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The newly-discovered three-dimensional strong topological insulators (STIs) 

exhibit topologically-protected Dirac surface states1,2. While the STI surface state has been 

studied spectroscopically by e.g. photoemission3-5 and scanned probes6-10, transport 

experiments11-17 have failed to demonstrate the most fundamental signature of the STI: 

ambipolar metallic electronic transport in the topological surface of an insulating bulk. 

Here we show that the surfaces of thin (<10 nm), low-doped Bi2Se3 (≈1017/cm3) crystals are 

strongly electrostatically coupled, and a gate electrode can completely remove bulk charge 

carriers and bring both surfaces through the Dirac point simultaneously. We observe clear 

surface band conduction with linear Hall resistivity and well-defined ambipolar field effect, 

as well as a charge-inhomogeneous minimum conductivity region18-20. A theory of charge 

disorder in a Dirac band19-21 explains well both the magnitude and the variation with 

disorder strength of the minimum conductivity (2 to 5 e2/h per surface) and the residual 

(puddle) carrier density (0.4 x 1012 cm-2 to 4 x 1012 cm-2).  From the measured carrier 

mobilities 320 cm2/Vs to 1,500 cm2/Vs, the charged impurity densities 0.5 x 1013 cm-2 to 2.3 
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x 1013 cm-2 are inferred.  They are of a similar magnitude to the measured doping levels at 

zero gate voltage (1 x 1013 cm-2 to 3 x 1013 cm-2), identifying dopants as the charged 

impurities.  

*these authors contributed equally to this work.  

 

Bi2Se3 as prepared is observed to be n-type due to Se vacancies. We find that 

mechanically exfoliated thin (thickness t ≈ 10 nm) Bi2Se3 on SiO2/Si is invariably highly n-

doped with sheet charge densities >


1013 cm-2, much greater than expected considering the bulk 

charge density (≈1017 cm-3) in our low-doped starting material22, suggesting additional doping is 

induced by mechanical cleavage, reaction with ambient species14,23, or substrate interaction. In 

order to remove this doping, we employed two types of p-type doping schemes on mechanically-

exfoliated thin Bi2Se3 field-effect transistors on 300 nm SiO2/Si back gate substrates24-27: (1) 

chemical doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) or (2) 

electrochemical doping with a polymer electrolyte top gate.   

Figure 1a and b show schematics of device structures and gating schemes. We exploit 

either strong electron affinity (≈ 5.4 eV) of F4TCNQ molecules27 or large capacitance (≈ 

1μF/cm2) of the electrochemical double layer at the interface between accumulated ions and the 

sample surface24-26 to induce negatively charged ions near the surface and p-type doping of 

Bi2Se3. In both cases the dopant density was fixed after cooling to cryogenic temperature, but 

further tuning of the carrier density was possible using the back gate (see Methods). 

Figure 1c and d show the longitudinal resistivity ρxx and Hall carrier density nH = 

1/(eRH) (where RH is the Hall coefficient, and e is the elementary charge) of a representative 

device (F4TCNQ-doped device 4) at various temperatures T from 2K to 50K as a function of 
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back gate voltage Vg. ρxx(Vg) shows a peak at approximately Vg,0 = -45 V, and nH changes sign at 

a similar Vg, diverging positively (negatively) when approaching Vg,0 = -45 V from above 

(below). There is no evidence of an energy gap: ρxx(T) is metallic (dρxx/dT > 0) and saturates at 

low T, and nH(T) shows little temperature dependence. The behavior is strongly reminiscent of 

that seen for the two-dimensional Dirac electronic system in graphene18. Likewise, we identify 

the linear regions of nH vs Vg for Vg > -35 V and Vg < -60 V as unipolar n- and p-doped regimes 

respectively, and the region -35 < Vg < -60 V as an inhomogeneous regime where electron and 

hole transport are both present.  

Figure 2a shows the Hall resistivity as a function of magnetic field ρxy(B) of device 4 at 

various gate voltages in the unipolar n- and p-doped regimes. The Hall resistivity in the unipolar 

regime is always linear over the entire range of magnetic field (±9 T), indicating all bands 

contributing to the transport have similar mobility and same carrier sign.  Specifically, we can 

rule out the possibility of both bulk and surface channels participating in  conduction (previously 

observed to give a non-linear ρxy(B) [11, 12, 28]) or significant contribution to conduction by 

impurity bands which should have much lower carrier mobilities (1 cm2/Vs  to 10 cm2/Vs) 

[17].  The measured linear ambipolar Hall effect with carrier mobility of >103 cm2/Vs is 

therefore a strong indication that conduction in our samples is dominated by the surface states. 

We note that a previous work on singly-gated Bi2Se3 of similar thickness but heavily 

(0.5%) Ca-doped17 also showed a superficially similar resistivity peak, interpreted there as the 

transition from bulk to surface conduction. No region of unipolar p-type Hall effect was 

observed. The authors concluded that significant band-bending in these highly-doped crystals led 

to very different carrier densities on either side of the device as well as an effective reduction of 

the bulk gap11,13,17. In order to determine whether band bending is important in our devices, we 
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fabricated an additional top gate on an F4TCNQ-doped device (device 5), using hydrogen 

silsequioxane (HSQ) as a top-gate dielectric.  

Figure 2b shows the resistivity ρxx of dual-gated device 5 as a function of applied 

displacement field to the top (Dtg) and bottom (Dbg) surfaces (see Methods). The data are 

presented as a polar plot of normalized resistivity (ρxx/ρmax) of the device as a function of total 

magnitude of displacement field Dtotal=|Dbg + Dtg| and asymmetry factor defined by α = (4/π)tan-

1[(Dtg - Dbg)/Dtotal]. We find that the measured resistivity depends only on total displacement field, 

proportional to the total charge density in the Bi2Se3 slab. We conclude from the observed 

azimuthal symmetry that both surfaces are gated simultaneously with either gate, and their 

chemical potential lies at the same level. If the gates acted independently on top and bottom 

surfaces, the maximum resistivity peak associated with the transition from n- to p-doping in each 

surface should broaden or split with increasing asymmetry; no such effect is observed. 

Remarkably, we find that simultaneous gating can be achieved even with a single gate electrode 

(α = ±1). We ascribe this effect to (1) the strong electrostatic coupling of the surfaces due to the 

large intersurface capacitance provided by the thin, lightly doped Bi2Se3, which has a high 

relative dielectric constant κ ≈ 100; and (2) the small density of states of the Dirac surface. The 

net result is that the electrostatic intersurface capacitance exceeds the quantum capacitance of 

each surface, in which case the two surface potentials become locked together (see 

Supplementary Information for more discussion).  

Having eliminated the possibilities of band-bending or significant contribution to the 

conductivity by bulk or impurity states, we conclude that our measurement probes the 

conductance of the simultaneously-gated ambipolar Dirac surfaces states. Our results therefore 

represent the first experimental demonstration of metallic, ambipolar, gapless electronic 
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conduction of the topological surface state in Bi2Se3 in the absence of bulk carriers, the defining 

quality of a topological insulator.  

Below, we analyze in more detail the transport properties of the topological surface state 

as a function of carrier density per surface n estimated from n = (Cg/2e)(Vg - Vg,0) where Vg,0 is 

the gate voltage at which RH = 0, which corresponds closely to the gate voltage of minimum 

conductivity. Figure 3 shows (a) conductivity per layer (σ), (b) the Hall carrier density per layer 

(nH,layer = 1/2RHe), and (c) field effect mobility µ = σ/ne vs. carrier density per layer n. Data are 

shown for devices 1-3 with electrolyte gating, and devices 4-5 charge transfer doped with 

F4TCNQ. Several features are notable immediately in Figure 3 and comprise the major 

experimental observations in this work. Upon carrier density tuning, (1) σ and nH,layer show clear 

ambipolar conduction with well-defined p- and n- regions, (2) |nH,layer| shows a minimum value 

(n*) for p- and n- conduction, (3) σ shows a roughly linear carrier density dependence for n* < n 

< nbulk where nbulk ≈ 5 x 1012/cm2 is the carrier density above which the bulk conduction band is 

expected to be populated, and (4) a minimum conductivity (σmin = 2 e2/h  to 5 e2/h) is observed. 

Extending the theory of charge disorder in graphene19,20, a recent theoretical study 

predicts the conductivity limited by charged-impurity scattering in STI of the form (assuming 

linear Dirac band)21, 

impn
nCn  ~)(σ [e2/h]   for n > n*   (1a) 

*( ) ~  
imp

nn C
n

σ  [e2/h]  for n < n*   (1b) 

where nimp is the charged impurity density, C is a constant which depends on the Wigner-Seitz 

radius rs, and n* is identified as the residual carrier density in electron and hole puddles. For 
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Bi2Se3 on SiO2[21] we expect 0.05 < rs < 0.2 and 30 < C < 300. See Supplementary Information 

for a more detailed description of the theory. For n* < n < ≈ 5 x 1012/cm2, we fit σ(n) to Eqn. (1a) 

(figure 2a-dashed lines), to obtain the field-effect mobility µFE = Ce/nimph for each device. µFE 

ranges from 320 cm2/Vs  to 1500 cm2/Vs reflecting different amounts of disorder in the samples. 

We identify the initial n-type dopants, and defects induced by mechanical exfoliation as likely 

sources of the disorder. The decrease in µFE with further electrolytic gating (device 1 run 2) 

indicates electrochemical damage, likely solvation of Se ions. The observation of sublinear σ(n) 

at n < nbulk in devices 3-5 may indicate that there are additional types of disorder, e.g. neutral 

point defects, which need to be considered.  

The observed minimum conductivity of the Dirac electronic band can be well 

understood through Eqn. (1b) as due to the residual carrier density n* in electron and hole 

puddles induced by the charged impurity potential at nominally zero carrier density: σmin = n*eµ, 

where n* is calculated self-consistently20 as a function of nimp, rs, and d, the distance of the 

impurities to the Dirac surface. The self-consistent theory predicts that n* increases with 

increasing disorder, and σmin depends only weakly on disorder. Figure 4 shows the 

experimentally observed residual carrier density n* per surface for each device (figure 4a) as 

well as σmin per surface (figure 4b) as a function of the experimentally-measured inverse mobility 

1/µFE which reflects the disorder strength. (For devices in which n* could be measured for p and 

n-type conduction, both values are shown.)  The shaded regions reflect the expectations of the 

self-consistent theory using parameter ranges 0.05 < rs < 0.2, and d = 0.1 Å to 15 Å. We see a 

good agreement between experiment and theory in that (1) σmin is weakly dependent on disorder 

strength (1/µFE) and (2) n* increases with disorder strength (1/µFE). Particularly for increasing 

disorder in the same device (Device 1 run 1 vs. run 2), n* increases but σmin is nearly unchanged 
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(arrows in Figs. 4a and 4b). The experimental data agree best with the upper range of the 

theoretical estimates, corresponding to small d = 0.1 Å and large rs = 0.2. Assuming rs = 0.2, we 

infer an impurity density nimp ranging from 0.5 x 1013 cm-2 to 2.3 x 1013 cm-2, much larger than 

for graphene exfoliated on similar SiO2 substrates [29], but comparable to the observed initial 

doping level of 1 x 1013 cm-2 to 3 x 1013 cm-2, suggesting that the dopants are the charged 

impurities responsible for limiting the mobility (see Supplementary Information).  

The simple theory somewhat underestimates n* and σmin, but we expect that the theory 

can be refined to take into account the non-linearity and asymmetry of the Bi2Se3 surface state 

bands [30]. Notably, the larger Fermi velocity for the electron band would increase the 

conductivity above the estimate in Eq. 1 for n-type conduction, indicating that disorder strength 

is likely somewhat underestimated from the n-type mobility.  Shifting the points to the right (to 

larger disorder strength) in Fig. 4 would indeed improve the agreement between experiment and 

theory.   

Reducing n-type doping of TI thin films by external agents provides an effective and 

simple way to probe topological surface transport properties in the absence of bulk conduction. 

For present devices the level of charged impurity disorder is in the order of ~1013 cm-2 limiting 

the mobility to 320 cm2/Vs to 1500 cm2/Vs. However, due to large dielectric constants in 

existing topological insulators, reduction of impurity concentrations to levels seen in the best 

bulk crystals (<1017 cm-3 corresponding to <1011 cm-2 in a 10 nm thick crystal22) would allow 

mobilities exceeding 105 cm2/Vs.  Hence understanding and eliminating the doping presently 

observed in all thin crystals and films is of central importance to increasing the mobility of the 

topological surface state.  
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Note added: After submission of this work we became aware of a scanning tunneling 

microscopy study10 which directly observed the screened potential fluctuations caused by 

charged impurity disorder in Bi2Se3 and Bi2Te3, consistent with our interpretation of the 

minimum conductivity arising from charge inhomogeneity.  

 

Methods 

Bi2Se3 thin crystals were produced by micro-mechanical cleavage of bulk Bi2Se3 single 

crystals and deposited on doped Si covered with 300nm SiO2. Thin crystals with thickness about 

10 nm were identified using atomic force microscopy (AFM). Thin film was patterned in Hall 

bar geometry using Ar plasma at a pressure of ≈6.7 Pa (5 x 10-2 Torr). Au/Cr electrodes were 

defined by electron-beam lithography (see inset of Fig. 1d). A brief (≈10 s) selective surface 

treatment of the contact area with N2 or Ar plasma before the deposition of metals was used to 

enhance Ohmic conduction of the contacts.  

P-type doping for devices 1-3 was achieved by applying negative voltage to a polymer 

electrolyte consisting of LiClO4 and polyethylene oxide (PEO) in the weight ratio 0.12:1, as 

previously used for carbon nanotubes and graphene devices24-26. Molecular charge transfer 

doping for device 4 and 5 was done by thermal evaporation of ≈15 nm of F4TCNQ molecules 

(Aldrich) on top of the samples27. The devices were subsequently cooled down and further 

tuning of carrier density was done by sweeping the back gate voltage at cryogenic temperature. 

For electrolyte-gated measurements, the samples were cooled down to 250K in less than 1 min 

after applying the top gate voltage to minimize electrochemical reactions25.  

In addition to singly gated samples, we fabricated dual-gated samples based on F4TCNQ 

doped samples (Figure 2b). 60nm of hydrogen silsequioxane (HSQ, XR-1541, Dow Corning) 
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was spin coated on a F4TCNQ coated Bi2Se3 device and top gate electrode was defined by 

electron beam lithography. We found that further fabrication on pre-doped devices increased the 

n-type doping level (e.g., ≈1.2 x 1013 cm-2 at zero gate field in figure 2b compared to ≈0.3 x 1013 

cm-2 in figure 1d). From Hall carrier density vs. gate voltage, bottom and top gate capacitance 

were determined to be ≈11 nF/cm2 and ≈33 nF/cm2
, respectively, which are reasonable 

considering the dielectric constants of SiO2 (κ ≈3.9) and HSQ (κ ≈3).  

Four-probe measurements of longitudinal and transverse electrical resistances were 

conducted using Stanford Research Systems SR830 Lock in amplifiers and a commercial 

cryostat equipped with 9 T superconducting magnet. Hall voltage was recorded in both polarities 

of the magnetic field (±1 T) and anti-symmetrized to remove longitudinal voltage components. 

In transport experiments a small and reproducible hysteresis in Vg,0 (≈2 V) was observed during 

forward and backward gate voltage scans. In consequence, resistivity and Hall data with same Vg 

scan directions were compared in this work. Best fits to Eqn. (1a) were determined using a least 

squares linear fit to σ(n) in the linear regime, determined by identifying the region of roughly 

constant slope dσ/dn. Thermal runs as described here were performed for more than ten different 

Bi2Se3 samples of similar thickness with qualitatively consistent results.  

Note: Certain commercial equipment, instruments, or materials are identified in this 

paper in order to specify the experimental procedure adequately. Such identification is not 

intended to imply recommendation or endorsement by the National Institute of Standards and 

Technology, nor is it intended to imply that the materials or equipment identified are necessarily 

the best available for the purpose. 
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Figure captions 

 
 
Figure 1 Bi2Se3 thin film device. Schematics of p-type doping scheme and gate configuration 

for a, charge transfer doping with F4TCNQ organic molecules and b, polymer electrolyte 

(PEO+LiClO4) top gating. c, Longitudinal resistivity ρxx and d, sheet carrier density determined 

from Hall measurement as a function of back gate voltage for device 4 (F4TCNQ doped) at 

various temperatures from 2 K to 50 K indicated in caption. The inset shows an optical 

micrograph of the device. The scale bar is 2μm. 

 

Figure 2 Single band conduction in the topological insulator regime. a, Hall resistivity ρxy of 

device 4 as a function of magnetic field B at a temperature of 2 K at different carrier densities 

tuned by the back gate electrode. b, Polar plot of the normalized longitudinal resistivity ρxx of 
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dual gated Bi2Se3 thin film device as a function of total magnitude of displacement field (Dtotal) 

and gating asymmetry factor α (defined in the text) 

 

Figure 3 Transport properties of Bi2Se3 surface state. a, The conductivity per surface vs. 

carrier density per surface σ(n) at zero magnetic field for five different devices. Device 1 to 3 are 

electrolyte gated and device 4 and 5 are F4TCNQ doped. The inset shows σ(n) near the Dirac 

point. Dashed lines are fits to Eqn. (1a). Transport data outside the topological regime (n > nbulk = 

5 x 1012/cm2) are denoted as dotted curves. b, Hall carrier density per surface vs. carrier density 

measured at the same conditions as in (a). Dashed lines show residual carrier density n* (defined 

in the text) for different devices c, Variation of field effect mobility as a function of carrier 

density. Dashed curves indicate the region |n| < n* within which electron and hole puddles 

dominate transport.  

 

Figure 4 Minimum conductivity and charge inhomogeneity vs. inverse mobility. a, Residual 

carrier density n* vs. inverse field effect mobility (1/μFE) and b, minimum conductivity σmin vs. 

1/μFE. Shaded areas indicate the expectations of the self-consistent theory of Ref. 20, open 

symbols are experimental data. 
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Supplementary Information 

1. Interlayer electrostatic coupling and simultaneous tuning of bottom and top surfaces  

We discuss possible origin of observed simultaneous gating of topological surfaces 

(figure 2b in the main text). We model the electrostatic response of the two topological surfaces 

to back and top gate voltage by the effective capacitor network as shown in figure S1a, which 

includes the electrostatic gate capacitances Cg,t and Cg,b to top and bottom surfaces respectively, 

and the quantum capacitances Cq,t and Cq,b of top and bottom surfaces. Note that the two surfaces 

are coupled by an interlayer capacitance Cil, which originates from the bulk part of the Bi2Se3 

thin film. For the dual-gated device 5, we measure Cg,b = 11 nF/cm2, Cg,t = 33 nF/cm2,  and 

estimate Cil  to be order of ~10 uF/cm2 considering nominal thickness (≈10 nm) and dielectric 

constant (κ ≈ 100 [1]) of Bi2Se3 films. For electrolyte-gated devices, we measure a capacitance to 

the back gate at cryogenic temperatures which is greater than 11 nF/cm2; we assume that the 



 

 

excess capacitance is due to a high polarizability of the polymer electrolyte which provides 

additional coupling of the back gate to the top surface on order 16 nF/cm2.  The near-equivalence 

of the capacitance of the back gate to top and bottom surfaces in electrolyte-gated devices further 

enhances equilibration of charge on top and bottom surfaces above what would be expected in 

the analysis below.    

The quantum capacitance reflects the change in charge required to change the Fermi 

energy EF in a material. For small changes in Fermi energy, Cq Is often approximated by 

e2(dn/dEF), where e is the elementary charge and dn/dEF is the density of electronic states, Since 

D(E) varies significantly in a 2D Dirac material such as the topological surface state, we will use 

the full quantum capacitance Cq = e2(n/EF) where n is the carrier density.  We assume a linear 

dispersion relation for surface states in Bi2Se3 which is valid up to n ≈ 5x1013/cm2 per surface2, 

thus considering degeneracy of one, EFb(t) = 2ℏvF(πnb(t))1/2 where ℏ is Planck’s constant and vF = 3 

x 105 m/s  to 7 x 105 m/s is the Fermi velocity in Bi2Se3, representing roughly the average Fermi 

velocity for the conduction cone for energies below the bulk conduction band3-4. We use the 

experimentally observed n0 ≈ 12 x 1012/cm2 at zero displacement field as a reference point; equal 

carrier density (nt = nb = 6 x 1012/cm2) at this gate voltage was assumed. The carrier density of 

each surface can be expressed as 

iltgbgtb nnn )()( =                                                        (1) 

where nbg(tg) = Cg,b(t)(eVg-EFb(t))/e2, nil = Cil(Eft - Efb)/e2
 and Vg is the applied back gate voltage. 

Figure S1b shows calculated carrier density for bottom and top surface carrier densities 

as functions of total magnitude of applied field for symmetric (α = 0, dashed, asymmetry factor α 



 

 

is defined in the main text) and highly asymmetric (α = -0.5) gating schemes assuming Cg,b = 11 

nF/cm2 and Cg,t = 33 nF/cm2 corresponding to device 5. We compare carrier densities for the 

same parameters for gate capacitances in the strong (Cil/Cq >> 1, Cil = 30 uF/cm2, solid lines), 

intermediate (Cil/Cq ~ 1, Cil = 3 uF/cm2, dotted lines), and weak coupling limit (Cil/Cq << 1, Cil = 

0.1 uF/cm2, dashed-dot lines). In the weak coupling limit the large difference in applied field 

(Dgb = 3Dgt for α = -0.5) leads to very different carrier densities on either side of the device so 

that a splitting of maximum resistivity at Dirac point is expected. However, the presence of large 

inter-surface capacitance enhances the tendency to equalize the surface charge densities. As 

interlayer capacitance becomes comparable to quantum capacitance of Dirac surface, it 

dramatically reduces carrier density difference of the surfaces.  

For estimated Cil ≈11 μF/cm2 of device 5 (ttot ≈ 9 nm), the carrier density difference at 

charge neutrality Δn = nt – nb ≈1.2x1012 cm-2, which is comparable to the observed width of 

charge inhomogeneity (2n*). However, we note that the surface electronic state has some finite 

extent into the bulk, thus especially in thin film geometry, Cil can be significantly larger. For Cil > 

13 μF/cm2, Δn becomes less than 2n* (≈1 x 1012 cm-2), and for Cil exceeding 20 μF/cm2
 which is 

conceivable when tbulk < 5 nm, Fermi energies of bottom and top surfaces are essentially locked 

together with negligible Δn. The experimental observations in the main text suggest we approach 

this limit; we observe that the simultaneous gating approximation holds even when α = ±1, 

where gating field is applied only to one of the surfaces. Since Δn is much less than the observed 

n* in this limit, we conclude that n* is dominated by local inhomogeneity in the carrier density 

due to disorder. Therefore, we can parameterize the transport properties for singly gated devices 

(figure 3 in the main text) as functions of carrier density per surface n estimated from n = 

(Cg/2e)(Vg - Vg,0) where Cg is estimated from the slope of nH(Vg) in the unipolar regime.     



 

 

 

2. Weak anti-localization of Bi2Se3 surface states. 

We discuss the behavior of low field magnetotransport in the TI regime. Figure S2 shows 

the magneto-conductivity per layer Δσ(H) of device 1 (run 1) at various carrier densities.  Δσ(H) 

curves at high n > 5 x 1012cm-2 are nearly identical, but change significantly as the Fermi energy 

approaches the Dirac point5,6. In the limit of strong spin orbit interaction and low mobility, we 

can fit the low field magneto-conductance per surface to the simplified form of the theory for 

weak anti-localization7,  
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where H0 = ℏ/4Deτ0 is a characteristic field related to the dephasing time τ0 , ψ is the digamma 

function, and A is a fit parameter whose theoretically expected value is 1/2π. Confining the fit to 

fields below 0.4T, Eqn. (2) does provide reasonably good fits to the data at all carrier densities. 

Fitting results across the carrier density range are shown in the inset of figure S2. At the charge 

neutrality point the coefficient A rises to ≈0.2 in the topological regime, which is within 25% of 

the theoretical value A = 1/2π [7]. The observation of magnetoconductivity described by Eqn. (2) 

in the clear absence of bulk carriers confirms its surface state origin, as posited in Refs. 5 and 6.  

H0 is maximum (indicating the coherence length is minimum) near n = 0; similar behavior is 

observed in the electron-hole puddle regime in graphene8. 

3. Conductivity of STIs limited by charged impurity scattering 

 



 

 

Charged impurities can be present in the Bi2Se3 bulk, in the polymer electrolyte, or 

physisorbed onto the surface.  For Dirac fermions, such long-range Coulomb disorder is 

expected to give signatures in the transport measurements at both high carrier density and at low 

carrier density.  Away from the Dirac point, the conductivity limited by charged impurity 

scattering is linear in the carrier density i.e. ( )n neσ m=  where the mobility 𝜇 is calculated from 

the Boltzmann transport theory2,9. Close to the Dirac point, the same charged impurities locally 

shift the Dirac point creating electron and hole puddles.  The non-zero carrier density in the 

puddles gives rise to a minimum conductivity 𝜎𝑚𝑖𝑛 = 𝑛∗𝑒 𝜇 , where 𝑛∗  is the characteristic 

density of carriers inside the puddles.  In our experiments on Bi2Se3 we observe both these 

signatures of charged impurities.  More importantly, we can measure 𝜎𝑚𝑖𝑛 ,  𝑛∗  and 𝜇  as 

independent experimental parameters, and test the charged impurity picture by checking to see if 

the variation of   𝜎𝑚𝑖𝑛 and  𝑛∗ with 𝜇 is consistent with theoretical expectations.   

The self-consistent theory has three parameters: the density of charged impurities 𝑛𝑖𝑚𝑝, the 

effective interaction parameter (dimensionless Wigner-Seitz radius) rs = e2/κeffℏvf , where κeff is 

average dielectric constant, and the distance 𝑑 of the impurities from the surface. For simplicity 

we ignore the weak dependence of 𝜇 on d, and assume that the surface bands have constant 𝑣𝐹.  

In this case, we find 
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where 𝜇0 = 1 m2/Vs and 𝑛0 = 1010𝑐𝑚−2.  Following Ref. 9,  𝑛∗ is calculated self-consistently.  

Using the Thomas-Fermi screening theory, we have 
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where Γ0is the exponential integral function 1
0 ( )

x

tt e dtx − −∞
Γ = ∫ . Given 𝑛∗and 𝜇, we can calculate 

𝜎𝑚𝑖𝑛 = 𝑛∗𝑒 𝜇.  Due to uncertainty in vf and κ , in Fig. 4 of the main text, we show the window of 

theoretical results obtained for  0.1 Å < d < 15 Å and 0.05 < 𝑟𝑠 < 0.2.  The rs range corresponds 

to the existing estimates in the literature of 3 < vf < 7 x 105 m/s [3,4], and 30 < κeff < 60 [1,10].   

Note that at high density, when n >> n*, the result in Eq. 3 differs by a factor of ≈4 from 

that of Ref. [2].  At low density, our finding that n* << nimp (Eq. 4) is an important prediction of 

the self-consistent theory.  If n* was of the same order as nimp as assumed in Ref. [2] then the 

disorder induced energy fluctuations would be comparable to the band-gap and we would have 

been unable to observe the minimum conductivity and other surface band properties. 

4. Gate tuned transport of Bi2Se3 device 1 with polymer electrolyte at 300K 

 Figure S3 shows resistivity (ρ) and Hall carrier density (nH) as a function of electrolyte 

gate voltage measured at 300K. Although the initial gate capacitance for the polymer electrolyte 

was found to be ≈1 μF/cm2, the gate efficiency decreased rapidly as the gate voltage 

exceeded -0.8V. Notable hysteresis in the forward and backward voltage scans was also found. 

However, we note that the possible mechanism which can cause hysteresis (e.g. polymer 

decomposition or reaction with the sample) is reversible in this voltage scan range (0V to 1V). 

Because of additional doping induced by mechanical cleavage and reaction with ambient 

species11,12, the amount of total carrier density at zero gate voltage was found to be much greater 

than the expected considering the bulk charge density (≈1017 cm-3) in our low-doped starting 

material1. The observed initial doping level (≈3.1x 1013 cm-2) is of similar magnitude to the nimp 



 

 

obtained by fit to the theory of charged impurity governed conductivity in Bi2Se3
2 indicating that 

the dopants act as charged impurities. 

 

5. Alumina (Al2O3) capped Bi2Se3 device 

Motivated by recent reports11,12 showing surface degradation of Bi2Se3 upon exposure to 

atmosphere, we performed experiments of capping the surface with Al2O3. Thin (10nm) Bi2Se3 

was mechanically exfoliated onto highly n-doped SiO2 (300nm)/Si in a glove box of nitrogen 

environment, transferred to an e-beam evaporator without exposing to ambient environment. 

Subsequently, very thin (1.5nm) alumina (Al2O3) was deposited at a base pressure of ~10-5 Pa 

(~10-7 Torr)  and the thin capping layer prevented Bi2Se3 surface from being exposed to air 

afterwards. Electrodes (Cr/Au) were prepared and electrical measurement with dual gate was 

done in the same way as described in the main text. Figure S4 shows conductivity and Hall 

carrier density measured at low temperature (4.2K). While we found it was possible to gate the 

sample through the Dirac point, we found Hall mobility of Al2O3 capped device ≈100 cm2/Vs (3 

to 15 times lower than uncapped device of the same thickness), residual density ≈3 x 1013 cm-2 (8 

to 80 times higher, and higher than the density at which bulk bands are populated).  Following 

the analysis in the main text, we would extract a charged impurity density ≈3x1014 cm-2 (5 to 10 

times higher), though the analysis is beyond its range of validity since the bulk bands are 

significantly populated. The result indicates that the Al2O3 capping layer itself may degrade the 

surface states by providing strong source of Coulomb charged impurities although capping 

surface may prevent further degradation of the surface from air exposure.  
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Figure S1 Displacement field induced surface charge density. a, Capacitor network model of 

Bi2Se3 thin film device. b, Calculated charge densities for top (blue) and bottom (red) surfaces as 

a function of total magnitude of applied field. Dashed black line is carrier density for symmetric 

applied field (α=0). The solid, dot, dashed-dot lines are charge densities calculated for highly 

asymmetric applied field (α=-0.5) in the strong, intermediate, and weak interlayer coupling 

limits, respectively.  
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Figure S2 Magnetic field suppression of weak anti-localization. Symmetrized conductivity 

change of device 1 (symbols) vs. magnetic field at various per surface carrier densities. Solid 

curves are fit to Eqn. (2). The inset shows prefactor A (squares) and dephasing field H0 (circles) 

obtained from fits to Eqn. (2). 
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Figure S3 Electrolyte gating of device 1 at 300K. Resistivity (ρ) and sheet carrier density 

determined from Hall voltage (nH) as a function of electrolyte gate voltage. 
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Figure S4 Electronic transport of Al2O3 capped Bi2Se3 device. Conductivity (σ) and Hall 

carrier density measured in an Al2O3 capped device at T=4.2K as a function of back gate voltage.  

 


	Manuscript
	Main Text
	Figures

	Supplementary Information

