
PHYSICAL REVIEW A 86, 012701 (2012)

Propagation of vortex electron wave functions in a magnetic field
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The physics of coherent beams of photons carrying axial orbital angular momentum (OAM) is well understood,
and such beams, sometimes known as vortex beams, have found applications in optics and microscopy. Recently
electron beams carrying very large values of axial OAM have been generated. In the absence of coupling to an
external electromagnetic field, the propagation of such vortex electron beams is virtually identical mathematically
to that of vortex photon beams propagating in a medium with a homogeneous index of refraction. But when
coupled to an external electromagnetic field, the propagation of vortex electron beams is distinctly different from
photons. Here we use the exact path integral solution to Schrodinger’s equation to examine the time evolution
of an electron wave function carrying axial OAM. Interestingly we find that the nonzero OAM wave function
can be obtained from the zero OAM wave function, in the case considered here, simply by multipling it by an
appropriate time and position dependent prefactor. Hence adding OAM and propagating it can in this case be
replaced by first propagating then adding OAM. Also, the results shown provide an explicit illustration of the
fact that the gyromagnetic ratio for OAM is unity. We also propose a novel version of the Bohm-Aharonov effect
using vortex electron beams.
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I. INTRODUCTION

Coherent beams of photons carrying axial orbital angular
momentum (OAM), sometimes referred to as vortex beams,
are well understood [1–3] and have various uses in optics
and microscopy [4–7]. Recently electron beams carrying
very high amounts of axial OAM have been generated [8]
and the properties of such beams have been studied [9–12].
Mathematically the propagation of a vortex photon beam in a
medium with a homogeneous index of refraction is virtually
identical to that of a freely propagating vortex electron beam.
This is obviously not the case when the electrons are propa-
gating in an external electromagnetic field. Here we use the
exact path integral solution to the full Hamiltonian, not
the weak field approximation, to examine how an electron
wave function carrying axial OAM evolves in time. We find
that the propagation of a wave function carrying nonzero
axial OAM is equivalent to the propagation of a zero OAM
wave function multiplied by an appropriate position and time
dependent prefactor. Also, the results provide an explicit
illustration of the fact that the (nonradiatively corrected)
gyromagnetic ratio for OAM is unity as it must be [12]. We will
see that from a practical point of view this means that the OAM
vector rotates at half the rate of the electron that circulates in a
magnetic field, i.e., at half the cyclotron or Landau frequency.

The paper is organized as follows: Sec. II discusses the
path integral solution for the (nonrelativistic) propagation of
the electron wave function in a magnetic field. Section III uses
the path integral solution to study how a vortex electron beam,
actually a wave packet, evolves in a magnetic field and shows
explicitly that the gyromagnetic ratio for OAM is unity.

*gregg.gallatin@nist.gov

II. PATH INTEGRAL SOLUTION FOR PROPAGATION
IN A MAGNETIC FIELD

One of the major early successes of the Dirac equation
was that it automatically yielded (nonradiatively corrected)
values for the gyromagnetic ratios of the orbital and spin
angular momentum of an electron which matched experiment.
Squaring the Dirac equation and extracting the nonrelativistic

behavior yields an interaction term of the form �B · (
→
L + 2

→
S ),

where �B is a constant magnetic field,
→
L is the orbital

angular momentum(OAM) operator, and
→
S is the spin angular

momentum operator of the electron [13]. Thus OAM couples

to the magnetic field as �B ·
→
L, whereas the spin angular mo-

mentum couples as 2 �B ·
→
S ; thus the (nonradiatively corrected)

gyromagnetic ratio for OAM is gL = 1, whereas for spin
angular momentum it is gS = 2. This difference has the effect
that whereas the spin of an electron projected in the direction
of propagation, i.e., its helicity, remains tangent to the electron
trajectory as it rotates in a magnetic field, but any axial OAM
carried by the wave function does not; it will (up to radiative
corrections) rotate at half the rate of the spin. It should be
noted that gL = 1 is a property of the Hamiltonian and not
of the wave function and so must hold for all wave functions,
even vortex wave functions. In spite of this it is still interesting
and useful to show explicitly how the phase and amplitude
of the wave function vary with time in order to achieve
this.

We are interested in OAM and not spin, and so we consider
the spinless Schrodinger equation

ih̄∂t |ψ,t〉 = H|ψ,t〉, (1)
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with ∂t ≡ ∂/∂t. Here the Hamiltonian operator H is given by

H = [
→
P − e �A(

→
R)]2/2m, (2)

with �P the momentum operator, �R the position operator,
and �A(�x) the magnetic vector potential. In the position
representation 〈�x|ψ,t〉 = ψ(�x,t), to first order in the magnetic
field, i.e., in the so-called “weak field approximation,” this
becomes

(ih̄2m∂t + h̄2�∂2 + e �B · �L)ψ(�x,t) = 0, (3)

with �L = −ih̄εijkx̂ixj ∂k , where x̂i is the unit vector in the i

direction and ∂i ≡ ∂/∂xi . Unless otherwise stated the Einstein
summation convention wherein repeated indices, i,j, . . . , are
summed over the appropriate range will be used throughout.

Here we use the full Hamiltonian, (2), and not the weak
field approximation, and so we need to solve

ih̄∂tψ(�x,t) = 1

2m
[−ih̄�∂ − e �A(�x)]2ψ(�x,t) (4)

for a constant magnetic field.
Because (4) is linear and first order in the time derivative,

the solution can be written in the form

ψ(�x,t) =
∫

d3x ′K(�x,t,�x ′,t ′)ψ(�x ′,t ′), (5)

where K(�x,t,�x ′,t ′) is the so called “propagator” and the
integral is nominally over all space. In addition, the fact that
(4) is first order in time allows the propagator to be written as
a path integral [13–15], i.e.,

K(�x,t,�x ′,t ′) =
∫ (�x,t)

(�x ′,t ′)
δ�x(t) exp

[
i

h̄

∫ tb

ta

dtL(�x(t),∂t �x(t),t)
]
.

(6)

Here L(�x(t),∂t �x(t),t) is the classical Lagrangian correspond-
ing to the quantum Hamiltonian (2), and the integral is over all
paths or trajectories which go from �x ′ at time t ′ to �x at time t.

The Lagrangian corresponding to (2) has the form

L(�x(t),∂t �x(t),t) = 1
2m[∂t �x(t)]2 − e �A(�x(t),t) · ∂t �x(t), (7)

where �A is the vector potential with the magnetic field
�B = �∂ × �A. For a constant �B field pointing in the 3 or
z direction, we can choose A1 = − 1

2Bx2,A2 = 1
2Bx1, and

A3 = 0 or equivalently Ax = − 1
2By,Ay = 1

2Bx, and Az = 0.

This gives

L(�x(t),∂t �x(t)) = m

2
[∂t �x(t)]2 + eB

2
εij xi∂txj (t), (8)

where the subscripts i,j are summed over the range 1,2
corresponding to the x and y directions, and εij is defined
by ε12 = −ε21 = 1 and ε11 = ε22 = 0. It should be noted that
the Lagrangian in Eqs. (7) and (8) is the full Lagrangian, not
the weak field approximation. This can be seen simply by
calculating the corresponding classical Hamiltonian which is
H = ( �p − e �A)2/2m with �p = m∂tx(t).

The solution for the propagator with this Lagrangian is
straightforward [14,15]; indeed it’s given as a problem in
Feynman et al.’s book [16]. Transform to a rotating frame

in the x,y or 1,2 plane by writing

xi = exp

[
eBt

2m
ε

]
ij

Xj ⇒
(

x1

x2

)

=
(

cos
[

eBt
2m

]
sin

[
eBt
2m

]
−sin

[
eBt
2m

]
cos

[
eBt
2m

]
)(

X1

X2

)
, (9)

where the matrix ε has elements εij . In terms of the new
variables the Lagrangian corresponds to free propagation in
the z direction and a harmonic oscillator in the Xi, i = 1,2,
directions with radian frequency eB/2m. The path integral
solutions for free propagation and for a harmonic oscillator
are well known [14,15]. Using these results and transforming
back to the nonrotating coordinates, we get

K(�x,t,�x ′,t ′)

=
(

m

2πih̄T

)3/2 ω
2 T

sin
[

ω
2 T

] exp

[
i

2h̄

m(z − z′)2

T

+ mω

2
cot

[
ω

2
T

]
(xi − x ′

i)
2 + mωεijxix

′
j

]
, (10)

with

ω = eB

m
, (11)

which is the standard cyclotron frequency [15] and T ≡ t − t ′.
In Eq. (10) the combination ωT always occurs divided by 2,
and so we should expect various aspects of the wave function
to evolve at half the rate at which the electron circulates in the
magnetic field.

Note that in the limit as ω → 0 the propagator in Eq. (10)
reduces to the free propagator

Kfree(�r − �r ′,t − t ′)

=
(

m

2πih̄(t − t ′)

)3/2

exp

[
im

2h̄

(xi − x ′
i)

2

t − t ′

]
, (12)

which is explicitly space and time translation invariant as it
should be.

III. EVOLUTION OF A GAUSSIAN WAVE FUNCTION
WITH AND WITHOUT OAM

The propagator given in Eq. (10) is Gaussian in form, and
so if we choose a Gaussian for the wave function at t ′ = 0, it
will remain Gaussian. Also, in this case the integral in Eq. (5)
can be evaluated analytically.

First consider propagation perpendicular to the magnetic
field. In this case let the initial normalized wave function be a
Gaussian centered at the origin and propagating in the x2 = y

direction:

ψ0(�r,0) = 1√
πσ 2

√
πL2

exp

[
−x2 + z2

2σ 2
− y2

2L2
+ i

h̄
py

]
,

(13)
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where we have switched from the xi notation to the more
convenient at this stage x,y,z notation with �r = xx̂ + yŷ + zẑ.
This wave function is roughly σ in width in the x and z

directions and has length L in the y direction. If we specify
the values of ω and the radius R of the classical orbit of the
electron, then p = mωR. If we take σ and L to be much
larger than the nominal de Broglie wavelength of 2πh̄/p,
then we expect mininal “diffraction” effects to occur during
propagation and as shown explicitly below this is exactly
the case. This initial wave function has zero OAM about it’s
direction of propagation, the y direction, since

Lyψ0(�r,0) = ih̄(x∂z − z∂x)ψ0(�r,0) = 0. (14)

To generate axial OAM we use the so-called ladder operator
approach [17] which works as follows. Consider an operator
A with eigenstate |a〉 such that A|a〉 = a|a〉. We now want to
generate a state |a + 1〉 such that A|a + 1〉 = (a + 1)|a + 1〉.
To do this we only need to find an operator B such that
[A,B] = B, since then AB|a〉 = B|a〉 + BA|a〉 = (a + 1)B|a〉
and so the state B|a〉 = |a + 1〉, up to normalization and phase

factors. Noting that

[Ly/h̄,(∂x − i∂z)] = [i(x∂z − z∂x),(∂x − i∂z)] = (∂x − i∂z),

(15)

it follows that a state with one unit of axial OAM, ψ1(�r,0), is
given (up to normalization and phase factors) by

ψ1(�r,0) = (∂x − i∂z)ψ0(�r,0)

= 1

σ 2
(−x + iz)ψ0(�r,0) = 1

σ 2
ρeiθψ0(�r,0). (16)

Here ρ = √
x2 + z2 and θ increases in the counterclockwise

direction when looking in the −y direction and is measured
from the −x axis. Using the fact that i(x∂z − z∂x) = −i∂θ , we
immediately see that Lyψ1 = h̄ψ1 and so ψ1 carries one unit
of axial OAM. The factor of ρ, which appears automatically,
is necessary since at ρ = 0 (=the y axis in this case), the phase
exp[iθ ] is not defined, and the wave function must vanish there.
Note that operating on a Gaussian with powers of (∂x ± i∂z)
yields the Laguerre-Gaussian functions [18].

Substituting ψ0(�r,0) into (5) and using (10) gives

ψ0(�r,t) = N

∫
d3r ′ exp

[
im

2h̄t
(z − z′)2 + imω

4h̄
cot

[
ωt

2

]
[(x − x ′)2 + (y − y ′)2]

+ imω

2h̄
(xy ′ − yx ′) − 1

2σ 2
(x ′2 + z′2) − 1

2L2
y ′2 + imωR

h̄
y ′

]

= N exp

[
im

2h̄t
z2 + imω

4h̄
cot

[
ωt

2

]
(x2 + y2)

] ∫
d3r ′ exp

[
αxx

′ + αyy
′ + αzz

′ − 1

2βx

x ′2 − 1

2βy

y ′2 − 1

2βz

z′2
]

= N exp

[
im

2h̄t
z2 + imω

4h̄
cot

[
ωt

2

]
(x2 + y2)

]√
(2π )3βxβyβz exp

[
1

2
βxα

2
x + 1

2
βyα

2
y + 1

2
βzα

2
z

]
, (17)

where

N =
(

m

2πih̄t

)3/2 ωt
2

sin
[

ωt
2

] 1√
πσ 2

√
πL2

, αx = − imω

2h̄
cot

[
ωt

2

]
x − imω

2h̄
y, αy = − imω

2h̄
cot

[
ωt

2

]
y + imω

2h̄
x + imωR

h̄
,

αz = − im

h̄t
z, βx =

(
1

σ 2
− imω

2h̄
cot

[
ωt

2

])−1

, βy =
(

1

L2
− imω

2h̄
cot

[
ωt

2

])−1

, βz =
(

1

σ 2
− im

h̄t

)
. (18)

To propagate ψ1 we can write

ψ1(�r,t) = N

∫
d3r ′K(�r,t,�r ′,0)(∂x ′ − i∂z)ψ0(�r ′,0) = N

σ 2

∫
d3r ′K(�r,t,�r ′,0)(−x ′ + iz′)ψ0(�r ′,0)

= N

σ 2
∂λ

∫
d3r ′K(�r,t,�r ′,0) exp[λ(−x ′ + iz′)]ψ0(�r ′,0)|λ=0. (19)

The integral is still Gaussian and can be evaluated as above by letting αx → αx − λ and αz → αz + iλ in Eq. (17). Taking the
derivative with respect to λ and setting λ = 0 then yields

ψ1(�r,t) = N

σ 2
exp

{
im

2h̄t
z2 + imω

4h̄
cot

[
ωt

2

]
(x2 + y2)

}√
(2π )3βxβyβz(−βxαx + iβzαz) exp

[
1

2
βxα

2
x + 1

2
βyα

2
y + 1

2
βzα

2
z

]

= (−βxαx + iβzαz)
1

σ 2
ψ0(�r,t), (20)

with αx,βx, . . . the same as in Eq. (18).
Even though both these analytic solutions can be manipulated into somewhat more convenient forms, this is not very

illuminating, and so we will simply plot these solutions for a set of conditions which nicely illustrate the relevant aspects of their
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time evolution. On the other hand it is worthwhile to examine the factor (−βxαx + iβzαz) to get a better understanding of how it
evolves and controls the orientation of the OAM. Substituting from above we find, after some algebra,

f (�r,t) ≡ −βxαx + iβzαz = cos
[

ωt
2

]
x + sin

[
ωt
2

]
y(

sin
[

ωt
2

]
2h̄

imωσ 2 − cos
[

ωt
2

]) + i
z(

1 − h̄t
imσ 2

) . (21)

We see that f (�r,0) = −x + iz at t = 0, as it should, and that it rotates in time in the xy plane at a radian frequency of ω/2. The
origin of this factor is obvious. In operator notation, ignoring the 1/σ 2, (16) becomes

|ψ1〉 = (−X + iZ)|ψ0〉. (22)

The time evolution is given by

e−iHt/h̄|ψ1〉 = e−iHt/h̄(−X + iZ)|ψ0〉 = [e−iHt/h̄(−X + iZ)e+iHt/h̄]e−iHt/h̄|ψ0〉 = f ( �R,t)e−iHt/h̄|ψ0〉, (23)

where H = [
→
P − e �A(

→
R)]2/2m is the quantum Hamiltonian

corresponding to the Lagrangian (8).
The position of the node of ψ1(�r,t) follows from the

solution to f (�r,t) = 0. At t = 0 this is the y axis as shown
above. For arbitrary t we have the solution

y = −cot

[
ωt

2

]
x, z = 0. (24)

This solution is illustrated in Fig. 1 for several values of t .
This “nodal line” rotates only by π during one full period,
τ = 2π/ω, of the electron cyclotron orbit, and since this factor
is the origin of the OAM carried by ψ1, this shows explicitly
that the OAM rotates at half the cyclotron frequency, i.e.,
gL = 1. This also shows that the OAM is axially oriented only
at times t = nτ, with n = 0,1,2, . . . , and its direction switches
between being parallel and antiparallel to the direction of
propagation at each of these times.

Note that ψ0(�r,t) and ψ1(�r,t) are not simply propagat-
ing Gaussian envelope functions multiplied by a propagat-
ing plane wave factor of the form exp[i �p · �r/h̄ − iEt/h̄]
with | �p| constant (but rotating at radian frequency ω) and

FIG. 1. (Color online) The graph shows the nodal lines (dashed)
at different positions in the electron orbit. The OAM lies along the
nodal lines, and thus rotates at ω = eB/2m which is half the cyclotron
frequency.

E = | �p|2/2m. For both wave functions the de Broglie wave-
length varies in time. This is to be expected since the
coupling to the vector potential contributes an extra phase, the
so-called “Dirac phase” [19] to the wave function of the form
−i/h̄

∫ t

0 dt �A(�r) · ∂t �r(t) which varies with position in generally
a nonlinear fashion. Figures 2 and 3 show slices of the modulus
squared and the real parts of ψ0 and ψ1 in the xy plane at
different positions in the orbit. The values chosen for σ,L,ω,
and R are such that the size of the wave packet at t = 0 (L in
the y direction and σ in the x direction) is both much larger

FIG. 2. (Color online) Slices in the xy plane of |ψ0|2 and Re[ψ0]
at different positions around the cyclotron orbit where ψ0 is a
Gaussian wave packet carrying 0 axial orbital angular momentum
(OAM). The values chosen for the width σ and length L of the wave
packet, the cyclotron frequency ω = eB/m, and the radius of the
cyclotron orbit R are such that the size of the wave packet at t = 0
(L in the y direction and σ in the x direction) is much larger than the
wavelength so that diffraction effects are minimal. All the plots are
the same fixed spatial scale with that of the Re[ψ0] plots being about
five orders of magnitude smaller than the |ψ0|2 plots so that the phase
of the wave packet is visible. At t = 0.5τ the wave packet would be
too small to be seen at this fixed spatial scale, and so it is shown at
times t = 0.4τ and t = 0.6τ instead.
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FIG. 3. (Color online) Slices in the xy plane of |ψ1|2 and Re[ψ1]
at different positions around the cyclotron orbit where ψ1 is a
Laguerre-Gaussian wave packet carrying one unit of axial orbital
angular momentum (OAM) oriented in the y direction at t = 0. The
values chosen for the width σ and length L of the wave packet, the
cyclotron frequency ω = eB/m, and the radius of the cyclotron orbit
R are the same as in Fig. 2, i.e., they are such that the size of the
wave packet at t = 0 (L in the y direction and σ in the x direction)
is much larger than the wavelength so that diffraction effects are
minimal. All the plots are the same fixed spatial scale with that of
the Re[ψ1] plots being about five orders of magnitude smaller than
the |ψ1|2 plots so that the phase of the wave packet is visible. At
t = 0.5τ the wave packet would be too small to be seen at this
fixed spatial scale, and so it is shown at times t = 0.4τ and t = 0.6τ

instead.

than the wavelength (so that diffraction effects are minimal)
and R is much larger than L. The actual ratios used for the
plots are R = 103L,L = 10σ , and σ 
 1052πh̄/mω; hence
the spatial range of the Re[ψ0] and Re[ψ1] plots is about five
orders of magnitude smaller than for the |ψ0|2 and |ψ2

1 | plots
so that the phase variation is visible.

In Fig. 2 we see that the long axis of the wave function
and the normals to the wavefronts of the wave function both
track the nodal line in Fig. 1. Hence the wave function is
rotating about its center of mass with the Larmor frequency
ω/2. As mentioned above, this is because ωT always occurs
as ωT/2 inside trigonometric functions in the propagator (10),
and so we should expect the periodicity of certain aspects
of the wave function to evolve at ω/2 rather than ω. The
spatial extent of the wave function varies with period τ , and
thus the length and width return, up to diffraction effects,
to their initial values at every t = τ,2τ,3τ, . . . . This periodic
variation in the spatial extent of the wave function can be traced
back to the fact that in the rotating frame the Lagrangian is
that of a harmonic oscillator. The free propagation part of the
Lagrangian, m(∂tx)2/2, causes the wave function to expand
or diffract as it propagates [20]. The harmonic oscillator part,
mω2 �x2/2, causes the wave function to contract, and unless
these two effects are precisely balanced the wave function will
oscillate in size. This is exactly analogous to the propagation
of a paraxial Laguerre-Gaussian photon beam centered on the

z axis and propagating in the z direction in a medium with
an index of refraction of the form n(x,y) = n0 − c(x2 + y2),
i.e, a harmonic oscillator potential, such as that of a parabolic
graded index (GRIN) multimode fiber [21,22]. In the paraxial
approximation the propagator for the photon beam in this case
has the same Gaussian form as the propagator for the harmonic
oscillator. The quadratic variation of the index of refraction
will case the beam to focus or shrink in size as it propagates
whereas diffraction effects cause the beam to expand as it
propagates. If the beam is large, so that the focusing effect
dominates, then the beam will shrink in size as it propagates.
Eventually it shrinks to where the diffraction effect dominates
and it begins to expand. This process repeats itself causing the
beam to oscillate in size with a fixed period along its length.
These oscillations can be prevented if the size of the beam is
fine tuned so that the diffraction and focusing effects exactly
cancel [21,22].

Figure 3 shows the propagation of the wave function ψ1

carrying a single unit of OAM. The node in the center of the
wave function maintains its alignment on the nodal line during
each cycle. The spiral form of the phase of ψ1 is apparent in the
Re[ψ1] plots. Clearly the OAM is rotating at half the cyclotron
frequency ω. Note that this is also predicted by a semiclassical
model of the orbital magnetic moment of an electron vortex
wave function undergoing Larmor precession in an external
field. A free electron with quantized OAM Ly possesses an
associated magnetic dipole μ = gLμBLy/h̄, where μB is the
Bohr magneton [9]. With gL = 1, the state will precess at
Larmor frequency eB/2m, half the cyclotron frequency. We
thus find that the electron vortex beam helicity, defined as
�L · �p�| �p|, is not generally conserved in transverse magnetic
fields, which may have implications for the validity of
the model developed in Ref. [9]. The Larmor frequency of
the electron’s spin is, up to radiative corrections, equal to the
cyclotron frequency. Thus, after rotating by 2π, the spinor
component of the wave function has rotated approximately
by 2π , but the complex amplitude of the wave function has
rotated only by π

Although it might be possible to interpret the π phase
change of the OAM in one cycle as yet another case of Berry’s
geometric phase [23], it seems more natural to consider it as
a dynamic rather than a geometric effect. Indeed, the classical
equation for motion in the plane, m∂2

t xi = (eB/m)εij ∂txj with
i,j = 1,2, can be interpreted as a precession equation for both
the position vector xi and the momentum vector pi = m∂txi

with both vectors precessing at ω = eB/m. A complete cycle
is defined by the position and momentum vectors both rotating
by 2π , and hence the angular momentum will rotate only by
π in a complete cycle. Finally since we are doing a purely
nonrelativistic calculation, Thomas precession, which is the
first order, i.e., v/c, relativistic correction to the nonrelativistic
result, is not accounted for in our analysis.

Now consider propagation parallel to the magnetic field. In
this case we let

ψ0(�r,0) = 1√
πσ 2

√
πL2

exp

[
−x2 + y2

2σ 2
− z2

2L2
+ i

h̄
pz

]
(25)
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and

ψ0(�r,t) = N

∫
d3r ′ exp

[
im

2h̄t
(z − z′)2 + imω

4h̄
cot

[
ωt

2

]
[(x − x ′)2 + (y − y ′)2]

+ imω

2h̄
(xy ′ − yx ′) − 1

2σ 2
(x ′2 + y ′2) − 1

2L2
z′2 + ip

h̄
z′

]

= N exp

{
im

2h̄t
z2 + imω

4h̄
cot

[
ωt

2

]
(x2 + y2)

}∫
d3r ′ exp

[
αxx

′ + αyy
′ + αzz

′ − 1

2βρ

(x ′2 + y ′2) − 1

2βz

z′2
]

= N

√
(2π )3β2

ρβz exp

{[
imω

4h̄
cot

[
ωt

2

]
− 1

2
βρ

(
mω

2h̄ sin
[

ωt
2

])2]
(x2 + y2) − βz

(
m

h̄t

)2(
z − p

m
t

)2

+ im

2h̄t
z2

}
, (26)

where N is the same as in Eq. (18) but now

βρ =
(

1

σ 2
− imω

2h̄
cot

[
ωt

2

])−1

, βz =
(

1

L2
− im

h̄t

)
. (27)

Because ψ(�r,t) depends on x and y only in the combination
ρ2 = x2 + y2, it follows that the initial Gaussian wave function
chosen here does not pick up angular momentum as it
propagates along the magnetic field. In fact for propagation
parallel to the magnetic field, the axial OAM of an eigenstate
of Lz is conserved. This follows directly from

[Lz,H] = 0, (28)

where again H =[
→
P − e �A(

→
R)]2/2m and Ai= −B

2 εij Xj . In-

deed it can be shown that H = 1
2m

→
P

2

− eB
2m

Lz + e2B2

2m
(X2+Y2)

which obviously yields (28).

IV. CONCLUSION

Using the exact path integral solution for the propagator in
a constant magnetic field, we have derived the evolution of a
Laguerre-Gaussian electron vortex wave function and shown
explicitly that the (nonradiatively corrected) gyromagnetic
ratio gL for OAM is unity. This must be the case since gL is a
property of the Hamiltonian and not of the wave function. In a
transverse magnetic field, we find that the wave function rotates
180◦ in a full cyclotron orbit, and this corresponds to Larmor

precession of the electron vortex orbital magnetic moment
rotating at half the cyclotron frequency. We also find that the
wave function, with or without OAM, expands and contracts
along the cyclotron trajectory. In a longitudinal magnetic field,
we find that the axial OAM is conserved since Lz commutes
with the Hamiltonian.

The results presented above can also be extended to present
a novel version of the Aharonov-Bohm effect [24]. Consider
a long thin solenoid aligned along the z axis. Outside the
solenoid (far from the ends), �A varies as 1/ρ = 1/

√
x2 + y2

and so �B is zero outside. Inside the solenoid �A varies as ρ

and so �B is constant and nonzero, but a Laguerre-Gaussian
wave function carrying nonzero OAM propagating along the
z axis has a node at the position of the solenoid. In fact,
wave functions carrying large values of OAM have a very
large region around the z axis where the wave function
is effectively zero [8]. As in the standard Aharonov-Bohm
experiment [24] this is a case where there is no overlap between
the wave function and the magnetic field. The wave function
only overlaps with the magnetic vector potential. Hence the
presence of the solenoid will cause a change in how the wave
function propagates relative to the no solenoid case. This effect
will predominantly result in a change in the focus position of
the wave function. Experimental verification of this would
provide yet another example of the fact Aμ is the fundamental
quantity and not �E and �B.
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