PHYSICAL PROPERTIES OF ALTERNATIVES TO THE FULLY HALOGENATED CHLOROFLUOROCARBONS

Mark O. McLinden
Thermophysics Division
National Institute of Standards and Technology
Boulder, Colorado 80303

ABSTRACT

The properties of nine halogenated hydrocarbons are collected from a variety of sources, including unpublished data. These data are evaluated and correlated. Considered are the triple point, normal boiling point, and critical point parameters and the temperature dependence of the vapor pressure, saturated liquid density, solubility in water, and hydrolysis rates. The fluids, which are potential alternatives to the fully halogenated chlorofluorocarbons, are R125, R22, R134a, R152a, R124, R142b, R123 and R141b; also included is the solvent methyl chloroform.

KEY WORDS

correlation, critical parameters, density, hydrolysis, properties, refrigerants, solubility, vapor pressure

Contribution of the National Institute of Standards and Technology, not subject to copyright.

EXECUTIVE SUMMARY

This report is concerned with physical properties of possible alternatives to the fully halogenated chlorofluorcarbons (CFCs) used as refrigerants, solvents, and foam blowing agents. Specifically considered are the fixed points of the fluids (triple point and boiling point temperatures, and critical temperature, pressure, and density), vapor pressure, saturated liquid density, solubility in water, and hydrolysis rates. These properties directly or indirectly influence the fate of a chemical in the environment and also include the key thermophysical data necessary to estimate other properties. The fluids considered are hydrogen-containing halogenated methanes and ethanes. Included are R125, R22, R134a, R152a, R124, R142b, R123, R141b, and methyl chloroform.

A wide variety of data sources have been considered including published data, surveys and compilations of properties, and unpublished data provided by several of the companies which are members of the Alternative Fluorocarbon Environmental Assessment Study (AFEAS) consortium. These data have been compiled and evaluated. Recommended values are tabulated for the fluid fixed points. The temperature dependencies of vapor pressure, saturated liquid density and solubility in pure water are presented in terms of correlations and as a tabulation of values calculated from these correlations.

The data vary greatly in quality and reliability, and are sometimes conflicting. At least limited data were available for the fixed points, vapor pressure and liquid density of all of the compounds. The values presented here are felt to be reasonable, although the lack of documentation in many cases makes an objective assessment of accuracy impossible, and revisions will certainly be necessary as additional data become available. Identified as high priority needs are improved vapor pressure data for R124, R142b, and, especially, R141b, and improved liquid density data for R142b.

For solubility in water, the data were much more limited. Published, fully documented data were available only for R22. For the other fluids, unpublished data provided by the chemical manufacturers were used; again, while these data may be reliable, an assessment of their accuracy was not possible. The solubility information was correlated in terms of the Henry's law constant. The use of Henry's law in extrapolating from the saturation vapor pressure conditions employed in most of the measurements to the extremely low partial pressures that can be expected in the atmosphere is a source of uncertainty. For solubility in salt water, only data for R22 and methyl chloroform were found; an empirical "salting parameter" evaluated from data for these two fluids can be applied to the other fluids in the absence of data.

Finally, hydrolysis is considered. Hydrolysis represents one possible mechanism for the environmental decomposition of a compound dissolved in the oceans or in cloud water. The data for hydrolysis rates were quite sparse; except for R22 and methyl chloroform, recommended values could not be developed. In view of the very limited solubilities of these compounds, even the order of magnitude-type information that can be estimated or extrapolated from the available data may be sufficient to determine whether dissolution in water and subsequent hydrolysis is a significant destruction mechanism for these compounds. Thus, complete data on solubility and hydrolysis may be needed only for methyl chloroform. This point is considered in detail in a study by Wine and Chaemeides presented elsewhere in this volume.

INTRODUCTION

The physical properties of a fluid largely determine its suitability for use in a given application. The present study is concerned with properties of possible alternatives to the fully halogenated chlorofluorcarbons, a class of compounds widely used as working fluids (refrigerants) in refrigeration and airconditioning equipment, as solvents and foam blowing agents, and in a wide variety of other applications. As examples, the thermophysical properties such as enthalpy, the pressure-volume-temperature (PVT) behavior, and viscosity are necessary to predict the performance of a fluid in refrigeration equipment. The thermal conductivity of the blowing agent has a large effect on the insulating value of a foam. The normal boiling point is important for solvent uses.

This paper, as part of the larger Alternative Fluorocarbon Environmental Assessment Study (AFEAS), focuses on those properties that influence the environmental acceptability of alternative fluorocarbon fluids. Specifically considered are the fluid fixed point parameters (triple point, normal boiling point, and critical point parameters), vapor pressure, saturated liquid density, solubility in water, and hydrolysis rates. The environmental implications of the first five properties listed are indirect. These properties are, however, often required as inputs for various models and estimation techniques. two properties can directly affect the fate of a fluorocarbon once it is emitted to the environment. One possible mechanism for the removal of a fluorocarbon from the environment is its dissolution in the ocean or in water droplets in clouds and subsequent reaction of the fluorocarbon with water (hydrolysis). This paper addresses the basic data associated with this mechanism of decomposition in the environment; the effectiveness of this mechanism is assessed by Wine and Chaemeides [1].

The fluids to be considered in this report are the leading candidates to replace the fully halogenated CFCs such as R12 (CCl_2F_2) and R11 (CCl_3F). All are hydrogen-containing halogenated methanes and ethanes. The range of normal boiling points for these candidate fluids is similar to the range seen with the fully halogenated compounds.

In many cases, the fluids considered here have never been commercially produced and as a consequence, the data for many of them are sparse; thus, all possible sources of data have been utilized. These include the published literature (as revealed by a search of Chemical Abstracts and surveys such as that by Stewart, et al. [2]), compilations such as that by the Japanese Association of Refrigeration [3], unpublished data provided by several chemical manufacturers which are members of the AFEAS group, and, finally, experimental work in progress at the National Institute of Standards and Technology (NIST). Where available, preference is generally given to published over unpublished sources and to actual experimental values over information presented graphically or in terms of a correlation. The data differ greatly in quality and reliability and, as will be seen, are sometimes conflicting.

To be of maximum and immediate utility to the other AFEAS groups which may need to make use of this information, all data are fit with standard forms and presented primarily in terms of the resulting correlations. In this report a summary section containing coefficients to the correlations, etc. precedes a detailed discussion of the data themselves.

Fluid Fixed Points

The triple point, normal boiling point, and critical point parameters are fundamental characteristics of a fluid. The triple point is the state at which three phases (solid, liquid and vapor) coexist; it is virtually identical with the more often reported freezing point. The normal boiling point is simply the temperature at which the vapor pressure of a fluid is one standard atmosphere (101.325 kPa). Since the vapor pressures of nearly all fluids are approximately parallel when plotted as the logarithm of pressure versus inverse temperature, the normal boiling point is a rough predictor of the vapor pressure at all temperatures. The critical point is the state at which the properties of the saturated liquid and vapor become indistinguishable; coexisting liquid and vapor are possible only at temperatures and pressures below the critical point values.

These parameters, often in the absence of any other information, are frequently used in screening among many different compounds to select a more limited set for further study. For many applications they define the temperature limits for the use of a particular fluid. Clearly a solvent or refrigerant cannot be used below the triple point temperature. For many refrigeration applications, operation at sub-atmospheric pressures is avoided and, thus, the normal boiling point is a more practical lower limit. Vapor compression refrigeration equipment transports heat through condensation and evaporation (i.e. two-phase) processes and thus the critical point represents an upper temperature and pressure limit. The critical point parameters are the essential inputs to estimation techniques based on the law of corresponding states, which is the observation that, when scaled by the critical parameters, the properties of nearly all fluids are similar.

The triple point, normal boiling point, and critical point parameters are given in Table 1. (In this table, and all subsequent tables, the fluids are listed in order of increasing normal boiling point temperature.) The selection of these values is discussed in detail in the Discussion section.

Vapor Pressure

The experimental vapor pressure data were fit to the following equation, which is a modification of a form suggested by Goodwin & Haynes [4]:

$$\ln p = a_1/T + a_2 + a_3T + a_4(1 - T/T_c)^{1.5}$$
 (1)

where p is pressure, T is absolute temperature (kelvins) and $T_{\rm C}$ is the critical temperature. Theories for asymptotic critical behavior predict a value of approximately 1.9 for the exponent in the last term in Equation (1); a value of 1.5, however, was empirically found to yield a better fit over a wide temperature range for R134a and R123 (Weber [5]). The coefficients for each of the fluids considered, along with the temperature range of the data, are given in Table 2. Modest extrapolations outside this range should yield fairly accurate results. This table also gives the RMS deviations between Equation (1) and the input data. These RMS values serve as indications of the precision of the data and the agreement between different sources. Particularly for those

TABLE 1--Fluid Fixed Points

Fluid	Chemical formula	Mol. mass (g/mol)	Tr. Pt. temp. (K)		oiling Pt. .iq. den. (kg/m ³)	Crit temp. (K)		int density* (kg/m ³)
R125	CF ₃ CHF ₂	120.020	170.	224.6	1515.	339.4	3631.	571.5
R22	CHC1F2	86.468	113.	232.4	1409.	369.30	4990.	513.0
R134a	CF ₃ CH ₂ F	102.030	172.	247.1	1373.	374.21	4056.	515.3
R152a	CHF ₂ CH ₃	66.050	156.	249.0	1011.	386.44	4520.	368.0
R124	CHC1FCF3	136.475	74.	261.2	1472.	395.65	3640.	560.0
R142b	CH ₃ CClF ₂	100.495	142.	264.0	1193.	410.25	4246.	435.0
R123	CHCl ₂ CF ₃	152.930	166.	301.0	1456.	456.94	3674.	549.9
R141b	CH ₃ CCl ₂ F	116.950	170.	305.3	1216.	481.5	4540.	464.1
methyl chlr.	CH ₃ CCl ₃	133.405	243.	347.3	1250.	545.	4300.	470.0

^{*}Note: None of the critical densities are known to four significant figures; they are given to this level for consistency with Eqn (2).

fluids with only one data source, the method of computing RMS deviations cannot detect any systematic errors in the data, and thus RMS values provide little information on the accuracy of the data and the resulting correlation. In most cases the accuracy of the correlation cannot be stated because of insufficient documentation; this is considered in more detail in the Discussion section. The vapor pressures as functions of temperature are also tabulated along with the other properties in the Appendix.

Saturated Liquid Density

Liquid densities along the saturation line, ρ , were fit to the commonly used form:

$$\rho/\rho_{\rm c} = 1 + d_1 \tau^{\beta} + d_2 \tau^{2/3} + d_3 \tau + d_4 \tau^{4/3} \tag{2}$$

where r = (1 - T/T_c) and ρ_c is the critical density. The critical exponent, β , is properly evaluated from experimental measurements near the critical point. For most of the fluids considered here a value of 1/3 is assumed because of the lack of data. Equation (2) is well-grounded in theory, has the proper form over a wide range of temperature including the vicinity of the critical point, and is often used in the correlation of saturated liquid densities. The fit of density data to Equation (2) is summarized in Table 3. As with vapor pressure, the temperature range of the data and the RMS deviation are also given. The critical temperature and density required in Equation (2) may be found in Table 1.

Solubility in Water

The fluids considered in this report are all highly volatile (most have normal boiling points well below typical ambient temperatures) and thus their presence in the environment will be predominantly as-trace gases in the atmosphere. Atmospheric gases will, however, dissolve to some extent into the oceans and into water droplets in clouds. The magnitude of this solubility will influence the importance of hydrolysis as a degradation mechanism. The dissolution of trace gases into water is well-represented by Henry's law:

$$x_a = p_a/H_a \tag{3}$$

which states that the concentration of substance "a" dissolved in a solvent, x_a , is proportional to the partial pressure of substance "a" over the solution, p_a . Henry's law strictly applies only in the limit of x_a approaching zero but in practice holds very well for gas partial pressures up to a few hundred kPa and even higher for gases of low solubility (such as the fluorocarbons). The proportionality factor in Equation (3), H_a , is called the Henry's law constant. The units of H_a are pressure divided by a concentration (e.g. kPa/mass % or atm/ppm). The Henry's law constant is not constant but is a function of temperature which can be well represented by:

$$\ln (1/H_a) - h_1 + h_2/(T + h_3)$$
 (4)

Solubility data have been used to evaluate the coefficients in Equation 4; they are given in Table 4. Note that the term h3 is used only for R22. Equation 4

TABLE 2--Vapor Pressure

Fluid	Temp.	limits		Coefficients t	o Equation (1)		RMS
	10w (K)	high (K)	a ₁	a ₂ (p in kPa	a3 , T in K)	a 4	error (%)
R125	233.	Tc	-2678.571	16.63306	-0.001602304	1.390420	0.12
R22	223.	$T_{\mathbf{c}}$	-2907.443	17.05244	-0.001796055	2.204052	0.09
R134a	210.	$T_{\mathbf{c}}$	-3353.464	18.36056	-0.002908044	2.783663	0.19
R152a	273.	$T_{\mathbf{c}}$	-3110.511	17.02405	-0.001445740	2.105154	0.05
R124	222.	$T_{\mathbf{c}}$	-3471.946	18.16083	-0.002997217	2.703744	0.35
R142b	233.	369.	-3382.422	17.01384	-0.001012149	3.224924	0.30
R123	243.	T_{c}	-4060.080	18.20783	-0.002426370	3.164297	0.17
R141b	243.	475.	-4388.810	18.40668	-0.001808752	5.149630	2.20
methyl chlr.	295.	371.	-4809.873	17.93429	-0.001362322	4.617096	0.02

TABLE 3--Saturated Liquid Density

Fluid	Temp.	limits		Coefi	ficients to E	quation (2)		RMS
	low (K)	high (K)	β	d ₁	d ₂ (dimensionl	d3 ess)	d ₄	error (%)
R125	229.	Tc	1/3	1.642389	1.6539076	-1.729574	1.2250132	0.03
R22	210.	$T_{\mathbf{c}}$	1/3	1.887739	0.5985853	-0.071134	0.4032765	0.1
R134a	239.	Tc	0.34	1.723892	1.7176130	-2.269035	1.7074390	0.38
R152a	220.	Tc	0.338	2.000849	-0.0176269	1.374012	-0.5664321	0.21
R124	220.	390.	1/3	1.723120	1.2093710	-1.189464	1.0189435	0.15
R142b	213.	365.	1/3	-0.276715	10.1472750	-13.917142	7.1135587	0.37
R123	240.	T_{C}	1/3	1.898571	0.2369317	0.654672	-0.0736059	0.22
R141b	263.	432.	1/3	-0.298060	9.6097677	-13.651652	7.3068081	0.09
methyl chlr.	263.	333.	1/3	8.751564	-24.2030418	28.987334	-10.7700329	

has been used to calculate solubilities in water at the commonly referenced conditions of 298.15 K (25°C) and a fluorocarbon partial pressure of one standard atmosphere. (While this is an unrealistically large partial pressures for gases in the environment it is useful for comparisons between compounds.) For several of the fluids there was considerable disagreement (as much as a factor of two) in measured solubility from different sources; these are flagged by comments in Table 4.

At least limited solubility data were obtained (mostly from unpublished sources) for all of the compounds considered as part of AFEAS. For other fluids which may be of interest and for which data may not exist, the method of Irmann [6] (as reported by Lyman, et al. [7]) can be used to estimate the solubilities of the halogenated hydrocarbons. This method requires only the molecular structure and vapor pressure at 298.15 K (25°C) of the compound in question and yields the solubility in water at 298.15 K. The results of applying this estimation technique to the nine compounds considered here are given in Table 5. For most of the fluids the agreement is very good (within 15%), validating this method. The estimated values for R125 and R141b, however, differ by factors of two and five, respectively from the reported values. In view of the good agreement for the other fluids, this discrepancy casts some doubt on the reported values for R125 and certainly for R141b.

The above results are for solubilities in pure water. The solubilities in saline solutions can be represented by the following form reported by Lyman, et al. [7]:

$$\ln (x_a/x_{a,s}) = K_s C_s \tag{5}$$

where x_a is the solubility in pure water and $x_{a,s}$ is the solubility in a saline solution of concentration C_s . The term K_s is an empirical salting parameter. Values of K_s are positive, so solubilities in salt water are lower than those in pure water. For the compounds of interest here, data were found only for R22 and methyl chloroform. Zhang, et al. [8] report R22 solubilities in sodium chloride solutions over the temperature range 283-323 K. Their data confirm Equation (5) and can be used to compute values of K_s ranging from 0.0060 L/g at 283 K to 0.0082 L/g at 333 K. These correspond to solubilities in sea water which are 81-75% of those in pure water. Walraevens, et al. [9] report a salting parameter of 0.0073 L/g for methyl chloroform corresponding to a solubility in sea water which is 78% of that in pure water.

Limited data for the solubility of other fluorocarbons in salt solutions were also found. Data for R21 (CHCl₂F) (Downing [10]) and R114 (CClF₂CClF₂) (Stepakoff and Modica [11]) give values of K_S of 0.0061 and 0.029 L/g respectively; these correspond to solubilities in sea water which are 81 and 36% of those in pure water. This range for the ratio of sea water to pure water solubilities is similar to those observed with other classes of fluids (Lyman, et al. [7]). The polar, hydrogen-containing R22, R21, and methyl chloroform are better analogues to the full set of fluids considered here than the weakly polar, fully halogenated RP14. The effect of salt on the solubilities of the fluids considered in this report is, thus, probably closer to those observed with R22 and R21 than with R114. Considering the similarity of salting parameters for R22, R21, and methyl chloroform, a salting parameter of 0.007 L/g is recommended for the other fluids in the absence of data. This corresponds to a solubility in sea water which is 78% of that in pure water.

TABLE 4--Solubility in Water

Fluid	Temp. low (K)	limits high (K)	Coefficient h ₁ (H in mas	ts to Equat h ₂ ss%/kPa, T	h3	Solubility @101. kPa, 25°C (mass%)	Comments
R125	298.	333.	-22.88	4750.	0.0	0.097	
R22	283.	353.	-8.689	205.9	-225.1	0.29	
R134a	298.	353.	-15.35	2633.	0.0	0.15	
R152a	273.	348.	-13.60	2300.	0.0	0.29	
R124	313.	348.	-17.38	3229.	0.0	0.14	(1)
R142b	298.	353.	-15.11	2544.	0.0	0.14	
R123	297.	348.	-14.06	2570.	0.0	0.40	(2,3)
R141b	298.	311.	-24.61	5248.	0.0	0.071	(2,3)
methyl chloroform	273.	323.	-20.29	4655.	0.0	0.15	(3)

Comments

- (1) Solubility at 25°C is extrapolation of data.
- (2) Other sources give solubilities 41% lower to 129% higher than those listed here (see Discussion section).
- (3) Normal boiling point is greater than 25°C; values given at a partial pressure equal to the vapor pressure at 25°C.

TABLE 5--Comparison of Solubilities Evaluated from Data with Those Estimated by Method of Irmann

		ss%) @ 25°C · 101.325 kPa) estimated
R125	0.097	0.044
R22	0.29	0.31
R134a	0.15	0.13
R152a	0.29	0.29
R124	0.14	0.13
R142b	0.14	0.15
R123*	0.40	0.38
R141b*	0.071	0.39
methyl chloroform*	0.15	0.13

^{*}Normal boiling point is greater than 25°C; values given for a partial pressure equal to the vapor pressure at 25°C.

Hydrolysis Rates

Hydrolysis refers to the reaction of a compound in aqueous solution. For the fluorocarbons, two mechanisms are possible (Ellenrieder and Reinhard [12]). In nucleophilic substitution, or hydrolysis proper, the fluorocarbon reacts with water or the hydroxide ion (OH⁻) to form an alcohol plus an acid:

$$R-C-R'X + H_2O/OH^- --> R-C-R'OH + HX$$
 (6)

where X represents a halogen (F or Cl) and R and R' are nonreacting groups. In the second mechanism, known as elimination or dehydrohalogenation, water or hydroxide catalyzes the reaction to form an alkene plus acid:

$$R-CH-CR'X + H_2O/OH^- --> RC=CR' + H_2O/OH^- + HX$$
 (7)

In this work, the term "hydrolysis" will refer to the general reaction in aqueous solution; the terms "substitution" and "elimination" will be used when it is necessary to distinguish between the different mechanisms. A single-carbon compound (such as R22) can obviously undergo only the substitution process. Other mechanisms occur for the fully halogenated compounds (Downing [10]) but will not be considered here.

The elimination process becomes more important as the number of halogens in the molecule increases (Vogel, et al. [13]). Either process may be neutral (reaction primarily with water) or base-promoted (reaction primarily with hydroxyl). A third possibility, acid promotion by the hydronium ion, H^+ , does not occur (Mabey and Mill [14]).

The rate of reaction, expressed in terms of the disappearance of fluorocarbon, is proportional to the fluorocarbon concentration. Thus the solubility of the compound will have an influence on its reaction rates. For base-promoted processes, the reaction rate is also proportional to the hydroxyl concentration, which in turn is related to the pH. Where the neutral process dominates, the rate is independent of pH. For the general case of base-promoted and neutral processes occurring simultaneously, the reaction rate can be expressed as:

$$-d[RX]/dt - [RX](k_B[OH^-] + k_N)$$
 (8)

where square brackets denote a concentration in moles/liter, RX is the reacting fluorocarbon, and k_B and k_N are the rate constants for the base-promoted and neutral processes, respectively. Both k_B and k_N may be further broken down into additive contributions from the substitution and elimination mechanisms. Each of the rate constants are functions of temperature, typically expressed in terms of an Arrhenius expression:

$$k = A \exp(-E/RT)$$
 (9)

where E is the activation energy of the reaction and R is the gas constant.

The hydrolysis of a fluorocarbon is thus seen to be a rather complex process with several possible mechanisms. To fully describe the temperature and pH

dependence of a reaction requires up to eight parameters. To further complicate the situation, metals can catalyze hydrolysis and increase reaction rates by an order of magnitude or more (Downing [10]). The information located for the hydrolysis rates of the fluorocarbons considered here was limited.

Downing [10] gives information on both the temperature and pH dependence of R22 hydrolysis rates:

$$-d[R22]/dt = k[R22][OH^-]$$
 (10)

The temperature dependence of k is given by Equation (9) with:

$$A = 1.87 \times 10^8 \text{ L/(mol · s)}$$

-E/R = -7692. K

One must infer from Equation (10) that either the neutral and base-promoted processes have been lumped together into a single rate constant or that the former process is insignificant, i.e. $k_{\rm N}$ is small.

At a temperature of 298 K and a concentration of hydroxide of 1 x 10^{-7} mol/L (corresponding to pure water of pH = 7) the above expression yields an overall rate constant (i.e. $k_B[0H^-] + k_N$) of 1.15 x 10^{-10} s⁻¹; at an R22 concentration of 0.033 mol/L (the solubility of R22 at a partial pressure of 101.3 kPa) the corresponding hydrolysis rate is 3.8 x 10^{-12} mol/(L·s). This is in reasonable agreement with the value of 4.5 x 10^{-12} mol/(L·s) given by DuPont [15,16] at the same conditions.

Ellenreider and Reinhard [12] have developed an interactive, computerized data base for the calculation of hydrolysis rates as functions of temperature and pH. While this would be an ideal method of presenting hydrolysis data, of the compounds of interest here, only methyl chloroform is presently included in this data base. In the paper by Ellenreider and Reinhard, methyl chloroform is presented as an example. At 293 K in pure water (pH = 7) the rate constant for the substitution reaction is 8.1 x 10^{-9} s⁻¹ with the neutral process dominant by several orders of magnitude over the base-promoted process; for the elimination mechanism the rate constant is 2.0 x 10^{-9} s⁻¹ for the neutral process (no data are given for the base-promoted elimination process). The overall rate constant is 1.0×10^{-8} s⁻¹. For a concentration of 0.033 mol/L (the saturation concentration of methyl chloroform) the hydrolysis rate is 3.3×10^{-10} mol/(L·s). The temperature dependence is also given by Ellenreider and Reinhard. The overall rate constant can be expressed in terms of Equation (9) with:

$$A = 1.28 \times 10^{13} \text{ s}^{-1}$$

-E/R = -14244. K

This implies that the hydrolysis reaction is a factor of five faster at $303~\mathrm{K}$ than at a temperature of $293~\mathrm{K}$.

Perhaps a more convenient means of expressing the rate of a first order reaction is in terms of the half-life of the reacting species. The half-life is independent of reactant composition. Ellenreider and Reinhard report a half-

life of 0.96 year for methyl chloroform at 298 K and pH = 7. The hydrolysis rate constant for R22 yields a half-life of 191 years at the same conditions. Thus, there is a vast difference in the effectiveness of hydrolysis in breaking down a compound in the environment.

For R123, a hydrolysis rate approximately 4.3 times that for R22 for a test of 100 days at 328 K is reported in [15]. A series of 3-day tests at 358 K indicated that R141b is less stable than R123 but considerably more stable than methyl chloroform [16]. In these short-term test the amount of decomposition was less than 5 ppm for R123 and R141b and 0.006% for methly chloroform. "Stability" data of Allied [17], however, report that the production of acid from R123 in aqueous solution is 38% of that with R22. The Allied information also indicates that the acid production rates with R124 and R142b are, respectively, 1.35 and 1.65 times that observed with R22. The Allied data are for tests at 314 K and result from measurements of the decomposition of fluorocarbon over a period of three months. The differences in the DuPont and Allied results suggest caution in the use of any hydrolysis rate data.

The database of Ellenreider and Reinhard, along with a survey by Mabey and Mill [14], unfortunately, do not contain information on any of the other compounds of interest here. In general terms, chlorine is much more reactive than fluorine (Hine, et al. [18]) so the chlorine-free compounds (R125, R134a, R152a) will probably have lower hydrolysis rates than those reported for R22 or R123. The data for the relative reaction rates of R22, R142b, R124, R123, and R141b suggest that the hydrolysis rates for all of these chloro-flouro compounds will be of the same order of magnitude. Thus, for the nine fluids considered here, only methyl chloroform is likely to have a hydrolytic half-life on the order of a year; all the others will likely have half-lives on the order of a century or more.

DISCUSSION

R125

The data for R125 (pentafluoroethane) are limited. Two manufacturers [15,17] report a critical temperature of 339.4 K. Reference [15] also gives a freezing point temperature and critical density. None of these values are documented, but they are adopted here in the absence of any other data.

The saturated liquid density and vapor pressure data reported in [17] were selected over the single liquid density value and graphical presentation of vapor pressure given in [15] in fitting the coefficients to Equations (1) and (2). A comparison of these data with the correlations is presented in Figure 1. The critical pressure (reported in Table 1) was calculated by an extrapolation of Equation (1) to the critical temperature (an extrapolation of only 6.3 K) rather than the value of 3520. kPa reported in [15]. As with all the fluids in this report, the normal boiling point temperature reported in Table 1 is obtained by finding the temperature at which Equation (1) yields a pressure of one standard atmosphere (101.325 kPa).

The eight liquid densities reported in [17] were measured over the temperature range 228.7-336.3 K using glass flotation beads of known density. In this technique, the temperature of the fluid is adjusted so that the density of the fluid matches that of one of the beads. In another work by the same group (Wilson and Basu [19]), the accuracy of this method is claimed to be $0.2~{\rm kg/m^3}$. The values for R125 were apparently not corrected for the effects of temperature on the densities of the glass beads. Judging by other results by this method, these corrections should be less than $0.1~{\rm kg/m^3}$ for the temperature range of the measurements for R125. The excellent fit of Equation (2) to within 6 K of the critical temperature gives some credence to the critical density of DuPont used in the correlation.

The only information on solubility in water were coefficients to a correlation similar in form to Equation (4) reported by one of the chemical manufacturers [16]. The experimental technique was similar to that employed by Parmalee [20]. No data were given but an "experimental data range" of 298-333 K was indicated. These coefficients are reported in Table 4 after the appropriate conversion of units.

R22

The extensive body of data on R22 (chlorodifluoromethane) is summarized, evaluated, and correlated in the treatise by the Japanese Association of Refrigeration [3]. Although additional data have been measured since the publication of this work, the recommendations of the JAR were adopted here so that the limited time available for this project could be better expended on other fluids for which no such compilations exist.

The triple point and critical point values of the JAR are adopted here. The saturated-liquid densities were fit by the JAR based largely on the data of Zander [21] to the same form used here (Equation (2)) and thus the coefficients given in Table 3 are those reported by the JAR. This correlation is valid from 204 K to the critical temperature with an RMS deviation of approximately 0.1%.

The vapor pressure data of Kletskii [22], Kohlen [23], and Zander [21] were fit

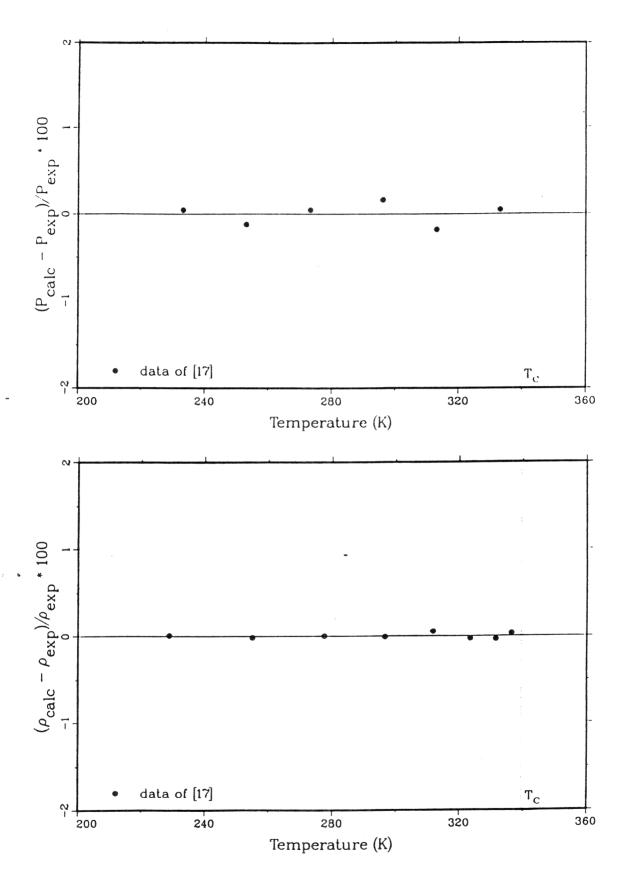


Figure 1--Comparison of correlations with data for R125; a) vapor pressure; b) saturated liquid density.

to Equation (1); the residuals are shown in Figure 2. The three lowest temperature (203.3-211.3 K) points of Zander and his point at 366.1 K were excluded from the fit. The high temperature point appeared to be anomalously high compared to the other data sets while the three low temperature points could not be fit without seriously affecting the correlation at higher temperatures. (In Figure 2 and all similar residual plots, points used in the correlation are shown as filled-in symbols; points excluded from the fit are shown as open symbols.)

R22 solubility data are reported by Parmelee [20]. Fourteen data points at three temperatures were measured with an estimated accuracy of 5% using a gas volumetric technique. Parmelee correlated his data to a form similar to Equation (4) and his coefficients are reported in Table 4 after the appropriate conversion of units.

R134a

Refrigerant 134a (1,1,1,2-tetrafluoroethane) has been the focus of considerable attention in the fluid property community recently, and considerable data have become available. The critical point has been measured by Kabata, et al. [24], Wilson and Basu [19], and Morrison [25]. Morrison's determination, carried out at NIST, is adopted here, although all three sets of critical parameters are in excellent agreement. Two manufacturers [15,26] report freezing temperatures of 172 K.

Two reliable sources of vapor pressure data are available; together they span the temperature range from 211.0 K to within 1 K of the critical temperature. Weber [5] measured 22 values with an estimated accuracy of 0.2 kPa. Wilson and Basu [19] report 32 values with an accuracy of 0.7-7. kPa (depending on the pressure). As shown in Figure 3, the two data sets are in excellent agreement over the temperature range of overlap. The correlation presented here is identical with that presented in McLinden, et al. [27]. Yamashita, et al. [28] have measured the vapor pressure of R134a at 25 temperatures from 253-371 K. Unfortunately, their paper does not give the experimental points. Saturated liquid densities have been reported by three independent groups. Wilson and Basu [19] report nine measurements over a fairly wide range of temperature (238.9-371.6 K) using the floating bead technique. Kabata, et al. [24] report six measurements in the vicinity of the critical point. Morrison [25] has measured 11 values from 268.2-368.2 K with a variable-volume, mercurydisplacement apparatus. These three data sets were used in fitting Equation (2); the residuals are shown in Figure 3. (Further measurements by Morrison using a vibrating tube densimeter were not available in time to include in this work.) The different data sets are in reasonable agreement, although differences of as much as 1.5% exist, especially near the critical point.

The solubility of R134a in water has been measured [16] at 298 and 353 K. These two points were read off their graphical presentation and used to fit the coefficients in Equation (4).

R152a

The primary source of data for R152a (1,1-difluoroethane) was the work of Higashi, et al. [29]. Their critical point determination is consistent with the earlier determination by Mears, et al. [30], which is the basis of the critical parameters listed on many manufacturer's data sheets. The

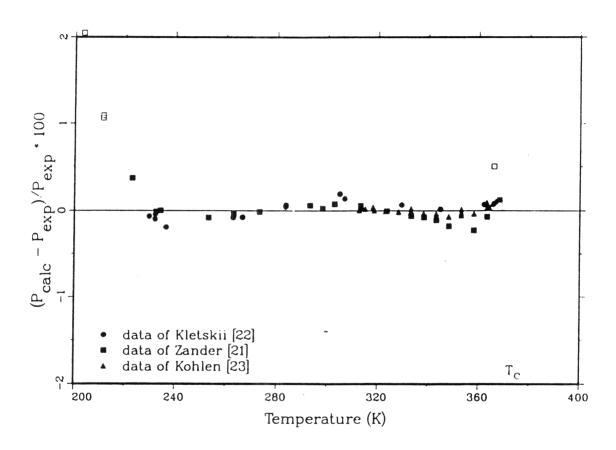


Figure 2--Comparison of vapor pressure correlation with data for R22; filled-in and open symbols indicate points used and not used, respectively, in fitting correlation.

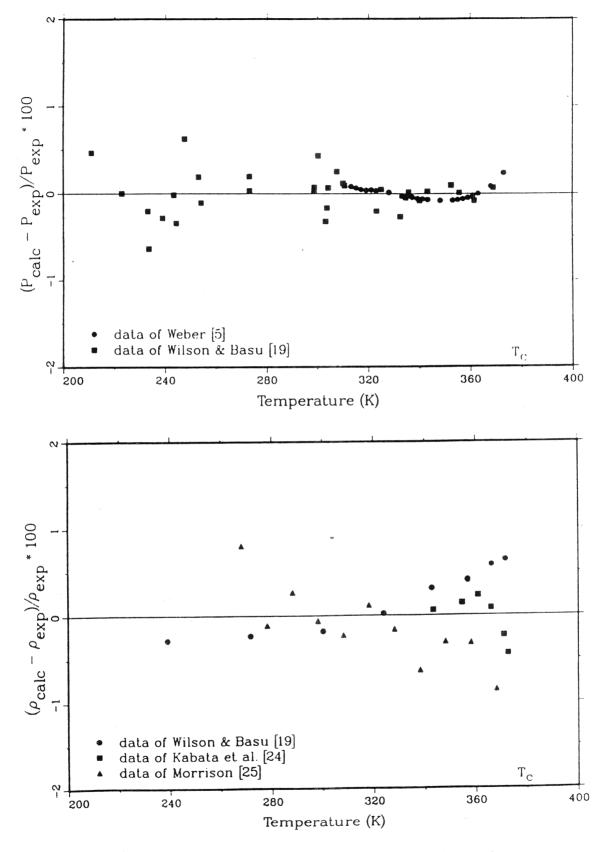


Figure 3--Comparison of correlations with data for R134a; a) vapor pressure; b) saturated liquid density.

determination by Higashi, et al. is, however, of much higher accuracy (0.01 K for temperature, 1.0 kPa for pressure, and 2 kg/m 3 for density) and is adopted here. The freezing point reported by one of the chemical manufacturers [15] is used here.

Higashi, et al. report 44 vapor pressure measurements from 273.1 K to within 0.4 K of the critical temperature with a precision better than 0.17%. Additional data, of lower accuracy but covering a wider temperature range (203.7 K and above), are reported by Mears, et al. The data sets of Higashi, et al. and Mears, et al. are in reasonable agreement above 290 K but diverge rapidly at lower temperatures; see Figure 4. (In Figure 4 and all similar figures, points drawn just outside the frame of the plot indicate residuals greater than the limits of the ordinate and are not to scale.) All attempts to extend the range of Equation (1) to lower temperatures by including selected low temperature points of Mears resulted in a much poorer fit at the higher temperatures. The accuracy of the data by Mears, et al. is difficult to ascertain but is probably no better than 5-10 kPa; this uncertainty would be equivalent to an error of as much as 10% at the lowest temperatures. Thus, only the vapor pressure data of Higashi, et al. were used in fitting Equation (1).

Higashi, et al. give a correlation of the saturation density based on a total of 48 measurements including their own work, the data of Mears, et al. and the 23 values of Kanome and Fujita [31]. Because of the unavailability of this last reference (published only in a thesis of Keio University), 12 densities from 220-385 K were calculated with Higashi's correlation and used as input data to fit Equation (2). The correlation of Higashi represented the experimental data with an RMS deviation of 0.21% over the temperature range 221.0-386.4 K. The RMS deviation between Equation (2) and Higashi's correlation was 0.001% implying that Equation (2) would also fit the data to 0.21%.

The solubility data of DuPont [16] were again the basis of fitting the coefficients to Equation (4). They report three measurements by a technique similar to Parmalee [20] over the temperature range 298-353 K as well as four additional measurements from unspecified other sources from 273-303 K. A single value at 294 K reported by [17] is in excellent agreement those reported in [16].

R124

Measurements of the thermodynamic properties of R124 (1-chloro-1,2,2,2-tetrafluoroethane) have been published by Kubota, et al. [32]. Their measurements include a critical point determination which is in excellent agreement with the parameters reported by two manufacturers [15,17]. The values of Kubota, et al. are used here because of the preference for published, documented measurements over unpublished values. Again, the only information on the triple point was an undocumented value reported in [15].

Although fairly comprehensive, the measurements of Kubota, et al. have two weaknesses. The first is a lower temperature limit of only 278 K. The second, more serious problem, is the fairly poor precision of the pressure measurements. An accuracy of 12 kPa is claimed for the vapor pressure measurements; this is equivalent to an error of 6% at the lowest temperature. The relative error would be smaller at higher temperatures and pressures, yet for temperatures between 300 and 350 K there are serious discrepancies between

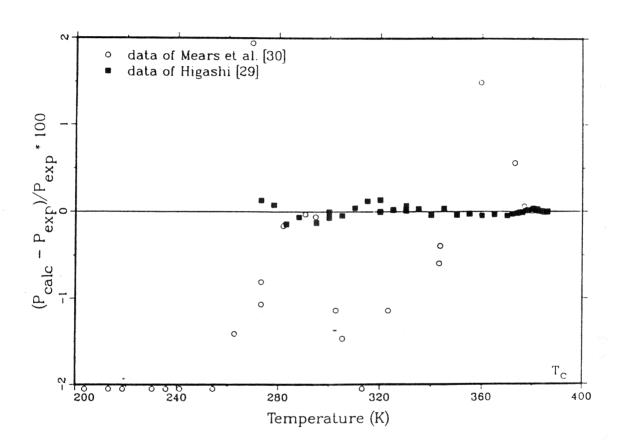


Figure 4--Comparison of vapor pressure correlation with data for R152a.

the data of Kubota, et al. and the 17 vapor pressure points reported by [17] (see Figure 5). The boiling point temperature given by [15] is also significantly different. Because of the wider temperature range of the data reported in [17] (222.3-389.8 K) and the good accuracy for other fluids measured by this group (e.g. Wilson and Basu [19]), only these data were used in fitting Equation (1). Further measurements on this fluid will be required to ascertain whether this was the proper choice.

For liquid density, the situation is considerably better. The three available data sources are in good agreement, as shown in Figure 5. The saturated liquid densities reported by Kubota, et al. were obtained by extrapolating compressed liquid measurements to the saturation pressure. The stated accuracy of the density measurements is 0.09% with the extrapolation adding perhaps a comparable uncertainty. The point at 323.2 K appeared to be an outlier and was excluded from the fit. Saturated liquid densities have been measured from 216-391 K using a vibrating tube densimeter [17]. These results were available only as a correlation, and, thus, the points shown in Figure 5 have been calculated from this correlation for use in fitting Equation (2). The precision of measurements made with this type of device is very high, although the accuracy is dependent on calibration of the instrument. The two liquid density values reported by [15] are also consistent with the other sources.

As with R125, the correlation coefficients presented in [16] are the basis for the solubility of R124 in water. The applicable temperature range is stated as 313-348 K.

R142b

The long-standing reference for the thermodynamic properties of R142b (1-chloro-1,1-difluoroethane) has been Mears, et al. [30]; for example, the thermodynamic data of ASHRAE [33,34] are taken directly from Mears. A second source is that of Cherneeva [35]. Although the data of Cherneeva are claimed to be more accurate than those of Mears, et al., there is some reason to doubt Cherneeva's data (as discussed below) and thus the critical parameters of Mears were selected for this work. Two manufacturers [15,36] report consistent freezing temperatures for Refrigerant 142b.

The vapor pressure data of Cherneeva and Mears, et al. are fairly consistent, although both exhibit considerable scatter as shown in Figure 6. The data of Cherneeva extended over a wider temperature range and gave a slightly better fit to Equation (1) and were thus selected over the data of Mears. A substantially improved correlation was obtained by omitting the points at 213, 218 and 284 K.

At temperatures above 320 K, the saturated liquid densities from Mears et al. and Cherneeva exhibit serious differences (see Figure 6). These differences are at least an order of magnitude larger than can be explained by the accuracies of 0.1 and 0.2% claimed by Cherneeva and Mears, respectively. A third source of data (Valtz et al. [37]), although limited, is more consistent with the data of Mears, et al. There is a second, more subtle, means of deciding between conflicting data: the coefficients to Equation (2) are all of the same order of magnitude for the set of similar compounds considered here. When fit to the data of Cherneeva, however, the coefficients to Equation (2) are radically different from any other fluid considered in this report. The fit based on the data of Mears, et al. and Valtz, on the other hand, result in coefficients that

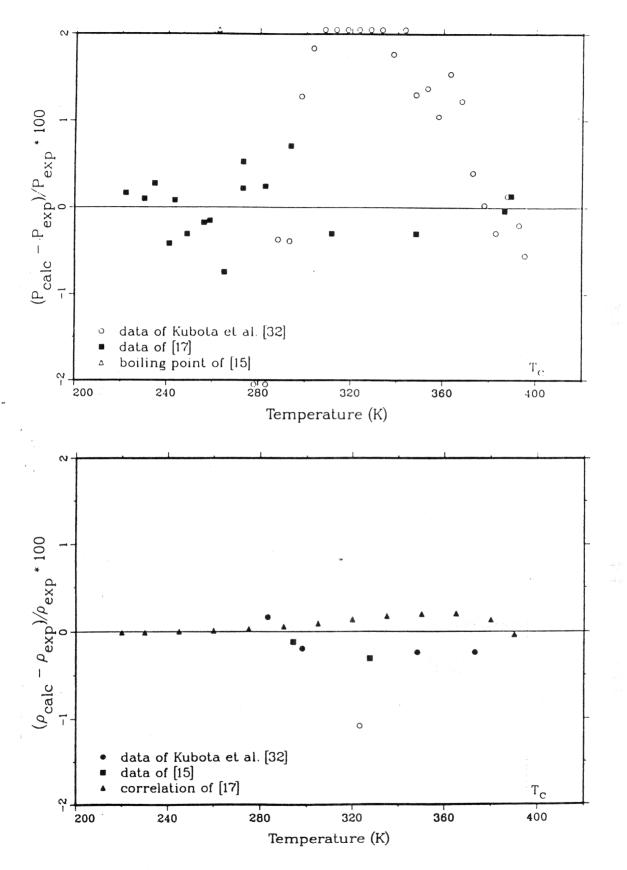


Figure 5--Comparison of correlations with data for R124; a) vapor pressure; b) saturated liquid density.

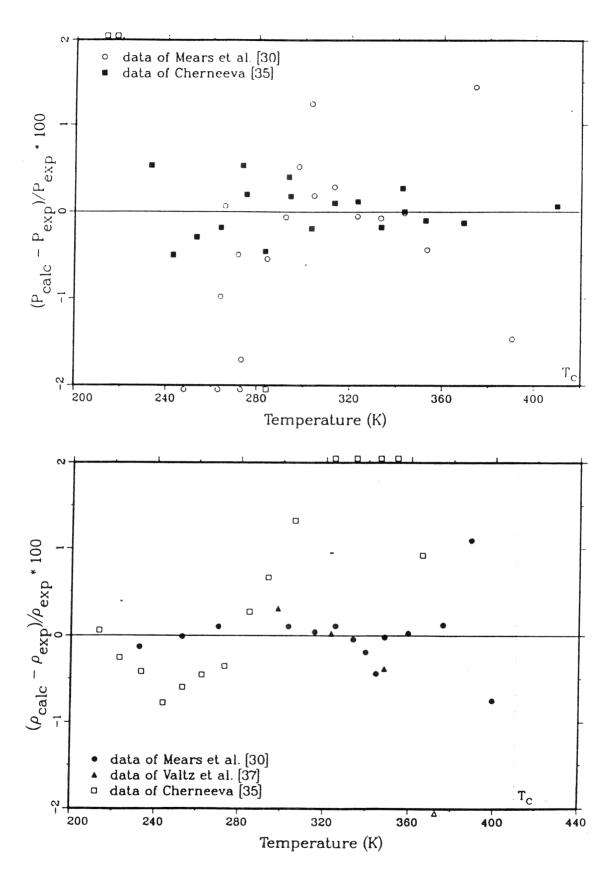


Figure 6--Comparison of correlations with data for R142b; a) vapor pressure; b) saturated liquid density.

are similar to those for the structurally analogous R141b (see Table 3). For these two reasons, the fit adopted here is based on the data of Mears, et al. and Valtz, et al.

For the solubility of R142b in water, three data points over the temperature range 273-304 K are reported by [17]; these were used in fitting Equation (4). The single datum (at 299 K) reported by [16] is 19% higher than the solubility given by Equation (4).

R123

Refrigerant 123 (1,1-dichloro-2,2,2-trifluoroethane) is, along with R134a, one of the two most publicized new refrigerants, and, thus, property data are starting to become available. Critical parameters have been measured by Weber and Levelt-Sengers [38], and have been reported on the data sheets of at least three chemical manufacturers [15,17,26]. The reported critical temperatures range from 456.94-459.45 K. An uncertainty involved with all R123 data is the isomeric purity of the sample. Commercial-grade R123 will likely contain a significant percentage, perhaps as much as 10%, of the isomer R123a (1,2dichloro-1,2,2-trifluoroethane). For most of the available data there is no information on whether the measurements were conducted on isomerically pure R123 or on the R123/R123a mixture produced by the process of a particular company. The presence of a small amount of R123a will probably not affect the vapor pressure or liquid density significantly, but will likely affect the critical parameters. An isomerically pure sample of R123 was used in the critical point determination of Weber and Levelt-Sengers at NIST (as well as all the other NIST measurements). For this reason, and others, the NIST critical parameters are recommended. A freezing temperature of 166 K is reported by both [15] and [26].

Two sources for the vapor pressure of R123 were used in fitting Equation (1). Weber and Levelt-Sengers [38] have measured 43 values at temperatures above 338.1 K. Sixteen points extending down to 234 K were reported by [17]. Although the two data sets are consistent (see Figure 7), only Weber's data were used for the fit above 338 K because of their very high accuracy and precision. Yamashita, et al. [28] have also measured the vapor pressure of R123 at 38 temperatures from 270 K to the critical temperature but do not present their data. Yamashita, et al. have also carried out a similar set of vapor pressure measurements for R123a. They indicate a normal boiling point of 302.7 K for R123a and 300.7 K for R123; their boiling point for R123 is 0.4 K lower than the value evaluated from Equation (2).

No less than six sets of data, measured at two laboratories using five different methods are available for the saturated liquid density of R123. At NIST, Schmidt [39] has employed a buoyancy technique, Weber has used a constant volume cell described by Weber and Levelt-Sengers [38], and Morrison [25] has used a mercury-displacement variable-volume cell as well as a vibrating-tube densimeter. Allied [17] has employed their glass flotation beads and a vibrating tube densimeter; data for the latter method are available only as a correlation. All of these data were felt to be of comparable accuracy and all were included in the fit of Equation (2). As indicated in Figure 7, the different data sets are in essential agreement with an RMS deviation of 0.22%.

Solubility data are reported by two manufacturers [16,17]. The more extensive

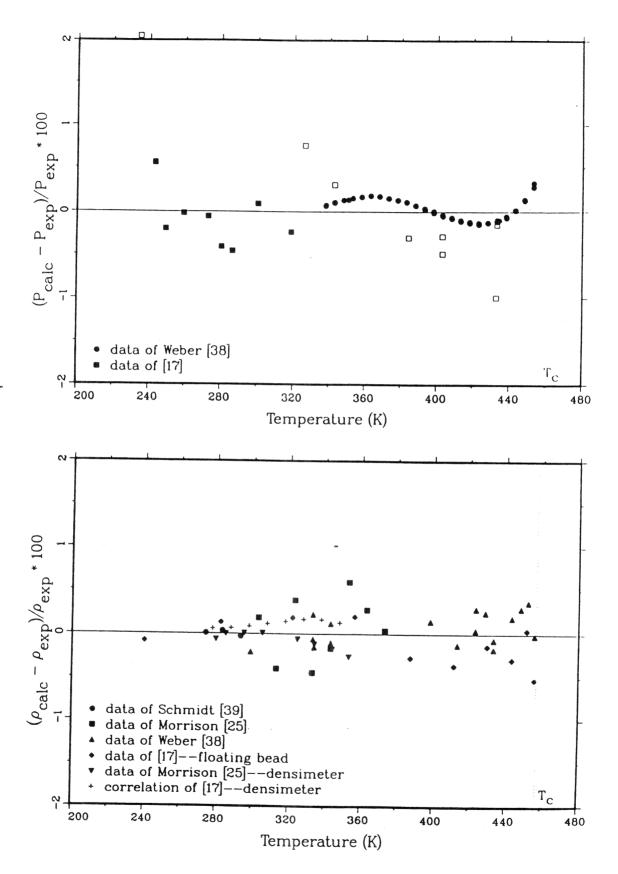


Figure 7--Comparison of correlations with data for R123; a) vapor pressure; b) saturated liquid density.

set [16] covers the temperature range 297-348 K and are presented in terms of coefficients to a corelation similar to Equation (4); these coefficients are reported in Table 4 after the appropriate conversion of units. The single datum at 295 K reported by [17] gives a solubility 41% lower than [16].

R141b

Although R141b (1,1-dichloro-1-fluoroethane) is being actively developed by several chemical manufacturers, only scattered unpublished data are available. Reported values for the critical temperature range from 480.9-483.4 K. The selection of the value of 481.5 K given by Solvay [36] is largely arbitrary-none of the values are documented nor are uncertainties given. The adopted critical density is based on the critical compressibility factor given by [36]. The critical pressure and estimated critical density reported by [15] were rejected primarily because they yielded a critical compressibility factor that was felt to be unrealistically high (0.314). A freezing point of 170. K is reported by [15,26,36].

The vapor pressure data for R141b leave much to be desired. A graphical presentation of 21 data points from 298-480 K and also a correlation of these data is given by one manufacturer [15]. The pressures could not be accurately read off their graph, and, thus, the vapor pressure was evaluated from their correlation at the temperatures corresponding to the data points. Another correlation [17] for the temperature range 278-338 was handled in a similar fashion. Six points from 243-368 K are reported by [36]. Large differences are seen (Figure 8) for the residuals of these data fit to Equation (1). (Note that the range of the ordinate in this figure is twice that of the preceding figures.) Despite the inconsistencies in these data, all were included in the fit of Equation (1) because no single set spanned the full temperature range.

For liquid density, two data sets from [17] were used in fitting Equation (2). As seen in Figure 8, the densities measured with the glass bead technique agree very well with the densimeter data (presented in terms of a correlation).

The solubility data for R141b is particularly sparse and conflicting. The two data points at 298 and 311 K [17] were used to fit Equation (4). The single datum at 298 K from another source [16] gives a solubility 129% higher.

Methyl chloroform

The critical temperature and pressure of methyl chloroform (1,1,1-trichloroethane) were determined by Ambrose, et al. [40]. The critical temperature of 545 K is subject to some uncertainty due to decomposition of the sample at high temperatures as discussed by Ambrose, et al. The critical density has apparently not been measured and thus had to be estimated. The estimation techniques of Ambrose and the Joback modification of Lydersen's method (both as reported in Reid, et al. [41]) yield values of 468 kg/m^3 and 471 kg/m^3 , respectively. A value of 470 kg/m^3 is used in this work. Different sources for the triple point temperature differ by as much as 3 K (Rubin, et al. [42]); the value of 243.1 K measured by Andon, et al. [43] is selected because of the high stated accuracy and high purity sample used.

The vapor pressure of methyl chloroform was measured by Ambrose, et al. from 296-371 K. They also represent their data in terms of a Chebyshev polynomial

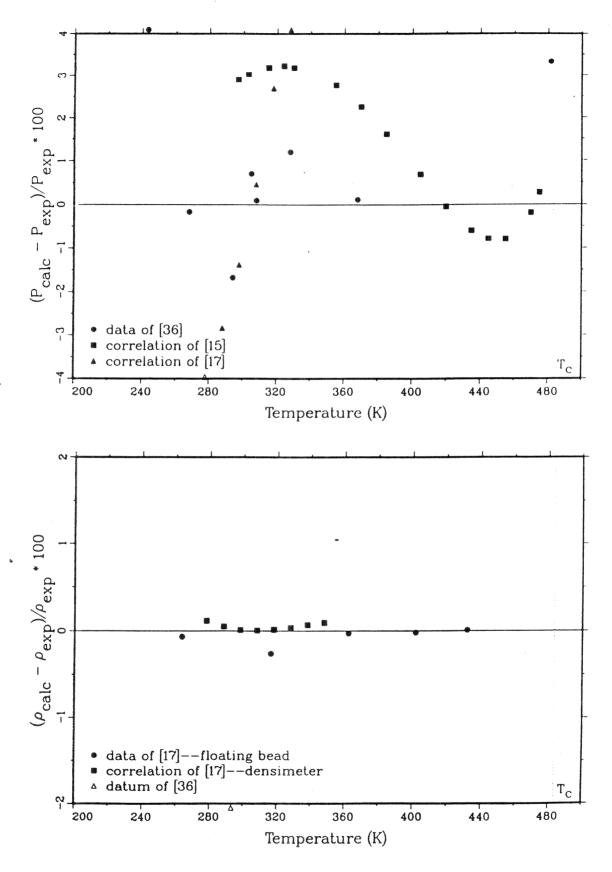


Figure 8--Comparison of correlations with data for R141b; a) vapor pressure; b) saturated liquid density.

which they state can be accurately used outside the temperature range of the data. Equation (1) fits the measured data very well but not the tabulated values obtained from the Chebyshev polynomial (Figure 9). The data of Rubin, et al. [42] are not consistent with the data of Ambrose, et al. and was not included in the fit of Equation (1).

Liquid densities tabulated by the Thermodynamics Research Center of Texas A&M University [44] were used in the fit of Equation (2). Although the RMS deviation between the fit and the tabulated values was 0.003%, the accuracy of the tabulation was not given, and, thus, the accuracy of the correlation presented here cannot be stated.

The correlation for the solubility in water is based on the correlation of solubility presented by Walraevens, et al. [45]. Because they do not present their solubility data, their correlation was used to generate points which were then used to fit Equation 4.

CONCLUDING REMARKS

This report presents recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorofluorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available. Indeed, one use of this report could be to identify areas where additional work is needed.

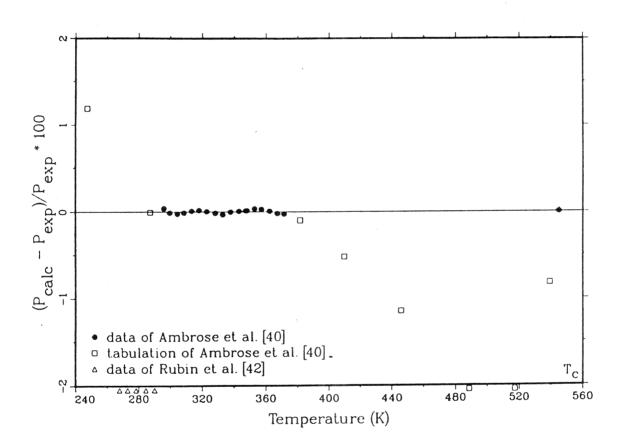


Figure 9--Comparison of vapor pressure correlation with data for methyl chloroform.

REFERENCES

- [1] Wine, P. H. and W. L. Chaemeides (1989). "Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, CH₃CCl₃, and their degradation products against dissolution and/or degradation in seawater and cloudwater." Proceedings, AFEAS Workshop, Boulder, CO.
- [2] Stewart, R. B., R. T. Jacobsen, J. H. Becker and M. J. Zimmerman (1981).
 "A survey of the thermodynamic property data for the halocarbon refrigerants." Center for Applied Thermodynamic Studies, Report no. 81-2, University of Idaho, Moscow, ID.
- [3] Japanese Association of Refrigeration (1975). "Thermophysical properties of refrigerants, chlorodifluoromethane R22." JAR (Tokyo).
- [4] Goodwin, R. D. and W. M. Haynes (1982). "Thermophysical properties of isobutane from 114 to 700 K at pressures to 70 MPa." National Bureau of Standards Technical Note 1051, U. S. Government Printing Office (Washington, DC).
- [5] Weber, L. A. (1989). "Vapor pressures and gas phase PVT data for 1,1,1,2-tetrafluoroethane." to be published in Int. J. Thermophysics 10 no 3.
- [6] Irmann, R. B. (1965). "A simple correlation between water solubility and structure of hydrocarbons and halohydrocarbons." Chem. Ing. Tech. 37 789-98.
- [7] Lyman, W. J., W. F. Reehl and D. H. Rosenblatt (1982). "Handbook of Chemical Property Estimation Methods." McGraw-Hill Book Company (New York).
- [8] Zhang, K., D. Chen, G. Liu, Y. Xu and Y. Hu (1985). "Solubilities of chloro-difluoromethane and tetrafluoroethylene in aqueous solutions of HCl and NaCl." Journal of East China Institute of Chemical Technology.
- [9] Walraevens, R., P. Trouillet and A. Devos (1974). "Basic elimination of HCl from chlorinated ethanes." Int. J. of Chem. Kinetics 6 777-86.
- [10] Downing, R. C. (1988). "Fluorocarbon Refrigerants Handbook." Prentice Hall (Englewood Cliffs, NJ).
- [11] Stepakoff, G. L. and A. P. Modica (1973). "The hydrolysis of halocarbon refrigerants in freeze desalination processes: Pt. I. Solubility and hydrolysis rates of Freon 114 (CC1F₂CC1F₂)." Desalination 12 85-105.
- [12] Ellenrieder, W. and M. Reinhard (1988). "ATHIAS--An information system for abiotic transformations of halogenated hydrocarbons in aqueous solutions." Chemosphere 17 331-44.
- [13] Vogel, T.M., C. S. Criddle and P. L. McCarty (1987). "Transformations of halogenated aliphatic compounds." Env. Sci. Technol. 21 722-36.

- [14] Mabey, W. and T. Mill (1978). "Critical review of hydrolysis of organic compounds under environmental conditions." J. Phys. Chem. Ref. Data 7 383-483.
- [15] DuPont (1989). "Freon technical information" data sheets. private communication with C. A. McCain, Wilmington, DE.
- [16] DuPont (1989). unpublished data. private communication with T. C. Berger, Wilmington, DE.
- [17] Allied-Signal (1989). unpublished data, private communication with S. R. Orfeo and R. G. Richard, Buffalo, NY.
- [18] Hine, J., R. Wiesboeck and R. G. Ghirardelli (1961). "The kinetics of the base-catalyzed deuterium exchange of 2,2-dihalo-1,1,1-trifluoroethanes." J. Am. Chem. Soc. 83 1219-22.
- [19] Wilson, D. P. and R. S. Basu (1988). "Thermodynamic properties of a new stratospherically safe working fluid--refrigerant 134a." ASHRAE Trans. 94 pt 2.
- [20] Parmelee, H. M. (1953). "Water solubility of Freon refrigerants." Refrig. Eng. 61 1341-45.
- [21] Zander, M. (1968). "Pressure-volume-temperature behavior of chlorodifluoromethane (Freon 22) in the gaseous and liquid states." Proc. 4th Symposium on Thermophysical Properties of Gases, Liquids and Solids, ASME, 114-123.
- [22] Kletskii, A. V. (1964). Inz.-Fiz. Zh. 7(4) 40-43.
- [23] Kohlen, R., H. Kratzke and S. Mueller (1985). "Thermodynamic properties of saturated and compressed liquid difluorochloromethane." J. Chem. Thermodynamics 17 1141-51.
- [24] Kabata, Y., S. Tanikawa, M. Uematsu and K. Watanabe (1988). Preprint, Tenth Symposium on Thermophysical Properties, Gaithersburg, MD (to be published in Int. J. Thermophysics. 10 (3), 1989).
- [25] Morrison, G. (1989). unpublished data, National Institute of Standards and Technology, Gaithersburg, MD.
- [26] Daikin (1989). "DaiflonGas technical information." Osaka, Japan.
- [27] McLinden, M. O., J. S. Gallagher, L. A. Weber, G. Morrison, D. Ward, A.R.H. Goodwin, M. R. Moldover, J. W. Schmidt, H. B. Chae, T. J. Bruno, J. F. Ely and M. L. Huber (1989). "Measurement and formulation of the thermodynamic properties of refrigerants 134a (1,1,1,2-tetrafluoroethane) and 123 (1,1-dichloro-2,2,2-trifluoroethane)." to be published in ASHRAE Trans. 95.
- [28] Yamashita, T., H. Kubota, Y. Tanaka, T. Makita and H. Kashiwagi (1988).

 "Measurements of physical properties of new fluorocarbons." proceedings,
 Ninth Japan Symposium on Thermophysical Properties, pp 227-230.

- [29] Higashi, Y., M. Ashizawa, Y. Kabata, T. Majima, M. Uematsu and K. Watanabe (1987). "Measurements of vapor pressure, vapor-liquid coexistence curve and critical parameters of refrigerant 152a." JSME Int. J. 30 1106-12.
- [30] Mears, W. H., R. F. Stahl, S. R. Orfeo, R. C. Shair, L. F. Kells, W. Thompson, and H. McCann (1955). "Thermodynamic properties of halogenated ethanes and ethylenes." Ind. Eng. Chem. 47 1449-54.
- [31] Kanome, Y. and I. Fujita (1986). B.S. Thesis, Department of Mechanical Engineering, Keio University, Yokohama, Japan.
- [32] Kubota, H., Y. Tanaka, T. Makita, H. Kashiwagi and M. Noguchi (1988). "Thermodynamic properties of 1-chloro-1,2,2,2-tetrafluoroethane (R124)." Int. J. Thermophysics 9 85-101.
- [33] ASHRAE (1985). "ASHRAE Handbook of Fundamentals." American Society of Heating, Refrigerating and Air-Conditioning Engineers (Atlanta).
- [34] ASHRAE (1987). "ASHRAE Thermodynamic Properties of Refrigerants."

 American Society of Heating, Refrigerating and Air-Conditioning Engineers (Atlanta).
- [35] Cherneeva, L. I. (1958). "Experimental investigation of the thermodynamic properties of Freon 142." Teploenergetika 1958(7) 38-43.
- [36] Solvay, Brussels, Belgium (1989). private communication via J. von Schweinichen, Montefluos, Milan, Italy.
- [37] Valtz, A., S. Laugier and R. Richon (1986). "Bubble pressures and saturated liquid molar volumes of difluoromonochloromethane-fluorochloroethane binary mixtures." Int. J. Refrigeration 9 282.
- [38] Weber, L. A. and J. M. H. Levelt-Sengers (1989). "Critical parameters and saturation densities of 1,1-dichloro-2,2,2-trifluoroethane." to be pub.
- [39] Schmidt, J. W. (1988). unpublished data, National Institute of Standards and Technology, Gaithersburg, MD.
- [40] Ambrose, D., C. H. S. Sprake and R. Townsend (1973). "Thermodynamic properties of aliphatic halogen compounds, part 1--vapour pressure and critical properties of 1,1,1-trichloroethane." J. Chem. Soc. London--Faraday Transactions I 69 839-41.
- [41] Reid, R. C., J. M. Prausnitz and B. E. Poling (1987). "The Properties of Gases and Liquids, fourth edition." McGraw-Hill Book Company (New York).
- [42] Rubin, T. R., B. H. Levendahl and D. M. Yost (1944). "The heat capacity, heat of transition, vaporization, vapor pressure and entropy of 1,1,1-trichloro-ethane." J. Am. Chem. Soc. 66 279-82.
- [43] Andon, R. J. L., J. F. Counsell, D. A. Lee and J. F. Martin (1973). "Thermodynamic properties of aliphatic halogen compounds, part 2--heat capacity of 1,1,1-trichloroethane." J. Chem. Soc. London--Faraday Transactions I 69 1721-26.

[44] Thermodynamics Research Center (1986). "TRC thermodynamic tables, non-hydrocarbons." Texas A&M University (College Station, TX)

APPENDIX TABULATED VALUES OF VAPOR PRESSURE, LIQUID DENSITY AND SOLUBILITY IN WATER

Vapor Pressure						ation of dare
	٠.	, Henry's const.	Temp.	Vapor	Sat. Liq.	Temp. Vapor Sat. Liq. Henry's const
(kPa)	(kg/m^3)	(kPa/Masst)	(0.)	Pressure (kPa)	Density (kg/m ³)	(kPa/Mass*)
150.6	1484.0					
186.9	1465,4		-40.0	105.3	1406.5	
229.8	1446.3		-35.0	132.0	1391.8	
280.1	1426.8		-30.0	163.8	1376.9	
338.5	1406.8		-25.0	201.2	1361.8	
0.904	1386.2		-20.0	245.1	1346.4	
483.3	1365.0		-15.0	295.9	1330.6	
	1343.1		-10.0	354.5	1314.6	
	1320.4	(676)	-5.0	421.6	1298.2	
	1296.8	(331)	0.0	0.867	1281.5	(82.)
10.0 909.8	1272.2	(107)	0.0	584.3	1264.3	(122.)
	1246.4	(299)	10.0	681.3	1246.7	171.
	1219.3	1 796.)	15.0	789.9	1228.6	227.
	1190.4	1042	20.0	910.8	1210.0	288.
	1159.6	1355	25.0	1044.9	1190.7	354.
1782.4	1126.2	1747	30.0	1193.1	1170.8	425.
	1089.7	2234	35.0	1356.1	1150.1	498.
2266.2	1048.8	2835	0.04	1534.8	1128.6	573.
2542.5	1001.8	3572	45.0	1730.3	1106.0	650.
2844.1	945.3	: 2 : 2 : 7 7 7	20.0	1943.4	1082.3	727.
3173.5	870.5	(5551)	55.0	2175.3	1057.1	805
3534,4	735.8	(, , ,) () ()	0.09	2427.1	1030.3	883
		(://20)	65.0	2700.0	1001.3	961.
(101.3)	(1515.2)		70.0	2995.4	7.696	1038.
(3630.6)	(571.5)		75.0	3315.1	934.4	1114.
			80.0	3660.8	893.9	(1189.)
			85.0	4035.1	845.2	(1263.)
			0.06	4441.6	780.6	(1336.)
			95.0	4886.2	6.099	(1408)

(1408.9) (513.0)

(101.3) (4995.6)

NBP: -40.8 T_C: 96.2

Properti (Parenth	Properties of R134 (Parentheses indic	a ate extrapol	Properties of R134a (Parentheses indicate extrapolation of data)	Properti (Parenth	Properties of R152a (Parentheses indica	Properties of R152a (Parentheses indicate extrapolation of	ation of data)
Temp.	Vapor	Sat. Liq.	Henry's const.	Temp.	Vapor	Sat. Liq.	Henry's const.
(3.)	Pressure (kPa)	Density (kg/m^3)	(kPa/Hass&)	(0.)	(kPa)	(kg/m^3)	(kPa/Mass*)
0.04-	51.6	(1413.5)		0.04-	(0.87)	1043.0	
-35.0	66.5	(1399.2)		-35.0	(61.5)	1033.2	
-30.0	84.7	1384.6		- 30.0	(77.9)	1023.1	
-25.0	106.6	1369.8		-25.0	(97.6)	1013.0	
-20.0	132.9	1354.8		-20.0	(121.2)	1002.6	
-15.0	164.1	1339.5		-15.0	(149.0)	992.1	
-10.0	200.7	1324.0		-10.0	(181.8)	981.3	
0.5	243.4	1308.2		-5.0	(219.9)	970.3	
	292.9	1292.1	(302.)	0.0	263.9	959.1	178.
, v	3,69,6	1275.7	(359,)	0.0	314.6	1.746	207.
0.0	414.8	1258.8	(425.)	10.0	372.5	936.0	239.
15.0	488.7	1241.5	(788.)	15.0	438.2	924.0	275.
20.00	572.1	1223.8	(583.)	20.0	512.5	911.7	316.
25.0	665.8	1205.5	678.	25.0	296.0	0.668	360.
30.0	7.077	1186.7	784.	30.0	689.4	886.0	. 604
35.0	887.4	1167.1	903.	35.0	793.4	872.6	462
0.04	1017.0	1146.8	1035.	0.04	6.806	858.8	521.
0.54	1160.1	1125.7	1181.	45.0	1036.5	844.5	584.
50.0	1317.8	1103.4	1342.	50.0	1177.1	829.7	654.
55.0	1491.0	1080.0	1520.	55.0	1331.5	814.2	729.
0.09	1680.7	1055.1	1714.	0.09	1500.5	798.1	809
65.0	1888.2	1028.5	1927.	65.0	1685.1	781.1	. 968
70.0	2114.6	9.666	2158.	70.0	1886.2	763.2	.066
75.0	2361.5	6.796	2409.	75.0	2104.8	744.2	(1090.)
0.0	2630.4	932.4	(2682.)	0.08	2342.1	723.9	(1197.)
85.0	2923.4	891.4	(2976.)	85.0	2599.3	701.8	(1310.)
0.06	3243.1	841.7	(3293.)	0.06	2877.9	677.5	(1432.)
95.0	3593.0	775.3	(3634.)	95.0	3179.4	650.1	(1560.)
100.0	3979.6	6.039	(3999.)	100.0	3505.8	618.1	(1696.)
Vap26 1	101	1373.1			101.3	1011.2	
	6.1907	515.3		T.: 113.3	4519.8	368.0	*
1c: 101.1	1. 100\$	1.747					

Properties of R124 (Parentheses indicate extrapolation of data) Pressure (kPa) Vapor 26.6 34.7 54.9 71.6 89.3 1110.2 1134.8 1163.6 1163.6 1163.6 1235.2 278.7 328.7 328.7 328.7 780.8 684.5 780.8 886.5 780.8 Sat. Liq. 1552.1 1538.3 1524.3 1510.7 1481.1 1466.4 1451.3 1436.1 1404.7 1388.5 1375.2 13 Density (kg/m³) Henry's const. (kPa/Massa) Properties of R142b (Parentheses indicate extrapolation of data) (00) Temp. Vapor Pressure (kPa) Sat. Liq. Density (kg/m³) Henry's const (kPa/Mass%)

Temp.

(°C)

NBP:		
-9.2 137.1	-35.0 -25.0 -15.0 -10.0 -5.0 0.0 10.0 10.0 10.0 20.0 10.0 20.	0
(10 (42)	52 66 67 77 111 117 117 117 117 1	
101.3) 246.4)	200 20 20 20 20 20 20 20 20 20 20 20 20	-
1193. 435.	1250 1239 1228 1228 11217 1206 11194 11183 11171 11159 11171 11159 11147 11135 11147 11135 11122 11100 10096 10096 10096 10095 100999 100999 100	361
00	3 G G G D C G G G G G G G G G G G G G G G	
	00000	
	329.) 389.) 457.) 534.) 621.) 719. 827. 948. 1081. 1129. 1129. 1129. 11568. 1761. 11972. 2200. 2447. 2714.) 3001.) 3310.) 3993.)	

-40.0 -35.0 -20.0 -10.0 -10.0 -5.0 -5.0 -5.0 10.0 15.0 26.0 27.0 2

(259.) (321.) (394.) (581.) (699.) (699.) (836.) (994.) (1175. 1181. 1381. 1616. 1882. 2181. 2517. 2893. (3312.) (4291.) (4858.) (5481.)

NBP: -12.0 T_C: 122.5

(101.3) (3639.8)

1472.4 560.0

1949.7 2156.3 (2379.5)

Properties of R123 (Parentheses indicate extrapolation of data) Vapor Pressure (kPa) 101.3 3691.4 3.7)
6.9
9.2
112.2
115.8
20.4
40.9
50.6
62.1
75.6
91.4
119.6
1130.6
1130.6
1154.7
1182.0
2247.8
2247.8
230.3
378.7
432.2
491.1
555.9
626.9
704.3 Sat. Liq.
Density
(kg/m³) (1614.5) (1603.7) 1592.7 1591.6 1570.4 1559.1 1547.7 1536.1 1524.4 1512.5 1488.4 1476.0 1463.5 1463.5 1450.9 1438.0 1424.9 1411.7 1398.2 1398.2 1398.2 1311.6 1326.8 1326.8 1456.4 Henry's const (kPa/Massa) 105.)
1124.)
1146.)
1711.)
1199.)
230.
236.
266.
305.
305.
306.
396.
396.
396.
714.
795.)
714.
795.)
882.)
11078.) NBP: Properties of R141b (Parentheses indicate extrapolation of data) 32.1 208.4 -40.0 -35.0 -25.0 -10.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 -75.0 (0°) Temp. Pressure (kPa) 101.3 4541.0 Vapor Sat. Liq.
Density
(kg/m³) (1356.3) (1346.7) (1337.1) (1317.5) (1317.9) (1308.2) (1298.6) 1298.6 1259.6 1259.8 1250.0 1240.0 1240.2 1200.2 1120.2 1120.3 1120.3 1119.7 1118.9 1119.7 1118.7 1118.7 1118.1 1117.3 1126.3 1126.3 1126.3 1126.3 1126.3 1126.3 1126.3 1216 464 Henry's const (kPa/Mass%) (221.) (312.) (435.) (819.) (819.) 1106. 1478. 1957. (2569.) (2569.) (3343.) (4315.) (4315.) (4315.) (5527.) (7026.) (7026.) (13868.) (11119.) (11198.) (125814.) (25814.) (31412.)

-30.0 -25.0 -15.0 -5.0 -5.0 10.0 115.0 220.0 25.0 35.0 40.0 45.0 60.0 60.0 60.0 85.0 75.0 85.0

(°C)

NBP:

27.8 183.8

Properties of methyl chloroform (Parentheses indicate extrapolation of data)

Henry's const. (kPa/Mamme)	26. 35. 47. 63. 82. 107. 139. 178. 227. 227. 287. (360.) (448.) (554.) (554.) (1012.) (1012.) (1012.) (1012.) (1012.) (1012.) (1012.) (1012.) (2092.) (2478.)
Sat. Liq. Density (kg/m ³)	(1435.6) (1427.5) (1419.5) (1419.5) (1401.1) (1395.2) 1387.0 1378.9 1370.7 136.2 1354.4 136.2 1359.9 1329.9 1289.1 1289.1 1289.1 1289.1 (127.9) (1266.8) (1266.8) (127.9) (127.9) (127.9) (127.9) (127.9) (127.9) (127.9) (127.9) (127.9) (127.9)
Vapor Pressure (kPs)	() () () () () () () () () ()
Temp.	40.0 40.0

(1250.3) (470.0) (101.3) (4300.0) NBP: 74.1 T_c: 271.9