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Abstract 

Dimensioning and tolerancing standards originated about 75 years ago in the form of various national and company 

standards that governed engineering drafting and documentation practices. They served the purpose of 

communicating to manufacturers what geometric variations designers could tolerate in a product without 

compromising the product’s intended function. These standards have evolved over time and are by now well 

entrenched in the engineering profession throughout the world. For several initial decades, this evolution was driven 

primarily by codification of best engineering practices without the benefit of any systematic scientific treatment. This 

trend encountered a major hurdle in early 1980s when the emergence of computer-aided design and manufacturing 

systems forced a drastic reexamination of these standards with a greater emphasis on mathematical formalism. Since 

then scientific principles to explain past practices and to guide future evolution have emerged, and the role of science 

has now become more prominent in the development of these standards. In this paper I outline some of the key 

scientific research results that have already made an impact, and future scientific trends that are likely to have an 

influence, on these evolving standards.               
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1. Introduction 

In 1991 the Pennsylvania State University in the United States hosted a CIRP Computer-Aided 

Tolerancing Working Seminar. By some current count, it was the second of a series of what has come to 

be called the CIRP CAT Conferences (the first was a gathering on this topic at Jerusalem, Israel in 1989). 

The Penn State ‘working seminar’ was a timely event because several academic and industrial researchers 

had started working together to attack an important industrial problem using the computational power 

unleashed by the information age [1-4]. I was fortunate to be present at that workshop and spoke about 

how ‘a geometer grapples with tolerancing standards’ [5]. That workshop, and other similar events 

organized around that time, launched a series of initiatives that resulted in the creation of the ASME 
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Y14.5.1 subcommittee and the ISO Technical Committee 213, both dealing with tolerancing standards. 

And they spurred one of the most creative research activities in mechanical and computational sciences, as 

chronicled in the proceedings of the twelve CIRP CAT Conferences – including this conference – and 

other similar conferences and research journals. 

 Looking back at the paper [5] written twenty-one years ago, two of its observations strike me as most 

consequential. The first was a call for mathematically sound definitions of the semantics of the 

standardized tolerancing language, because the lack of such a scientific basis was hampering the 

development of provably correct algorithms for computer-aided tolerancing. The second was a tentative 

mention of ‘computational metrology’ to refer to a set of computational techniques that were emerging to 

cope with processing large amounts of measured data coming out of coordinate measuring machines. It 

was not clear at that time if these were merely naïve observations that would be promptly forgotten or 

important topics that would be pursued with vigor. In fact, one prominent academic at the conference 

scoffed at the very idea of referring to tolerancing standards as defining a ‘language with syntax and 

semantics.’ 

It is now heartening to reflect on the developments over the past two decades and see that both these 

observations have come to play an important role in the evolution of dimensioning and tolerancing 

standards. In this paper I will describe some of the scientific developments first (in Sections 2 through 5) 

and their impact on the evolution of dimensioning and tolerancing standards next (in Sections 6 through 

8). Along the way, I will show how these scientific foundations have helped rationalize the past and 

current industrial practices, and how they are paving the way for important new avenues. Above all, I 

hope to communicate the excitement of one who has pursued geometric studies for both fun and profit.   

2. Congruence Theorems 

Congruence theorems dating back to Euclid provide an easy and powerful introduction to the notion of 

dimensioning (and parameterizing) geometric objects. To illustrate, let's start with the simple task of 

dimensioning and parameterizing triangles. Fig. 1 shows some successful attempts. It seems intuitively 

obvious that all these three schemes are valid ways to parameterize triangles, and we get valid dimensions 

when numerical values are assigned to the distances and angles indicated by arrows.  
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Fig. 1. Examples of dimensioning and parameterizing schemes for triangles. 
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We can provide a formal theoretical basis for our intuitive belief by associating each example in Fig. 1 

with a famous triangle congruence theorem from Euclid’s Elements [6]: Fig. 1(a) with the side-angle-side 

theorem (Book I, Proposition 4), Fig. 1(b) with the angle-side-angle theorem (Book I, Proposition 26), and 

Fig. 1(c) with the side-side-side theorem (Book I, Proposition 8). 

The geometric notion of congruence is closely related to the practical engineering notion of 

interchangeability of parts, as they both belong to an equivalence class. More formally, they satisfy the 

following three axioms:  

1. Reflexivity: A is congruent to (or, interchangeable with)  A. 

2. Symmetry: If A is congruent to (or, interchangeable with) B, then B is congruent to (or, 

interchangeable with) A. 

3. Transitivity: If A is congruent to (or, interchangeable with) B and B is congruent to (or, 

interchangeable with) C, then A is congruent to (or, interchangeable with) C. 

In fact, an entire formal theory of dimensioning can be built using congruence theorems [7, 8].  

The taxonomy of such a modern theory of dimensioning is shown in Fig. 2. At the leaf nodes of the 

modern taxonomy of dimensioning we see intrinsic dimensions. At the intermediate nodes we see 

relational dimensions. The hierarchy can be built with as many levels as the product demands. Complex 

products may have more levels of hierarchy than simpler ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
Fig. 2. A modern taxonomy of dimensioning. 
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Congruence theorems formalize the dimensioning scheme at each level of the dimensional taxonomy. 

In Section 3 we will see how this is accomplished for some of the commonly used intrinsic dimensions of 

surface features trimmed from quadric surfaces. Then in Section 4 we will repeat the exercise for 

relational dimensions. As we lay the scientific foundation for these dimensioning schemes, it is useful to 

look ahead to Section 8, where tolerancing standards have adopted a similar hierarchy for ‘individual 

features’ and ‘related features’ invoking the notion of datums. This point will be emphasized again in 

Section 8.  

3. Classification of Quadrics 

Most commonly used surfaces in engineering belong to second degree surfaces called quadrics. These 

are defined by a set of points with x, y, z coordinates as in 

 

{(x, y, z) : Ax
2 
+ By

2 
+ Cz

2 
+ Dxy + Eyz + Fzx + Gx + Hy + Kz + L = 0} (1) 

 

for real coefficients A, B, C, D, E, F, G, H, K and L, where at least one of A, B, C is nonzero. A well-

known quadrics classification theorem [9] states that any surface of second-degree governed by an 

equation of the form (1) can be moved by purely rigid motion in space so that its transformed equation 

can assume one and only one of seventeen canonical forms. Of these seventeen, only twelve can have 

solutions for real values of x, y, z and they are shown in Table 1.  

The classification theorem also provides a congruence theorem: two quadrics are congruent if and 

only if they have the same canonical equation. The last column in Table 1 lists the intrinsic parameters of 

these surfaces. The quadrics can be dimensioned by assigning numerical values to these parameters.  
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The complete classification of real quadrics plays an important role in the evolving standardized 

definition of ‘features of size’. Only six of the quadrics enumerated in Table 1 belong to 1-parameter 

family of surfaces; namely, sphere, (right circular) cylinder, (right circular) cone, parabolic cylinder, two 

parallel planes, and two intersecting planes forming a wedge. They also possess an important monotonic 

containment property; for example, a sphere with a larger size dimension contains the one with a smaller 

size dimension. These and other symmetry properties covered in the next section provide the strongest 

scientific rationale for a standardized definition of ‘features of size’ that will be discussed in Section 6.  

4. Classification of Continuous Symmetry 

The notion of symmetry greatly simplifies the task of relational dimensioning because we then need to 

prove only a limited number of congruence theorems. The simplification depends on some important 

classification theorems on the connected Lie subgroups of the rigid motion group, and their corollaries on 

the classification of continuous symmetry of surfaces [7, 8, 10, 11]. These and related theorems were 

rigorously proved only over the past fifteen years.  

To gain an intuitive appreciation for the role of symmetry, consider the problem of positioning an 

arbitrary object, such as a chair, in three-dimensional space. It requires six dimensions – three for 

translation and three for rotation. Now consider positioning a sphere in space. It seems to require only 

three dimensions, which are needed to locate the center of the sphere. We don’t need any dimension to 

specify rotation because the symmetry of the sphere renders all rotations about its center irrelevant for 

positioning purpose. Finally, consider the task of positioning a sphere relative to a (unbounded) plane. A 

little reflection indicates that we need to specify only one dimension, namely the distance between the 

center of the sphere and the plane. This drastic reduction in the number of needed dimensions is due to the 

fact that the plane also possesses some symmetry because it remains invariant under all translations along 

the plane and all rotations about any axis perpendicular to the plane. 
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Table 1. Classification of real quadrics. 

 

 Type Canonical Equation  Intrinsic Parameters 
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Table 2 shows the seven classes of continuous symmetry. This is a complete classification in the sense 

that any surface, in fact any set of points encountered in engineering, belongs to one and only one of these 

seven classes. These are also called invariant classes because symmetry is defined by invariance; for 

example, a cylinder remains invariant under all translational motions along its axis and all rotations about 

its axis. This is true about the axis as well, because it also remains invariant under these motions. There is 

a powerful theorem [7, 8] that reduces the problem of relative positioning any two sets to the relative 
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positioning of their simple replacements shown in the last column of Table 2. These results provide the 

scientific basis for standardized datums and datum systems that will be described in Section 7.  

 
Table 2. Seven classes of continuous symmetry 

 

  Type Simple Replacement 

1 Spherical Point (center) 

2 Cylindrical Straight line (axis) 

3 Planar Plane 

4 Helical Helix 

5 Revolute Straight line (axis) & point-on-line 

6 Prismatic Plane & straight line-on-plane 

7 General Plane, straight line & point. 

5. Computational Coordinate Metrology 

Computational coordinate metrology involves the development and implementation of reliable 

algorithms to fit, filter, and to perform other types of computations on discrete geometric data collected 

by coordinate measuring systems. Over the past twenty years it has grown into a separate research 

discipline. Several international conferences and journals now list computational metrology as a distinct 

topic of interest. Of the many research results that deal with computational coordinate metrology, those 

that address fitting and filtering are the most relevant to the verification standards for conformance to 

tolerance specifications. Mathematically and computationally, fitting is an optimization problem and most 

of filtering is a convolution problem [12-21]. The filtering techniques also form the mathematical basis 

for surface texture characterization.   

The scientific and technical advances in hardware for coordinate measurements and software for 

processing the data collected from these measurements have forced a rethinking of tolerance specification 

standards. To illustrate this fact, let’s consider the problem of fitting a plane to a set of points in space. If 

d1, d2, …, dn are the perpendicular (Euclidean) distances of n input data points from a plane P, then we 

can define the distance between this set of points and the plane P using the generic lp-norm  

.||

/1

1

p
n

i

p

id










                                                                                  (2) 

The individual distances can be signed, in the sense that points lying on one side of the plane can be 

assigned positive distances and the points lying on the other side can be assigned negative distances. The 

l1-norm is then just the sum of the absolute values of the individual distances. The l2-norm is the square 

root of the sum of the squares of the distances. The l∞-norm is the maximum of the absolute values of the 

distances; to see this we need to look at the definition of the lp-norm as p tends to infinity. Table 3 

presents a set of plane fitting problems posed as optimization problems for the objective function shown 

in (2). In the ISO parlance, the  l2-norm is known as the Gaussian norm and the l∞-norm is known as the 

Chebyschev norm. 
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Table 3. Fitting a plane P to a set of points in space.  

 

Objective Constraints Comments Designation 

Minimize l1-norm Points lie to one side of P Minimum three-points 

touching P 

Plane1C 

 

Minimize l2-norm 

None Least-squares plane Plane2 

Points lie to one side of P Constrained least-squares 

plane 

Plane2C 

Minimize l∞-norm None Minimax plane Plane∞ 

Points lie to one side of P Constrained minimax plane Plane∞C 
 

 

Algorithms for computing Plane2, Plane∞, and Plane∞C in Table 3 have been well developed in 

literature [13]. Of these, the least-squares plane, designated as Plane2, is the most widely implemented, 

tested, and used in industry [22]. Plane1C conforms to the ASME Y14.5:2009 standard [23] for the 

establishment of primary planar datum because it guarantees a stable plane that touches at least three 

points. On the other hand, Plane∞C is the default primary datum plane according to the ISO 5459:2011 

standard [24]. Currently, ISO is mulling over future tolerance specification standards that will allow the 

designer to choose from several fitting objectives including the Gaussian norm and the Chebyschev norm. 

Such an expansion is also envisioned for a wide variety of geometric characteristics that will be described 

in Section 8. 

6. Size Tolerancing 

Historically, both the ASME and the ISO standards had recognized only sphere, cylinder, and two 

opposing parallel planes as the standardized features of size. These have been the only features to which 

size dimension and tolerance can be assigned; these have also been the only features that can be 

designated as datums with material conditions. These practices originated from engineering experience 

and were not based on any scientific rationale. 

We can now provide a scientific basis for the definition of features of size and, in that process, expand 

their coverage [25-28]. ISO has recently adopted a total of five features of size, as illustrated in Fig. 3 

from one of its recent standards. Five of the six 1-parameter family of quadrics discussed in Section 3 and 

five of the seven classes of symmetry (invariance classes) discussed in Section 4 are represented in this 

updated standardized definition of features of size; these features also possess the monotonic containment 

property discussed in Section 3. Parabolic cylinder, which belongs to the prismatic class, is the only 1-

parameter family of quadrics that did not make the list – the engineering community did not consider its 

use to be sufficiently widespread to warrant the ‘feature of size’ designation. 

Of the five features of size in Fig. 3, three – namely, cylinder, sphere, and two parallel opposite planes 

– have linear units as the intrinsic characteristics. These are the linear sizes, and the other two features of 

size have angular sizes. In a recently issued ISO 14405-1 standard [29], the linear size tolerances for 

cylinder and two parallel opposite planes have been expanded considerably. ISO 14405-1 allows 

tolerances to be specified on the following fourteen different types of sizes: two-point size, local size 

defined by a sphere, least-squares size, maximum inscribed size, minimum circumscribed size, 

circumferential diameter size, areal diameter size, volume diameter size, maximum size, minimum size, 

average size, median size, mid-range size, and range of sizes. Fig. 4 illustrates one of fourteen ways in 

which the size tolerance for a cylindrical feature can be specified.  

The release of ISO 14405-1 standard in 2010 heralded a much needed revolution in the tolerance 

specification standards. Before the arrival of ISO 14405-1, there was an implicit expectation that size 

tolerances should be verifiable using the likes of micrometers, calipers, dial indicators, and functional 

gauges. (In fact, such expectations are prevalent even for all geometric tolerance specifications under the 

guise of ‘open setups’ for their verifications.) Using a computerized coordinate measuring system was 
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deemed acceptable, as long as it could be run in the ‘caliper-mode’ and with some soft-gauging 

capabilities. In contrast, a size tolerance specification such as the one shown in Fig. 4 can only be verified 

by coordinate measuring systems employing least-squares fitting algorithms, which are now available 

thanks to scientific developments in computational coordinate metrology alluded to in Section 5, for 

cylinder fitting. Future ISO standards for geometric tolerance specifications will depend critically upon 

such fitting algorithms for their verification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Excerpt from ISO 5459:2011 [24] on features of size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Excerpt from ISO 14405-1:2010 [29] for least-squares size tolerancing of a cylinder. Here the GG modifier denotes that a 

Gaussian (least-squares) size is being toleranced for the indicated cylinder.  

7. Datums and Datum Systems 

Datums and datum systems are essential for specifying tolerable variations in the relative positioning 

of features. As we saw in Section 4, classification of continuous symmetry provides a scientific basis to 
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define datums. This has been seized upon by the standards community in recent times, as illustrated in 

Fig. 5 excerpted from the ASME Y14.5 standard issued in 2009 and in Fig. 6 exceprted from the ISO 

5459 standard issued in 2011. These figures clearly show the classification of standardized datums on the 

basis of the symmetry group classification of the nominal ideal geometric features that are designated by 

designers as datum features.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Excerpt from ASME Y14.5-2009 standard [23] on primary datums and datum features. 
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A closer examination of Figs. 5 and 6 reveals the distinction between a datum feature and the 

associated datum. For example, a cylindrical feature can be designated as a datum feature, and its axis 

then becomes the datum. On an actual workpiece the features have non-ideal forms and so we need to fit 

ideal geometric features before the datums can be discerned. As described in Section 5, various norms can 

be used to define the objective function in the optimization problem involved in such fittings. The 

standards currently rely upon the l1-norm and the l∞-norm, with constraints; ISO is contemplating 

appropriate symbology to override the default so that other lp-norms can be invoked for determining the 

datums.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Excerpt from ISO 5459:2011standard [24] on invariance classes to define datums. 
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8. Geometric Characteristics and Tolerancing 

The dimensional taxonomy shown in Fig. 2 was useful in structuring the theoretical development of 

dimensioning and geometric parameterization. It also explains the classification of geometric 

characteristics and tolerancing as shown in Figs. 7 and 8 in the ASME and ISO standards, respectively, 

that have stood the test of time. The ASME classification, shown in Fig. 7, refers to individual features 

and related features in the same way intrinsic dimensions and relational dimensions are dealt with in 

Sections 2, 3 and 4. The ISO classification, shown in Fig. 8, is the same as that of ASME and it explicitly 

invokes the need for datums for tolerancing relative positioning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Excerpt from ASME Y14.5-2009 standard [23] on the classification of geometric characteristics.  

 

Both the ASME and ISO tolerancing semantics of geometric tolerances shown in Figs. 7 and 8 are 

based on tolerance zones. ISO is now considering several ways to expand the syntax and semantics of 

geometric tolerances as it did for size tolerancing. For example, in the future, flatness tolerance can be 

specified to limit the root-mean-square deviation (i.e., standard deviation) of the points on an actual 

feature from a Gaussian (least-squares) plane fitted to the feature. 
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Tolerances Characteristics Symbol Datum needed 

Form 

Straightness  no 

Flatness  No 

Roundness  No 

Cylindricity  No 

Profile any line  No 

Profile any surface  No 

Orientation 

Parallelism  Yes 

Perpendicularity  Yes 

Angularity  Yes 

Profile any line  Yes 

Profile any surface  Yes 

Location 

Position  yes or no 

Concentricity (for centre points)  Yes 

Coaxiality (for axes)  Yes 

Symmetry  Yes 

Profile any line  Yes 

Profile any surface  Yes 

Run-out 
Circular run-out  Yes 

Total run-out  Yes 
 

 

Fig. 8. Excerpt from ISO 1101:2012 standard [30] on geometric characteristics. 

9. Summary 

In this paper, I have strived to describe the role of science in classifying and rationalizing some of the 

past and current dimensioning and tolerancing practices and in paving the way for future development of 

dimensioning and tolerancing standards. Motivated by the industrial need, the last two decades have 

witnessed considerable mathematical and algorithmic advances, and the dimensioning and tolerancing 

standards are well poised to exploit these advances in at least four distinct areas. 

First, computer-aided dimensioning and tolerancing software systems can be based on data models that 

are provably complete and algorithms that are provably correct. Second, these data models can form the 

basis for standardized exchanges [31] that enable interoperability among engineering information 

systems. Third, computer-aided manufacturing systems can consume the tolerancing information 
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automatically for smarter numerical control of machine tools. Fourth, computer-aided inspection systems 

can use the tolerancing information to generate and execute inspection plans automatically. 

In the next few years we are likely to witness major expansions in the ISO tolerancing standards [32], 

assisted by scientific developments similar to those outlined in this paper and subsequent codification of 

concepts and terminology [33-35]. Industry will struggle with the magnitude of such changes, and there 

will be a great demand for education of the industrial workforce and college students in these new 

standards and practices. We might well look forward to another two decades of fun and profit.      
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