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ABSTRACT

We explore the optical flux lattices produced for ultra-cold atoms in the radiation field when both the atom-light
coupling and the detuning exhibit an oscillatory behavior. We analyze not only the magnetic flux but also the
geometric vector potential generating the flux, as well as the accompanying geometric scalar potential. We show
how to deal with the gauge-dependent singularities of the Aharonov-Bohm (AB) type appearing in the vector
potentials for the optical flux lattices. We present a way to calculate the continuous magnetic flux through the
elementary cell via the singularities of the vector potential inside the cell. The analysis is illustrated with a
square optical flux lattice. We present a way of creating such a lattice using the Raman transitions induced by
a set of properly chosen polarization-dependent standing waves propagating at a right angle and containing a
time-phase difference.
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1. INTRODUCTION

Over the recent years there has been a great deal of interest in artificial gauge fields for ultracold atomic gases.1

The atomic quantum gases are systems where the condensed matter meets the atomic physics. The atomic gases
can exhibit a number condensed matter phenomena,2–5 such as the Mott transition6 or Berezinskii-Kosterlitz-
Thouless crossover.7 Yet the atoms forming the quantum gases are electrically neutral species and there is no
vector potential term governing their center of mass motion. The vector potential type coupling providing a
Lorentz force is essential for the magnetic phenomena in solids, such as the quantum Hall effect.8 A standard
way to produce an artificial magnetic field is to rotate an atomic cloud so that a vector potential term appears in
the rotating frame of reference.9,10 During the last several years various schemes have been proposed to create
an effective magnetic field for ultra-cold atoms without rotation. There are two major groups of these schemes.

The first group relies on an optical lattice which traps atoms at its sites. The magnetic flux is simulated by
inducing an asymmetry in the atomic tunneling between the lattice sites, so that an atom picks up a non-zero
phase after completing a closed loop along a plaquette.11–17 Such an asymmetry can be induced by means of
the laser-assisted tunneling11–14,16 or using time-dependent lattices.13,15,17

The second group of proposals is based on the concept of geometric gauge potentials which are encountered
in many areas of physics.18–25 In the context of the atomic gases the geometric vector and scalar potentials were
first considered in the late 90’s for atoms interacting with the laser fields.26–28 The approach involves a concept
of atomic states “dressed” by the laser beams. It is the position dependence of these dressed internal states
which leads to the emergence of the geometric vector and scalar potentials. The method can provide a non-zero
effective magnetic field using non-trivial spatial arrangements of laser fields29–34 or position-dependent detuning
of the atom-light coupling.35–37 In these approaches the effective magnetic flux over the atomic cloud linearly
increase with the cloud dimensions.31,33,35,36 This is an obstacle in reaching the magnetic fluxes which are high
enough to observe the fractional Hall effect38 for ultra-cold atoms.

Recently it was shown that the magnetic flux produced by the geometric potentials can can be made pro-
portional to the surface area of the atomic cloud and thus be considerably increased,39 see also.40 For this it
was suggested to use a two-level model of the atom-light coupling in which both the atom-light coupling and the
detuning exhibit an oscillatory position-dependence. Using this approach one not only generates a non-staggered
magnetic flux but also produces a lattice potential thus providing an optical flux lattice.39 It is instructive that
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all over the space. Thus the atom-light Hamiltonian [Eq. 2)] has two non-degenerate eigenstates |±〉 ≡ |± (r)〉
at all spatial points. If the characteristic kinetic energy of the atomic center of mass motion is small compared
to the energy difference between the two internal states ΔE = 2�Ω, the internal state of the atom will follow
adiabatically atomic lower state and the excited state contribution of ψ+(r, t) can be neglected. Projecting

the full Schrödinger equation i�
∣
∣
∣Ψ̇(r, t)

〉

= Ĥ |Ψ(r, t)〉 onto the lower energy eigenstate leads to an effective

Schrödinger equation for the wave-function for the atomic motion in the lowest internal state:1,19,22–24

i�
∂

∂t
ψ−(r, t) =

[

(p−A)
2

2m
+ V − E− +W

]

ψ−(r, t) , (7)

where the geometric vector and scalar potentialsA ≡ A(r) andW ≡W (r) appear due to the position dependence
of the atomic internal states:

A(r) = i� 〈−|∇ |−〉 , W (r) =
�
2

2m
|〈+|∇ |−〉|2 . (8)

The gauge-independent scalar potential W (r) emerges when eliminating the excited atomic state. It represents
the kinetic energy of the oscillatory micromotion due to the tiny transitions to the eliminated state |+〉 ≡
|+(r)〉.45,46 On the other hand, the vector potential can be interpreted as a kinetic energy of the atomic
center of mass motion associated with the position-dependent internal state |−〉 ≡ |− (r)〉. Explicitly the gauge
potentials read for the present situation1

A(r) =
�

2
(cos θ − 1)∇φ . (9)

W (r) =
�
2

8m

[

(∇θ)
2
+ (sin θ∇φ)

2
]

. (10)

It is noteworthy that the vector potential A(r) contains the Aharonov-Bohm (AB) type fluxes with a single flux
quantum at the points where cos θ = 1, i.e. at the north poles of the coupling vector Ω. On the other hand,
the vector potential Ã(r) = i� ˜〈−|∇ ˜|−〉 corresponding to an alternative phase choice of the internal ground state
˜|−〉, Eq. (6), differs by a gradient of the azimuthal angle �∇φ and contains AB fluxes with a single flux quantum
at the south poles of the vector Ω where cos θ = −1:

Ã(r) = A(r) + �∇φ =
�

2
(cos θ + 1)∇φ . (11)

and Ã(r) are equivalent and produce the same effective magnetic field (the magnetic flux density) B(r) =
∇×A(r) = ∇× Ã(r)

B(r) =
�

2
∇ (cos θ)×∇φ . (12)

where the gauge-dependent AB singularities (if any) featured in the vector potentials have been excluded in
Eq. (12) for B. It is convenient to represent the magnetic flux density in terms of the unit vector N = Ω/Ω

B(r) = −�

2

∇Nx ×∇Ny

Nz
, (13)

Thus if Ωz alternates the sign at the points where Ωx = 0 and Ωy = 0, this might compensate the alternation of
the sign of ∇Nx×∇Ny at these points, giving a non-zero magnetic flux, such as the one given by Eq. (24) below.
This shows the necessity to have an oscillating detuning Ωz in addition to the oscillating coupling Ωx + iΩy.

Note that the geometric scalar potential can lead to a modification of the overall scalar potential, the most
significant modification taking place at the singular points where Ωx + iΩy = 0 and also at the points of the
minimum magnetic flux where Ωz = 0.
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3.2 Periodic atom-light coupling

Suppose now that the coupling vector Ω = Ω(r) Ω = (Ωx,Ωy,Ωz) is a spatially periodic function in the xy plane

Ω(r+ rn,m) = Ω(r) , rn,m = na1 +ma2 , (14)

where a1 and a2 are the primitive vectors defining a 2D lattice in the xy plane, with n and m being the integers.
In that case both the atomic internal dressed states |±〉 ≡ |± (r)〉 and the corresponding geometric potentials
A ≡ A(r) and W ≡ W (r) are also periodic functions with the same periodicity. Due to the periodicity of the
vector potential the total flux over the elementary cell is zero

α =
1

�

∮

cell

A · dr =
1

�

∫∫

cell

Btot · dS = 0 , (15)

where
Btot = B(r) +BAB(r)

is the total magnetic flux density containing both the continuous (background) magnetic flux density B(r) and
also possibly a set of gauge-dependent singular fluxes of the AB type represented by BAB(r).

Thus strictly speaking one can not produce a non-zero effective magnetic flux α over the elementary cell using
the periodic atom-light coupling. However this does not prevent having a non-staggered continuous magnetic flux
density B(r) over the elementary cell as long as the vector potential contains (gauge-dependent) singularities of
the AB type carrying together a non-zero number of the Dirac flux quanta. The AB singularities are associated
with the points where the coupling strength Ωx + iΩy goes to zero and hence cos θ → ±1. Specifically, the
vector potential A(r) can contain the AB singularities in the vicinity of points corresponding to cos θ → −1 for
which A(r) ≈ −�∇φ. On the other hand, the transformed vector potential Ã(r) becomes singular for cos θ → 1
where Ã(r) = �∇φ. Deducting these non-measurable gauge dependent singularities, the resulting flux over the
elementary cell is no longer equals to zero

α′ = �
−1

∫∫

cell

B · dS = −�
−1

∫∫

cell

BAB(r) · dS . (16)

It can be expressed in terms of the vector potential

α′ = −�
−1

∑
∮

singul

A · dr = −�
−1

∑
∮

singul

Ã · dr , (17)

where the summation is over the singular points of the vector potential (different for A and Ã) around which
the contour integration is carried out. Around these singular points the vector potentials reduce to

A → −�∇φ , Ã → �∇φ . (18)

Thus each constituent integral provides an integer number of the Dirac flux quanta in Eq. (17). To get non-zero
flux α′ , the sum of the singular contributions should be non-zero. The flux is maximum if all these singular
contributions have the same sign. This is the case for the square flux lattice to be considered next.

To summarize one has the following situation. In the optical flux lattices there is a background non-staggered
magnetic field B plus an array of the gauge-dependent Dirac-string fluxes of the opposite sign. Both fluxes
compensate each other so the total magnetic flux over an elementary cell is zero in agreement with the periodicity
of the Hamiltonian. However the Dirac-string fluxes are non-measurable and hence are to be excluded. As a
result one arrives at a non-staggered magnetic flux over the optical flux lattice.

4. SQUARE OPTICAL FLUX LATTICE

4.1 Adiabatic energies and magnetic flux

Consider the Rabi frequencies of the following form

Ωx = Ω⊥ cos(xπ/a) , Ωy = Ω⊥ cos(yπ/a) , Ωz = Ω‖ sin(xπ/a) sin(yπ/a) . (19)
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In this way a measurable continuous flux over the elementary cell accommodates two Dirac quanta.39 The same
magnetic flux α′ is obtained using the vector potential Ã which contains AB singularities at n = m = 0 and
n = m = 1, again each carrying a single Dirac flux quantum with a negative sign.

Using Eq. (13), one arrives at the explicit result for the magnetic flux density

B(r) = −�

2

π2

a2
1− cos2(xπ/a) cos2(yπ/a)

β {1 + γ [cos2(xπ/a) + cos2(yπ/a)] + cos2(xπ/a) cos2(yπ/a)}3/2
ez . (24)

where β = Ω‖/Ω⊥ and γ =
(

1− β2
)

/β2. Equation (24) demonstrates that the magnetic flux is non-staggered,
and its profile can be shaped by changing the ratio of the Rabi frequency amplitudes β. It is evident that the
magnetic flux is zero at the potential minima xn = na and ym = ma for finite values of β. If β = 1, Eq. (24)
becomes equivalent to the result obtained independently by Jean Dalibard.47

4.3 Scalar potential

Assuming Ω‖ = Ω⊥, the second term entering the scalar potential [Eq. (10)] is

(sin θ∇φ)
2
=

(π

a

)2 cos2(xπ/a) sin2(yπ/a) + cos2(yπ/a) sin2(xπ/a)

[1 + cos2(xπ/a) cos2(yπ/a)] [cos2(xπ/a) + cos2(yπ/a)]
(25)

It is evident that (sin θ∇φ)
2
is zero at the minima of the adiabatic energy xn = na and ym = ma. On the other

hand, it equals to (π/a)
2
at the maxima of the adiabatic energy xn,max = na + a/2 and ym,max = ma + a/2.

This part of the scalar potential behaves similar to the adiabatic energy E− (x, y), thus increasing the energy

maxima by the amount (�π/a)
2
/8m.

The first terms entering the scalar potential [Eq. (10)] is

(∇θ)
2
=

(π

a

)2 g2x + g2y

[1 + cos2(xπ/a) cos2(yπ/a)]
2
[cos2(xπ/a) + cos2(yπ/a)]

. (26)

with
gx = sin(yπ/a) cos(xπ/a)

[

1 + cos2(yπ/a)
]

(27)

gy = sin(xπ/a) cos(yπ/a)
[

1 + cos2(xπ/a)
]

(28)

Thus (∇θ)
2
is zero both at the at the minima and maxima of the of the adiabatic energy. Yet is equal to (π/a)

2

if cos(xπ/a) → 0 and cos(yπ/a) → 0, i.e. at the center of the plaquette thus raising the potential there.

In this way the scalar potential is given by Eq. (10) together with Eqs. (25)-(28). It is zero at the corners of a
plaquette and reaches its maximum values at the center of the plaquette, thus behaving similar to the magnetic
field. In this way the scalar potential pushes the atoms away from the area of the high magnetic field at the
center of the plaquette.

5. GENERATION OF THE OPTICAL FLUX LATTICE USING THE RAMAN
TRANSITIONS

5.1 Atom-light operator

In a proposal by Cooper and Dalibard44 a two-level system is made of two magnetic sublevels coupled by Raman
transitions, as shown in Fig. 4. The latter are induced by two laser fields with different frequencies. One of them
has all three circular polarizations, the corresponding Rabi frequencies being κm with m = 0,±1, as shown in
the red color in Fig. 4. The second field shown in the green color is in resonance with the Raman transitions
between these two levels. It is characterized by the Rabi frequency E and has a circular σ− polarization. A
combined action of the two fields leads to the following effective Hamiltonian for the two-level system composed
of the ground states |g±〉:44

Û =
�κ2tot
3Δ

Î +
�

3Δ

(|κ−|2 − |κ+|2 Eκ0
Eκ∗0 |κ+|2 − |κ−|2

)

(29)
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where
Ωx = bΩ‖ cos(xπ/a) , Ωy = bΩ‖ cos(yπ/a) , Ωz = Ω‖ sin(xπ/a) sin(yπ/a) (35)

and
ΩI = cΩ‖

[

cos2 (kx) + cos2 (ky)
]

+ const ,

with

Ω‖ =
4�K2

3Δ
, b = −E cos θ

2K
, c = 1− 2 sin2 θ .

If θ = ±π/4, the state-independent potential is constant (c = 0, so ΩI = const), and the situation reduces to
the one analyzed in the previous Section. If additionally b = 1, one arrives at a atom-light coupling considered by
Cooper.39 On the other hand, if θ �= ±π/4, the state-independent potential is no longer constant. Furthermore
the sign of the position-dependent part of the potential ΩI can be controlled. If |θ| > π/4, the parameter c > 0,
whereas for |θ| < π/4, one has c < 0. The change in the sign of the parameter c can lead to a significant reshaping
of the optical potential minima of the optical flux lattices.

6. CONCLUDING REMARKS

We have explored the optical flux lattices produced for ultra-cold atoms in the radiation field when both the
atom-light coupling and the detuning exhibit an oscillatory behavior. We have analyzed not only the magnetic
flux but also the geometric vector potential generating the flux, as well as the accompanying geometric scalar
potential. We have show how to deal with the gauge-dependent singularities of the Aharonov-Bohm (AB) type
appearing in the vector potentials for the optical flux lattices. We have present a way to calculate the continuous
magnetic flux through the elementary cell via the singularities of the vector potential inside the cell. The analysis
is illustrated with a square optical flux lattice. We have presented a way of creating such a lattice using the
Raman transitions induced by a set of properly chosen polarization-dependent standing waves propagating at a
right angle and containing a time-phase difference.
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[6] Greiner, M., Mandel, M. O., Esslinger, T., Hänsch, T., and Bloch, I., “Quantum phase transition from a
superfluid to a mott insulator in a gas of ultracold atoms,” Nature 415, 39 (2002).
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