigations of actual
faults indicated that most failures are induced by single
factor faults or by the joint combinatorial effect (interac-
tion) of two factors, with progressively fewer failures in-
duced by interactions between three or more factors.
Thus pairwise (2-way) testing is useful but not always
sufficient and combinatorial (t-way) testing for t greater
than 2 is needed. Combinatorial (t-way) testing for t P 2
is now possible because efficient and free downloadable
tools for generating test suites for (t-way) testing with
support of constraints (to exclude invalid combinations)
have become available. Combinatorial testing is a versa-
tile methodology which could be useful in a broad range
of testing situations. Combinatorial testing can detect
faults but it cannot guarantee their absence. Also combi-
natorial testing is one of many complementary methods
for software assurance.
Disclaimer

NIST does not recommend or endorse any commercial
product referenced in this paper or imply that the refer-
enced products are necessarily the best available for the
purpose. ACTS is a research tool not commercial product.



R.N. Kacker et al. / Measurement 46 (2013) 3745–3752 3751
Acknowledgments

We thank the NIST management for their support and
we thank the Division Reader, the WERB Reader, and those
who provided comments on earlier drafts of this paper.
References

[1] Gregory Tassey, The economic impacts of inadequate infrastructure
for software testing, in: Final Report prepared for NIST by the
Research Triangle Institute, Research Triangle Park, North Carolina
USA, 2002.

[2] Robert. Mandl, Orthogonal Latin squares: an application of
experiment design to compiler testing, Communications of the
ACM 28 (1985) 1054–1058.

[3] Keizo Tatsumi, Test-case design support system, in: Proceedings of
International Conference on Quality Control, Tokyo, 1987, pp. 615–
620.

[4] Paul. Ammann, J. Offutt, Introduction to Software Testing, Cambridge
University Press, Cambridge UK, 2008.

[5] Aditya P. Mathur, Foundations of Software Testing, Addison-Wesley,
Boston, 2008.

[6] Genichi. Taguchi, Introduction to Quality Engineering, UNIPUB Kraus
International, White Plains New York, 1986.

[7] Genichi Taguchi, System of Experimental Design, vols. 1 and 2,
UNIPUB Kraus International, White Plains New York, 1987 (English
translations of the 3-rd edition of Jikken Keikakuho (Japanese)
published in 1977 and 1978 by Maruzen).

[8] Genichi. Taguchi, Taguchi on Robust Technology Development,
ASME Press, New York, 1993.

[9] C.R. Rao, Factorial experiments derivable from combinatorial
arrangements of arrays, Journal of Royal Statistical Society
(Supplement) 9 (1947) 128–139.

[10] Damaraju. Raghavarao, Constructions and Combinatorial Problems
in Design of Experiments, Dover, New York, 1971.

[11] A.S. Hedayat, N.J.A. Sloan, J. Stufken, Orthogonal Arrays: Theory and
Applications, Springer, New York, 1999.

[12] Neil J.A. Sloane, <http://www2.research.att.com/~njas/oadir/>.
[13] R.A. Fisher, Statistical Methods for Research Workers, Oliver and

Boyd, Edinburgh, 1925.
[14] R.A. Fisher, The Design of Experiments, Oliver and Boyd, Edinburgh,

1935.
[15] William G. Cochran, G.M. Cox, Experimental Designs, Wiley, New

York, 1950.
[16] Oscar. Kempthorne, Design and Analysis of Experiments, Wiley, New

York, 1952.
[17] George W. Snedecor, W.G. Cochran, Statistical Methods, Iowa State

University Press, 1967.
[18] George E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for

Experimenters, Wiley, New York, 1978.
[19] Douglas C. Montgomery, Design and Analysis of Experiments, 4th

edition., Wiley, New York, 2004.
[20] Raghu N. Kackar, Off-line quality control, parameter design and the

Taguchi method, Journal of Quality Technology 17 (1985) 176–209.
[21] M.S. Phadke, Quality Engineering using Robust Design, Prentice Hall,

Englewood Cliffs New Jersey, 1989.
[22] Shinobu Sato, H. Shimokawa, Methods for setting software test

parameters using the design of experiments method (in Japanese),
in: Proceedings of 4th Symposium on Quality Control in Software,
Japanese Union of Scientists and Engineers (JUSE), 1984, pp. 1–8.

[23] Hiroki Shimokawa, Method of generating software test cases using
the experimental design (in Japanese), in: Report on Software
Engineering SIG, Information Processing Society of Japan, No.1984-
SE-040, 1985.

[24] Keizo Tatsumi, S. Watanabe, Y. Takeuchi, H. Shimokawa, Conceptual
support for test case design, in: Proceedings of 11th IEEE Computer
Software and Applications Conference, 1987, pp. 285–290.

[25] R. Brownlie, J. Prowse, M.S. Phadke, Robust testing of AT&T PMX/
Starmail using OATS, AT&T Technical Journal 71 (1992) 41–47.

[26] George B. Sherwood, Effective testing of factor combinations, in:
Proceedings of 3rd International Conference on Software Testing,
Analysis and, Review, 1994, pp. 151–166.

[27] Neil J.A. Sloane, Covering arrays and intersecting codes, Journal of
Combinatorial Designs 1 (1993) 51–63.

[28] Alfred. Renyi, Foundations of Probability, Wiley, New York, 1971.
[29] Daniel J. Kleitman, J. Spencer, Families of k-independent sets,

Discrete Mathematics 6 (1973) 255–262.
[30] G. Roux, K–propriétés dans les tableaux de n colonnes: cas
particulier de la k–surjectivité et de la k–permutivité Unpublished
PhD dissertation, University of Paris, 1987.

[31] James F. Lawrence, R.N. Kacker, Yu Lei, D.R. Kuhn, M. Forbes, A
survey of binary covering arrays, The Electronic Journal of
Combinatorics 18 (2011) P84.

[32] Jose. Torres-Jimenez, E. Rodriguez-Tello, New bounds for binary
covering arrays using simulated annealing, Information Sciences 185
(2012) 137–152.

[33] K.A. Bush, Orthogonal arrays of index unity, Annals of Mathematical
Statistics 23 (1952) 426–434.

[34] Alan Hartman, Software and hardware testing using combinatorial
covering suites, in: M.C. Golumbic, I.B. Hartman (Eds.), Graph
Theory, Combinatorics, and Algorithms: Interdisciplinary
Applications, Springer, 2005, pp. 237–266.

[35] Myra B. Cohen, P.B. Gibbons, W.B. Mugridge, C.J. Colbourn,
Constructing test suites for interaction testing, in: Proceedings of
25th IEEE International Conference on, Software Engineering, 2003,
pp. 38–49.

[36] Charles J. Colbourn, Combinatorial aspects of covering arrays, Le
Matematiche Catania 59 (2004) 125–172.

[37] K. Nurmela, Upper bounds for covering arrays by tabu search,
Discrete Applied Mathematics 138 (2004) 143–152.

[38] Myra B. Cohen, C.J. Colbourn, A.C.H. Ling, Constructing strength three
covering arrays with augmented annealing, Discrete Mathematics
308 (2008) 2709–2722.

[39] Yu Lei, K.C. Tai, In-parameter order: a test generation strategy for
pairwise testing, in: Proceedings of 3rd IEEE High Assurance Systems
Engineering Symposium, 1998, pp. 254–261.

[40] Yu Lei, K.C. Tai, A test generation strategy for pairwise testing, in:
Technical Report TR-2001003, Department of Computer Science,
North Carolina State University, 2001.

[41] K.C. Tai, Yu. Lei, A test generation strategy for pairwise testing, IEEE
Transactions on Software Engineering 28 (2002) 109–111.

[42] Yu Lei, R.N. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a general
strategy for t-way software testing, in: Proceedings of 14th Annual
IEEE International Conference on the Engineering of Computer-
based Systems, 2007, pp. 549–556.

[43] Yu Lei, R.N. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG/IPOG-D:
efficient test generation for multi-way combinatorial testing,
Software Testing Verification and Reliability 18 (2008) 125–
148.

[44] Michael Forbes, J. Lawrence, Yu Lei, R.N. Kacker, D.R. Kuhn, Refining
the in-parameter-order strategy for constructing covering arrays,
Journal of Research of NIST 113 (2008) 287–297.

[45] George B. Sherwood, S.S. Martirosyan, C.J. Colbourn, Covering arrays
of higher strength from permutation vectors, Journal of
Combinatorial Designs 14 (2006) 202–213.

[46] Robert A. Walker II, C.J. Colbourn, Tabu search for covering arrays
using permutation vectors, Journal of Statistical Planning and
Inference 139 (2009) 69–80.

[47] Charles J. Colbourn, <http://www.public.asu.edu/~ccolbou/src/
tabby/catable.html>.

[48] Michael Forbes, <http://math.nist.gov/coveringarrays/>.
[49] K. Nurmela, <http://www.tcs.hut.fi/~kjnu/covarr.html>.
[50] Jose Torres-Jimenez, <http://www.tamps.cinvestav.mx/~jtj/CA.php>.
[51] Siddhartha R. Dalal, C.L. Mallows, Factor-covering designs for testing

software, Technometrics 40 (1998) 234–243.
[52] David M. Cohen, S.R. Dalal, A. Kajla, G.C. Patton, The automatic

efficient test generator (AETG) system, in: Proceedings of 5th IEEE
International Symposium on Software, Reliability Engineering, 1994,
pp. 303–309.

[53] David M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, The combinatorial
design approach to automatic test generation, IEEE Software 13
(1996) 83–89.

[54] David M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, The AETG
system: an approach to testing based on combinatorial design, IEEE
Transactions on Software Engineering 23 (1997) 437–444.

[55] Jacek Czerwonka, <http://www.pairwise.org/>.
[56] Dolores R. Wallace, D.R. Kuhn, Failure modes in medical device

software: an analysis of 15 years of recall data, International
Journal of Reliability, Quality and Safety Engineering 8 (2001)
351–371.

[57] D. Richard Kuhn, M.J. Reilly, An investigation of the applicability of
design of experiments to software testing, in: Proceedings of 27th
NASA/IEEE Software Engineering Workshop, Goddard Space Flight
Center, 2002, pp. 91–95.

[58] D. Richard Kuhn, D.R. Wallace, A.J. Gallo Jr., Software fault
interactions and implications for software testing, IEEE
Transactions on Software Engineering 30 (2004) 418–421.

http://www2.research.att.com/~njas/oadir/
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://math.nist.gov/coveringarrays/
http://www.tcs.hut.fi/~kjnu/covarr.html
http://www.tamps.cinvestav.mx/~jtj/CA.php
http://www.pairwise.org/


3752 R.N. Kacker et al. / Measurement 46 (2013) 3745–3752
[59] George B. Finelli, NASA software failure characterization
experiments, Reliability Engineering & System Safety 32 (1991)
155–169.

[60] Kera Z. Bell, M.A. Vouk, On effectiveness of pairwise methodology for
testing network-centric software, in: Proceedings of 3rd ITI
International Conference on Information & Communications
Technology, 2005, pp. 221–235.

[61] Kera Z. Bell, Optimizing effectiveness and efficiency of Software
testing: a hybrid approach, Unpublished PhD dissertation, North
Carolina State University, 2006.

[62] Zhiqiang Zhang, Xiaojian Liu, Jian Zhang, Combinatorial Testing on
ID3v2 Tags of MP3 Files, in: Proceedings of 5th IEEE International
Conference on Software Testing, Verification and Validation,
Workshop on Combinatorial Testing, 2012, pp. 587–590.

[63] Laleh S.G. Ghandehari, Yu lei, Tao Xie, D.R. Kuhn, R.N. Kacker,
Identifying failure-inducing combinations in a combinatorial test
set, in: Proceedings of 5th IEEE International Conference on Software
Testing, Verification and Validation, 2012, pp. 370–379.

[64] D. Richard Kuhn, <http://csrc.nist.gov/groups/SNS/acts/index.html>.
[65] George B. Sherwood, Getting the Most from Pairwise Testing, A

Guide for Practicing Software Engineers, Testcover.com, Colts Neck
New Jersey, 2011.

[66] Yu Lei, R. Carver, R.N. Kacker, D. Kung, ‘‘A combinatorial strategy for
testing concurrent programs’’ Journal of Software Testing,
Verification and Reliability 17 (2007) 207–225.

[67] Wenhua Wang, S. Sampath, Yu Lei, R.N. Kacker, An interaction-based
test sequence generation approach for testing web applications, in:
Proceedings of 11th IEEE International Conference on High
Assurance, Systems Engineering, 2008, pp. 209–218.

[68] Vincent C. Hu, D.R. Kuhn, Tao Xie, Property verification for generic
access control models, in: Proceedings of IEEE/IFIP International
Symposium on Trust, Security and Privacy for Pervasive
Applications, 2008, pp. 243–250.

[69] Wenhua Wang, Yu Lei, S. Sampath, R.N. Kacker, D.R. Kuhn, J.
Lawrence, A combinatorial approach to building navigation graphs
for dynamic web applications, in: Proceedings of 25th IEEE
International Conference on Software, Maintenance, 2009, pp.
211–220.

[70] Björn Johnasson, R.N. Kacker, R. Kessel, C. McLean, R. Sriram,
Utilizing combinatorial testing to detect interactions and optimize
a discrete event simulation model for sustainable manufacturing, in:
Proceedings of ASME International Design Engineering Technical
Conferences & Computers and Information in, Engineering
Conference, DETC2009-86522, 2009.

[71] Joshua R. Maximoff, M.D. Trela, D.R. Kuhn, R.N. Kacker, A method for
analyzing system state-space coverage within a t-wise testing
framework, in: Proceedings of 4th Annual IEEE Systems
Conference, 2010, pp. 598–603.

[72] D. Richard Kuhn, R.N. Kacker, Yu Lei, Random vs. combinatorial
methods for discrete event simulation of a grid computer network,
in: Proceedings of Modeling and Simulation, World, 2009, pp. 83–88.

[73] Wenhua Wang, Yu Lei, D. Liu, D. Kung, C. Csallner, D. Zhang, R.N.
Kacker, D.R. Kuhn, A combinatorial approach to detecting buffer
overflow vulnerabilities, in: Proceedings of 41st Annual IEEE/IFIP
International Conference on Dependable Systems and, Networks,
2011, pp. 269–278.

[74] Carmelo Montanez-Rivera, D.R. Kuhn, M. Brady, R.M. Rivello, J.
Reyes, M.K. Powers, Evaluation of fault detection effectiveness for
combinatorial and exhaustive selection of discretized test inputs,
ASQ Software Quality Professional 14 (2012) 32–38.

[75] D. Richard Kuhn, J.M. Higdon, J. Lawrence, R.N. Kacker, Yu Lei,
Combinatorial methods for event sequence testing, in: Proceedings
of 5th IEEE International Conference on Software Testing,
Verification and Validation, Workshop on Combinatorial Testing,
2012, pp. 601–609.

[76] Sreedevi Sampath, R.C. Bryce, G. Viswanath, V. Kandimalla, A.G.
Koru, Prioritizing user-session-based test cases for web applications
testing, in: Proceedings of 1st IEEE International Conference on
Software Testing, Verification and Validation, 2008, pp. 141–150.

[77] D. Richard Kuhn, R.N. Kacker, Yu Lei, Practical Combinatorial Testing,
NIST Special Publication 800-142, 2010 <http://csrc.nist.gov/groups/
SNS/acts/documents/SP800-142-101006.pdf>.

http://csrc.nist.gov/groups/SNS/acts/index.html
http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf

	Combinatorial testing for software: An adaptation of design of experiments
	1 Introduction
	2 Use of orthogonal arrays for design of experiments and software testing
	3 Pairwise (2-way) testing using covering arrays
	4 Combinatorial (t-way) testing with support of constraints
	5 Summary
	Disclaimer
	Acknowledgments
	References


